JPS5834114A - Manufacture of reduced iron - Google Patents

Manufacture of reduced iron

Info

Publication number
JPS5834114A
JPS5834114A JP13178381A JP13178381A JPS5834114A JP S5834114 A JPS5834114 A JP S5834114A JP 13178381 A JP13178381 A JP 13178381A JP 13178381 A JP13178381 A JP 13178381A JP S5834114 A JPS5834114 A JP S5834114A
Authority
JP
Japan
Prior art keywords
gas
furnace
fluidized bed
iron
reduced iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13178381A
Other languages
Japanese (ja)
Other versions
JPS6325044B2 (en
Inventor
Masayasu Arikawa
有川 正康
Kenji Mori
憲二 森
Kiichi Narita
成田 貴一
Dentaro Kaneko
金子 伝太郎
Nobuo Kamimura
上村 信夫
Kazuhiro Miyazaki
宮崎 一裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13178381A priority Critical patent/JPS5834114A/en
Publication of JPS5834114A publication Critical patent/JPS5834114A/en
Publication of JPS6325044B2 publication Critical patent/JPS6325044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material

Abstract

PURPOSE:To expand width of utilized hydrocarbon, to manufacture reduced gas at a low cost and easily, and to realize high temperature reduction, by placing in series a spare reducing furnace of a fluid layer system, a gas reforming furnace and a reducing furnace, and making iron ore grains and hydrocarbon flow through in order. CONSTITUTION:Iron ore grains are heated by a heater 1, and after that, are fed to a spare reducing furnace 2, and are brought into contact with hydrocarbon preheated to such an extent as it is not decomposed, by a preheater 5, and circulating gas containing oxidizing gas such as CO2, H2O, etc., which has passed through a heater 21 from a line 12. Subsequently, a part of the hydrocarbon is decomposed and becomes reduced gas, and a part by-produces C and sticks onto the surface of iron ore grains, and the iron ore grains are prereduced. The C stuck grains are fed to a gas reforming furnace 3 together with decomposed gas which has passed through a purifying device 18, and a part of reduced iron of a reducing furnace 4, and the decomposed gas is reformed to reduced gas mainly consisting of CO, H2, etc. This reduced gas is made to pass through a heater 22, also iron ore and the reduced iron which has been partially oxidized are fed to the furnace 4 from the furnace 3 and are made to contact with each other, and reduced iron is generated, and its waste gas is fed to the furnace 2.

Description

【発明の詳細な説明】 本発明は鉄鉱石粒子を流動状態に保持しつつ高温還元ガ
スと接触させてこれを還元し還元鉄を製造する流動層式
直接製鉄法の改良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a fluidized bed direct iron manufacturing method in which iron ore particles are kept in a fluidized state and brought into contact with a high temperature reducing gas to reduce the particles to produce reduced iron.

近年、高炉によらない製鉄技術としての直接製鉄法の発
展と需要の増大には著しいものがあるが、中でもシャフ
ト炉法、固定層法あるいは流動層法等の所゛謂ガス還元
剤を用いる方法の発展には目ざましいものがある。
In recent years, there has been a remarkable development and increase in demand for direct steelmaking as a steelmaking technology that does not rely on blast furnaces, among which methods that use so-called gas reducing agents, such as the shaft furnace method, fixed bed method, or fluidized bed method. The development of has been remarkable.

これらのガス還元法においては、一般に天然ガス(CH
4)を還元ガス源として用い、該天然ガスとH20,C
O2等の酸化性ガスとを高温で触媒存在下に接触させる
ことによって得られるCO+1−12ガスを還元剤とし
て、鉄鉱石(酸化鉄)の還元を行なう方法であって、還
元ガスと酸化鉄との気固粗反応によって鉄鉱石の含有す
る殆んどの酸素を除去し、還元鉄を固体状態で還元炉か
ら取り出す方法である。これらの方法において、還元ガ
ス源は今のところ、天然ガスに限られているため、これ
らの製鉄プラントは天然ガスの豊富な地方に限られてお
り、種々の巾広い炭化水素を還元ガス源とするプロセス
の出現が望まれている。
In these gas reduction methods, natural gas (CH
4) as a reducing gas source, the natural gas and H20,C
This is a method for reducing iron ore (iron oxide) using CO+1-12 gas obtained by contacting an oxidizing gas such as O2 at high temperature in the presence of a catalyst as a reducing agent. In this method, most of the oxygen contained in iron ore is removed through a gas-solid crude reaction, and reduced iron is taken out of the reduction furnace in a solid state. In these methods, the reducing gas source is currently limited to natural gas, so these steel plants are limited to regions with abundant natural gas, and a wide variety of hydrocarbons can be used as the reducing gas source. It is hoped that a process will emerge.

また設備的にも、天然ガスを改質してCO+H2ガスを
得るための還元ガス製造設備として、高価なりフォーマ
−チューブと、該チューブ内に充填するNi系触媒とを
多量に必要とするため、プラント建設費の相当な部分を
これら還元ガス製造設備に充当しなければならず、しか
もこの設備は処理ガス量が増加すれば、それに比例して
リフオーマ−チューブ及び触媒量も増加するため、スケ
ールメリットが小さく、これを大規模にするメリットが
期待できなかった。
In addition, in terms of equipment, the reducing gas production equipment for reforming natural gas to obtain CO+H2 gas requires a large amount of expensive former tubes and Ni-based catalysts to be filled in the tubes. A considerable portion of the plant construction cost must be allocated to these reducing gas production facilities, and as the amount of gas to be processed increases, the amount of reformer tubes and catalysts will also increase proportionately, so there is no economy of scale. was small, and no benefit could be expected from making it larger.

更に、還元ガスと鉄鉱石との反応は還元力°ス温度が高
い程その反応速度を速くすることができ、生産性を高め
ると共にエネルギ効率も高めることができるが、急速な
還元と高温による還元鉄表面の活性化によって、流動層
の場合には還元鉄粒子同志が固着し、また固定層あるい
はシャフト炉法においてはベレット状あるいは塊状の還
元鉄同志が炉内で固着してしまうため、安定な作業を行
なうことができなくなる欠点がある。このため、従来(
Dこれらガス還元法においては、生産性及びエネルギ効
率を多少犠牲にしてでも安定操業の可能な範囲にまで温
度を下げて運転することを余儀なくされており、高炉法
が1500℃以上であるのに対し、ガス還元法では90
0°C前後という相当低い温度となっている。
Furthermore, the higher the temperature of the reducing gas and iron ore, the faster the reaction rate, increasing productivity and energy efficiency; however, rapid reduction and reduction due to high temperature By activating the iron surface, reduced iron particles stick to each other in the case of a fluidized bed, and in a fixed bed or shaft furnace method, reduced iron particles in the form of pellets or lumps stick together in the furnace, resulting in stable production. There is a drawback that it makes it impossible to perform the work. For this reason, conventionally (
D In these gas reduction methods, it is necessary to lower the temperature to a range where stable operation is possible, even if it means sacrificing productivity and energy efficiency to a certain extent. On the other hand, in the gas reduction method, 90
The temperature is quite low, around 0°C.

本発明は、かかる現状に鑑み、従来のガス還元法の有す
る問題点を解消し、且つ簡単なプロセスによって還元鉄
を製造する方法を提供するもので、その目的とするとこ
ろは、第1に還元ガス源として天然ガス(CH4)に限
らず、巾広く炭化水素を利用できるプロセスを提供する
点にあり、第21/!:高価なりフォーマ−チューブに
よる還元ガス製造設備を用いることなく安価且つ簡単に
還元ガスの製造を行なうことのできるプロセスを提供す
ることにあり、更に第3には高温還元を行なっても還元
鉄粒子の相互固着を生じることがなく、従ってエネルギ
効率の高いプロセスを提供する点にある。
In view of the current situation, the present invention solves the problems of conventional gas reduction methods and provides a method for producing reduced iron through a simple process. The 21st/! : The purpose is to provide a process that can inexpensively and easily produce reducing gas without using expensive former tube-based reducing gas production equipment, and thirdly, even if high temperature reduction is performed, reduced iron particles will not be produced. There is no mutual adhesion between the two, thus providing a highly energy efficient process.

そこで、炭化水素を予じめ還元ガスに改質することなく
鉄鉱石粒子と直接接触させ、鉄鉱石の還元あるいは還元
ガスの製造を行なうことができれば、還元鉄製造プロセ
スは極めて単純化し、同時にエネルギ効率も大巾に向上
させることができることから、本発明者等は上記観点に
立脚して次の如き実験を行なった。
Therefore, if it were possible to reduce iron ore or produce reducing gas by bringing hydrocarbons into direct contact with iron ore particles without reforming them into reducing gas in advance, the reduced iron production process would be extremely simple, and at the same time energy efficient. Since the efficiency can also be greatly improved, the present inventors conducted the following experiments based on the above viewpoint.

〔実験1〕 鉄鉱石粒子(Fe20a )を還元炉内に装入し、これ
に860°CでCO:36%、H2:55%、CO2:
5%、CH4:4%からなる混合ガスを供給した場合(
ケースA)と、950’C″??CH4:40%、H2
:20%、N2:40%の混合ガスを供給した場合(ケ
ースB)とにおける還元時間と還元率の変化を測定した
ところ、第1図の如き結果を得た。第1図から明らかな
様に、通常のCo、H2を主成分とする還元ガスを用い
たケースAの場合には、時間と共に鉄鉱石の還元が進行
するが、CH4を40%含有したケースBの場合には、
70〜80%程度までは還元が進行するが、その後は時
間と共に低下している。なお第1図の縦軸は、還元によ
る重量減少率を示したものであるから、ケースBにおい
ては、70〜80%程度まで還元が進行した後は、逆に
重量が増加していることを示している。そこでケースB
の鉄鉱石を還元炉から取り出して調べたところ参考写真
として提出する顕微鏡写真(150倍)に示すように、
一部還元された鉄鉱石粒子の表面に炭素が付着している
ことが確認された。
[Experiment 1] Iron ore particles (Fe20a) were charged into a reduction furnace and heated to 860°C with CO: 36%, H2: 55%, CO2:
When a mixed gas consisting of 5% CH4 and 4% CH4 is supplied (
Case A) and 950'C''?? CH4: 40%, H2
When a mixed gas of 20% N2 and 40% N2 was supplied (Case B), changes in reduction time and reduction rate were measured, and the results shown in FIG. 1 were obtained. As is clear from Figure 1, in Case A, which uses a normal reducing gas mainly composed of Co and H2, the reduction of iron ore progresses over time, but in Case B, which contains 40% CH4. In Case of,
The reduction progresses to about 70 to 80%, but after that it decreases with time. The vertical axis in Figure 1 shows the weight reduction rate due to reduction, so in case B, after the reduction has progressed to about 70-80%, the weight increases. It shows. So case B
When the iron ore was taken out of the reduction furnace and examined, as shown in the micrograph (150x magnification) submitted as a reference photograph.
It was confirmed that carbon was attached to the surface of partially reduced iron ore particles.

この実験から、炭化水素を予じめ還元ガスに改質するこ
となく、直接、鉄鉱石粒子と接触させると、鉄鉱石は一
部還元され、同時に炭化水素もCH4→C+2H2の如
く分解されて、生成した炭素が鉄鉱石粒子を被覆する様
に付着することが分か゛る。
From this experiment, we found that when hydrocarbons are brought into direct contact with iron ore particles without being reformed into reducing gas in advance, the iron ore is partially reduced, and at the same time, the hydrocarbons are decomposed as CH4→C+2H2. It can be seen that the generated carbon adheres to coat the iron ore particles.

〔実験2〕 各種酸化状態の酸化鉄及び還元鉄を、950°Cにて、
CH4:25%、H2O:25%、N2:50%からな
る混合ガスとSV:500/hrで接触させてCH4の
c。
[Experiment 2] Iron oxide and reduced iron in various oxidation states were heated at 950°C.
c of CH4 by contacting it with a mixed gas consisting of CH4: 25%, H2O: 25%, and N2: 50% at SV: 500/hr.

及びH2への改質度を調べたところ、第2図の如き結果
を得た。なお第2図の縦軸はCH4のCo、H2への転
換率を示している。同図から明らかな様にFe2O3、
Fe3O4、FeOはいづれもCH4の分解に対する触
媒能に乏しいが、還元鉄は著しく高い触媒能を有してい
る。
When the degree of modification to H2 was investigated, the results shown in FIG. 2 were obtained. Note that the vertical axis in FIG. 2 indicates the conversion rate of CH4 to Co and H2. As is clear from the figure, Fe2O3,
Both Fe3O4 and FeO have poor catalytic ability for the decomposition of CH4, but reduced iron has extremely high catalytic ability.

この実験から、従来の様に高価なNi触媒を使用するこ
となく、還元工程で生成した還元鉄を触媒として、炭化
水素を還元ガスに改質できることが分かる。
This experiment shows that hydrocarbons can be reformed into reduced gas using reduced iron produced in the reduction process as a catalyst, without using an expensive Ni catalyst like in the past.

以上の実験事実に基づき、本発明は前述の目的達成のだ
めの合理的な還元鉄製造プロセスを提供するもので、そ
の特徴とするところは、次の工程の結合にある。
Based on the above experimental facts, the present invention provides a rational reduced iron manufacturing process that achieves the above objectives, and its feature lies in the combination of the following steps.

■ 鉄鉱石粒子を流動状態に保持した流動層予備還元炉
に炭化水素を供給し、該炭化水素の一部を分解ガス化す
ると共に鉄鉱石粒子を部分還元し、同時に該分解によっ
て副生ずる炭素を該鉄鉱石粒子に付着する工程 ■ #rI記炭素付着鉄鉱石粒子、分解ガス及び後述す
る流動層還元炉からの還元鉄の一部を流動層ガス改質炉
に供給し、該鉄鉱石粒子及び還元鉄を流動状I8に保持
しつつ該分解ガスをCOとH2を主成分とする還元ガス
に改質する工程 O前記[F]の流動層ガス改質炉から排出される鉄鉱石
粒子及び一部酸化された還元鉄を流動層還元炉に供給し
、これらを流動状態に保持しつつ前記■で生成した還元
ガスと接触させて還元鉄を製造する工程 ■ 前記θの流動層還元炉から排出されるガスを前記Φ
の流動層予備還元炉(2)に供給する工程以下に本発明
の工程を第3図に示す70−シートに基づいて説明する
と、図中[+)は流動層形式の鉱石加熱器であり、ライ
ン(8)より、平均粒径10〜200μの鉄鉱石粒子が
該加熱器(+)に供給され、1000°Cあるいはそれ
以上に加熱されてライン(9)より流動層形式の予備還
元炉(2)に供給される。この還元炉は700〜100
0’Cで運転されており、ここではライン03)よシ予
熱器(5)で分解しない程度の400〜500℃に予熱
された炭化水素、例えば天然ガスあるいは炭化水素油と
、後述するライン(12)から加熱器起りを経て100
0″C付近に加熱されて供給されるCO2、H2O等の
酸化性ガスを含む循環ガスが、加熱されて流動状態に保
持された鉄鉱石粒子と接触し、次の如き反応によって炭
化水素の一部は還元ガスとなる。
■ Hydrocarbons are supplied to a fluidized bed pre-reduction furnace that maintains iron ore particles in a fluidized state, and part of the hydrocarbons is decomposed and gasified, while the iron ore particles are partially reduced, and at the same time, the carbon by-product of the decomposition is removed. Step of adhering to the iron ore particles ■ #rI The carbon-adhered iron ore particles, cracked gas, and a portion of the reduced iron from the fluidized bed reduction furnace described later are supplied to a fluidized bed gas reforming furnace, and the iron ore particles and Step O of reforming the decomposed gas into a reducing gas containing CO and H2 as main components while maintaining the reduced iron in a fluidized state I8. A step of producing reduced iron by supplying the partially oxidized reduced iron to a fluidized bed reduction furnace and bringing it into contact with the reducing gas generated in step (1) above while maintaining the partially oxidized reduced iron in a fluidized bed. The gas to be
The steps of the present invention will be explained based on the 70-sheet shown in FIG. 3. In the figure, [+] is a fluidized bed type ore heater; From line (8), iron ore particles with an average particle size of 10 to 200μ are supplied to the heater (+), heated to 1000°C or more, and then sent from line (9) to a fluidized bed pre-reduction furnace ( 2). This reduction furnace has 700 to 100
It is operated at 0'C, and in this case, the line 03) is heated to 400 to 500°C without being decomposed in the preheater (5). 12) to 100 through the heater origin
Circulating gas containing oxidizing gases such as CO2 and H2O, which is heated to around 0''C and supplied, comes into contact with iron ore particles that are heated and maintained in a fluidized state, and one of the hydrocarbons is removed by the following reaction. part becomes reducing gas.

同時にこれらの還元ガスによって鉄鉱石は次の反応によ
って予備還元される。
At the same time, iron ore is pre-reduced by these reducing gases through the following reaction.

Fe 2Q3 + H2−2FeO+H2OFe2O3
+ Co −2FeO+CO2)”’■更に炭化水素の
一部は次の如き反応によって炭素を副生じ、副生炭素は
前述の通り鉄鉱石粒子の表面に付着することになる。
Fe2Q3 + H2-2FeO+H2OFe2O3
+Co-2FeO+CO2)"'■Furthermore, some of the hydrocarbons produce carbon as a by-product through the following reaction, and the by-product carbon adheres to the surface of the iron ore particles as described above.

これらの■〜■式の反応はいづれも吸熱反応であるから
、該予備還元P(2)に熱エネルギーを補給してやる必
要があるので、前記ライン(12)からのガスは、炉内
温度以上に充分に加熱して供給すると共に、予備還元炉
(2)で生成した炭素付着鉄鉱石粒子の大部分をライン
(1o)より前記鉱石加熱炉f1)に戻し、ライン07
)よシ供給される空気によって前記付着炭、素の一部を
燃焼させ、鉱石加熱の熱源とする。その他、鉄鉱石粒子
をライン(8)より高温スチームと共に供給し、熱源の
補充を行なうこともできる。
Since these reactions of formulas (1) to (2) are all endothermic reactions, it is necessary to supply thermal energy to the preliminary reduction P (2), so that the gas from the line (12) is heated to a temperature above the furnace temperature. At the same time, most of the carbon-attached iron ore particles generated in the pre-reduction furnace (2) are returned to the ore heating furnace f1) from the line (1o), and the iron ore particles are heated sufficiently and supplied.
) A portion of the adhering carbon and elements are combusted by the supplied air and used as a heat source for heating the ore. Alternatively, the heat source can be supplemented by supplying iron ore particles together with high-temperature steam from the line (8).

次に予備還元炉(2)で生成した炭素付着鉄鉱石粒子は
、ライン(11)より流動層形式のガス改質部+3] 
K供給され、後述する流動層還元炉(4)で生成し、ラ
イン04)を通して戻される還元鉄と共に流動状態に保
持される。一方予備還元炉(2)より排出される炭化水
素ガスを多量に含む分解ガスはライン(7)を経てガス
浄化装置(国に入り、予備還元炉(2)内で生成したH
2S 、 CO5等の硫化物及びCO2、H2Oの内、
炭化水素ガスの改質に余剰な成分を除去した後、ライン
(20)を通り、予熱器(6)で炭化水素が分解しない
程度の400〜500°Cに加熱されてガス改質炉(3
)1c供給される。ここでは前述した通り、炭化水素ガ
スの還元ガスへの改質触媒能の高い還元鉄及び10%前
後の転化能を有する酸化鉄が流動状態に保持されている
ため、前記0式の反応によって炭化水素の殆んどがH2
、Coへと転換され、H2+COを主成分とする還元ガ
スとなってラインθ6)より加熱器(2)で充分に加熱
されて流動層還元炉+41に供給される。
Next, the carbon-adhered iron ore particles generated in the preliminary reduction furnace (2) are transferred to the fluidized bed type gas reforming section +3 through the line (11).
K is supplied and maintained in a fluidized state together with reduced iron produced in a fluidized bed reduction furnace (4) to be described later and returned through line 04). On the other hand, the cracked gas containing a large amount of hydrocarbon gas discharged from the preliminary reduction furnace (2) enters the gas purification equipment (country) through the line (7), and the H
Among sulfides such as 2S and CO5, and CO2 and H2O,
After removing excess components for reforming the hydrocarbon gas, it passes through the line (20) and is heated in the preheater (6) to a temperature of 400 to 500°C, at a temperature that does not decompose the hydrocarbons, and then to the gas reforming furnace (3).
) 1c is supplied. As mentioned above, reduced iron, which has a high reforming catalytic ability for hydrocarbon gas to reducing gas, and iron oxide, which has a conversion ability of around 10%, are kept in a fluid state, so they are carbonized by the reaction of equation 0. Most of the hydrogen is H2
, Co, and becomes a reducing gas mainly composed of H2+CO, which is sufficiently heated in the heater (2) through the line θ6) and supplied to the fluidized bed reduction furnace +41.

なお、ライン(20)よりガス改質炉(4)に供給され
るカス中には、炭化水素ガスの低酸化性ガス(C02+
H20)とCO,H2とを含有しており、酸化性ガスは
炭化水素の改質のために不可欠な成分であるが、この量
が多いと、次の反応にょシ還元鉄が一部酸化されること
になる。
In addition, the gas that is supplied from the line (20) to the gas reforming furnace (4) contains low oxidizing hydrocarbon gas (C02+
The oxidizing gas contains H20), CO, and H2, and is an essential component for reforming hydrocarbons, but if the amount is large, some of the reduced iron will be oxidized in the next reaction. That will happen.

この反応は0式の還元〃°ス生成反応が吸熱反応である
のに対し発熱反応であるから、ガス改質炉内反応の熱補
給の役目をなすと共に、還元ガス生成のだめの補助反応
の役目をする。
This reaction is an exothermic reaction, whereas the reduction gas generation reaction in Equation 0 is an endothermic reaction, so it serves as a heat replenisher for the reaction in the gas reforming furnace and as an auxiliary reaction for reducing gas generation. do.

0式の反応により生成した酸化鉄を含むガス改質炉(3
)内の還元鉄及びライン(11)から供給されてきた炭
素付着鉄鉱石粒子は、ライン(15)を通って流動層還
元炉(4)に供給される。ここでは、°これら鉄鉱石粒
子が流動状態に保持されて、前述のライン(16)から
供給される高温還元ガスと接触して、次式の反応により
還元鉄となる。
Gas reforming furnace containing iron oxide produced by the reaction of type 0 (3
) and the carbon-attached iron ore particles supplied from the line (11) are supplied to the fluidized bed reduction furnace (4) through the line (15). Here, these iron ore particles are kept in a fluidized state and come into contact with the high-temperature reducing gas supplied from the aforementioned line (16), and become reduced iron through the reaction of the following formula.

従来の流動層還元炉の場合には、上記反応により生成し
た還元鉄粒子がシンタリング現象を起こすため、炉内温
度を余り高くすることができず、1oo。
In the case of a conventional fluidized bed reduction furnace, the reduced iron particles generated by the above reaction cause a sintering phenomenon, so the temperature inside the furnace cannot be made too high, and the temperature is 100.

℃を越える高温還元は不可能であったが、本発明におい
ては、鉄鉱石粒子は炭素で被覆されているため、かかる
シシタリング現象を起こすことはないので、1000°
C以上の温度での高温還元が可能となる。従って前後工
程の操作温度を考慮して700〜1200°Cの広い範
囲で還元温度を選択することができる。
Although reduction at a temperature exceeding 100°C was impossible, in the present invention, iron ore particles are coated with carbon, so such shishitaring phenomenon does not occur.
High-temperature reduction at a temperature of C or higher becomes possible. Therefore, the reduction temperature can be selected within a wide range of 700 to 1200°C, taking into account the operating temperatures of the preceding and preceding steps.

還元炉(4)で生成した還元鉄の一部はライン(14)
より前述のガス改質炉(3)に供給されると共に、一部
はライン09)より製品還元鉄として収り出される。
A portion of the reduced iron produced in the reduction furnace (4) is transferred to the line (14)
The iron is supplied to the gas reforming furnace (3) described above, and a portion is recovered as product reduced iron through line 09).

以上に、第3図に示した本発明の代表的なプロセスにつ
いて説明したが、本例において、予備還元炉(2)、還
元炉(4)、ガス改質炉(3)内での主反応は全て吸熱
反応であるから、これらの熱量は主として鉱石加熱器(
1)、加熱器01)(イ)で賄う必要があり、特に還元
炉(4)での還元温度をガス5.改質炉(3)の反応温
度より高くするときは、ライン(国を経てガス改質炉(
3)から供給される炭素付着鉄鉱石粒子及び一部酸化さ
れた還元鉄は還元炉(4)の温度より低いから、加熱器
(イ)で還元炉(4)に供、給する還元ガスを充分に加
熱してその熱補償を行なう必要がある。またガス改質炉
+3) K充分な熱量を供給するには、図中点線で示し
たライン(財)により、鉱石加熱器+lj内で、ガス改
質炉(3)の操業温度あるいはそれ以上に加熱した炭素
付着鉄鉱石粒子をガス改質炉(3)に供給することが好
ましい。なお、この場合には、予備還元炉(2)で生成
した炭素付着鉄鉱石粒子は全て鉱石加熱炉t+) VC
戻され、ライン(8)からは、ライン翰より送られる炭
素付着鉄鉱石粒子量に相当する量の新たな鉄鉱石粒子が
供給されるが、この新たな供給量は、加熱炉+11内に
滞留している多量の炭素付着鉄鉱石粒子量に比べると僅
かであるから、ライン翰から改質炉(3)に供給される
鉄鉱石中の炭素で被覆されていない粒子の量は無視し得
る程度となるので、本発明において、かかる方式をとる
ことに問題はないばかりか、ガス改質炉(3)への主熱
供給源としての重要な意味をもっている。
The typical process of the present invention shown in FIG. 3 has been explained above. are all endothermic reactions, so the amount of heat is mainly absorbed by the ore heater (
1), heater 01) (a) is required, and in particular, the reduction temperature in the reduction furnace (4) must be maintained by the gas 5. If you want to raise the reaction temperature higher than the reaction temperature of the reformer (3), connect the line (through the country) to the gas reformer (
Since the temperature of the carbon-coated iron ore particles and partially oxidized reduced iron supplied from 3) is lower than the temperature of the reduction furnace (4), the reducing gas supplied to the reduction furnace (4) is supplied to the reduction furnace (4) using the heater (a). It is necessary to heat it sufficiently to compensate for the heat. In addition, in order to supply a sufficient amount of heat to the gas reforming furnace (3), the line shown by the dotted line in the figure should be used to raise the temperature at or above the operating temperature of the gas reforming furnace (3) in the ore heater +lj. It is preferable to supply the heated carbon-coated iron ore particles to the gas reforming furnace (3). In this case, all the carbon-attached iron ore particles generated in the preliminary reduction furnace (2) are transferred to the ore heating furnace (t+) VC
From the line (8), new iron ore particles are supplied in an amount equivalent to the amount of carbon-attached iron ore particles sent from the line (8), but this new supply amount remains in the heating furnace +11. The amount of particles that are not coated with carbon in the iron ore that is supplied from the line to the reforming furnace (3) is negligible because the amount of particles that are not coated with carbon is small compared to the large amount of carbon-coated iron ore particles that are coated with carbon. Therefore, in the present invention, there is not only no problem in adopting such a method, but also it has an important meaning as a main heat supply source to the gas reforming furnace (3).

またガス改質炉(3)への熱補給を行なうため、ガス浄
化装置08)では、H2S、CO5等の硫化物及び余剰
の002を除去すると共に、H2Oは完全に除去し、ガ
ス改質炉(3)内での前記0式の反応に必要なH2Oは
、ライン(ハ)より1000°C程度に加熱されたスチ
ームとして供給することにより、熱補給を併わせ行なう
様にすることも可能である。
In addition, in order to replenish heat to the gas reforming furnace (3), the gas purification device 08) removes sulfides such as H2S and CO5 and excess 002, and also completely removes H2O. It is also possible to supply the H2O necessary for the reaction of formula 0 in (3) as steam heated to about 1000°C from line (c) at the same time as heat replenishment. be.

一方、予備還元炉(2)へ供給する炭化水素としては、
一般に用いられている天然ガスの他、通常の炭化水素油
及び原油の蒸留残渣油、石炭液化油等の重質油でもよく
、これら油類の場合には、予備還元炉(2)内で殆んど
C1−C46分へと熱分解されると共に、鉄鉱石粒子表
面に付着する炭素量も天然ガスの場合に比して多量とな
るため、鉱石加熱器f1)内での付着炭素燃焼量を多く
して、外部供給熱源を減少させると共に、より高温での
操業を可能とする。
On the other hand, the hydrocarbons to be supplied to the preliminary reduction furnace (2) are as follows:
In addition to commonly used natural gas, heavy oils such as ordinary hydrocarbon oils, distillation residue oil of crude oil, and coal liquefied oil may also be used. At the same time, the amount of carbon adhering to the surface of iron ore particles is larger than that of natural gas, so the amount of adhering carbon burned in the ore heater f1) is This reduces the need for an externally supplied heat source and allows operation at higher temperatures.

まだ、ガス浄化装置(18)は、予備還元炉(2)とガ
ス改質炉(3)との間に必ずしも設置しなければならな
いものではなく、予備還元炉(2)、ガス改質炉(3)
及び還元炉(4)間を連結するガス循環ライン(7)(
2(至)(+6)(+2)のいづれかに設けておけばよ
いものであることは言うまでもない。
However, the gas purification device (18) does not necessarily have to be installed between the pre-reduction furnace (2) and the gas reformer (3); 3)
and a gas circulation line (7) connecting the reduction furnace (4) (
It goes without saying that it is sufficient to provide one of 2 (to) (+6) (+2).

なお、還元炉(4)にガス改質炉(3)から供給される
鉄鉱石粒子の該還元炉内滞留時間は一定ではないので、
FeOとしてライン(15)から供給される鉄鉱石粒子
の一部はそのままライン(19)から製品として取り出
されるので製品の品質を高めるには還元炉を2基直列に
配置することが好ましい。この場合には還元炉(4)を
第1還元炉とし、図中点線で示した様に、該第1還元炉
(4)から排出される一部FeOを含む還元鉄は、ライ
ンOfを通って流動層形式の第2還元炉(財)に供給さ
れ、ここでライン(I6i!より加熱器−で加熱されて
供給される高温還元ガスと接触して還元され、ライン(
ハ)より高純度還元鉄として製出される。一方還元ガス
は、第2還元炉匈を経て、ライン(ホ)より第1還元炉
(4)に供給され、更にライン(12)を経て予備還元
炉(2)に供給されることになる。
In addition, since the residence time of the iron ore particles supplied from the gas reforming furnace (3) to the reduction furnace (4) in the reduction furnace is not constant,
A part of the iron ore particles supplied from the line (15) as FeO is taken out as a product from the line (19), so it is preferable to arrange two reduction furnaces in series in order to improve the quality of the product. In this case, the reduction furnace (4) is used as the first reduction furnace, and as shown by the dotted line in the figure, the reduced iron containing some FeO discharged from the first reduction furnace (4) passes through the line Of. is supplied to a fluidized bed-type second reduction furnace, where it is reduced by contacting with high-temperature reducing gas supplied from the line (I6i!) after being heated by a heater.
c) Produced as higher purity reduced iron. On the other hand, the reducing gas passes through the second reducing furnace, is supplied to the first reducing furnace (4) from line (e), and is further supplied to the preliminary reducing furnace (2) via line (12).

以上詳述した通り本発明方法は、流動層形式の還元炉及
びガス改質炉を直列に配置して鉄鉱石粒子及び炭化水素
を順次流通させることにより、鉄鉱石の還元と還元ガス
の製造を行なえる様にしたものであり、次の如き顕著な
効果が期待される。
As detailed above, the method of the present invention reduces iron ore and produces reducing gas by arranging a fluidized bed type reducing furnace and a gas reforming furnace in series and sequentially circulating iron ore particles and hydrocarbons. The following remarkable effects are expected.

fl)流動層形式の予備還元炉(2)で、鉄鉱石粒子と
炭化水素とを直接に接触させて、鉄鉱石粒子を部分還元
すると共に、炭化水素を一部分解させて炭素を副生させ
、副生炭素を鉄鉱石粒子表面に付着させ、この炭素付着
鉄鉱石粒子を流動層還元炉(4)K送給する様にしてい
るから、流動層還元炉において還元鉄同志がシシタリン
グにより凝集することがないので、高温還元が可能とな
り、従って反応速度も速くなり、熱効率、生産性共に向
上し、しかも還元炉を小型化できる効果がある。
fl) In a fluidized bed type pre-reduction furnace (2), iron ore particles and hydrocarbons are brought into direct contact to partially reduce the iron ore particles, and at the same time partially decompose the hydrocarbons to produce carbon as a by-product; By-product carbon is attached to the surface of iron ore particles, and the carbon-adhered iron ore particles are fed to the fluidized bed reduction furnace (4)K, so reduced iron does not aggregate due to shishitaring in the fluidized bed reduction furnace. Since there is no heat, high-temperature reduction becomes possible, the reaction rate becomes faster, both thermal efficiency and productivity are improved, and the reduction furnace can be made smaller.

(2)流動層ガス改質炉(3)では、還元工程で生成し
た還元鉄を触媒として、炭化水素ガスへの改質反応を行
なう様にしているから、従来の如き、高価なりフォーマ
−チューブ及びNi触媒が不要となり、プラントコスト
が大巾に低減されると共に、操業中のNi触媒取替作業
も不要となり、メンテナンスも容易となる。
(2) In the fluidized bed gas reforming furnace (3), the reforming reaction to hydrocarbon gas is carried out using reduced iron produced in the reduction process as a catalyst, so it is not necessary to use expensive former tubes as in the past. This eliminates the need for a Ni catalyst, greatly reducing plant costs, and also eliminates the need to replace the Ni catalyst during operation, making maintenance easier.

また装置を大型化する場合にも、従来のりフォーマ−チ
ューブ方式では、ガス処理量に比例してチューブ本数が
増加するため、スクールメリットは期待し難いが、本発
明の流動層ガス・改質炉ではスケールメリットが期待で
きるため、還元鉄プラントの大型化が可能となる。
Also, when increasing the size of the equipment, with the conventional glue former tube method, the number of tubes increases in proportion to the amount of gas processed, so it is difficult to expect school merit, but the fluidized bed gas reformer of the present invention Since economies of scale can be expected, it will be possible to increase the size of the reduced iron plant.

(3)流動層ガス改質炉に供給する炭化水素ガスは、予
備還元炉で分解ガス化した生成ガスを送ることができる
から、還元ガス源として、従来は天然ガスしか利用し得
なかったものが、副生炭素発生量の多い重質油をも利用
することができるため、還元ガス源選択幅が広がり、プ
ラント設計の自由度が極めて大となり、天然ガス産出地
以外にも還元鉄プラントの建設を可能にするのみならず
、副生炭素も前述の通り有効に利用することができる。
(3) The hydrocarbon gas supplied to the fluidized bed gas reforming furnace can be sent to the product gas that has been decomposed and gasified in the preliminary reduction furnace, so conventionally only natural gas could be used as a reducing gas source. However, heavy oil, which generates a large amount of by-product carbon, can also be used, which widens the range of reducing gas source selections and greatly increases the degree of freedom in plant design. Not only does this make construction possible, but by-product carbon can also be used effectively as mentioned above.

(4)流動層ガス改質炉(3)内に、触媒作用の大きい
還元鉄のみならず、予備還元された状聾の鉄鉱石粒子を
も供給する様にしているため、ガス改質炉内の熱容量が
大となり、炭化水素の改質反応(吸熱反応)への熱供給
が容易となると共に、鉄鉱石粒子はこの無供給源として
その供給温度及び量を変えることにより、゛熱供給量を
自由に調整できることになる。
(4) The fluidized bed gas reforming furnace (3) is supplied not only with reduced iron, which has a strong catalytic effect, but also with pre-reduced deaf iron ore particles. The heat capacity of iron ore increases, making it easier to supply heat to the reforming reaction (endothermic reaction) of hydrocarbons, and iron ore particles, as a non-supply source, can reduce the amount of heat supplied by changing the supply temperature and amount. You will be able to adjust it freely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、還元ガスとメタンによる鉄鉱石の還元能を示
すグラフ、第2図は各種酸化鉄による炭化水素の還元ガ
スへの転換触媒能を示すグラフ、第3図は本発明方法の
一例を示すフローシートである。 +1)・・・鉱石加熱器、(2)・・・流動層予備還元
炉、(3)・・・流動層ガス改質炉、14)@・・・流
動層還元炉、+5) +6)・・・予熱器、    (
国・・・ガス浄化装置、e21)(イ)・・・加熱器、 6 第111 1元晴間(方) t112Il1 反丸−閤(′η′)
Figure 1 is a graph showing the ability to reduce iron ore by reducing gas and methane, Figure 2 is a graph showing the catalytic ability of various iron oxides to convert hydrocarbons into reducing gas, and Figure 3 is an example of the method of the present invention. This is a flow sheet showing the following. +1)...Ore heater, (2)...Fluidized bed preliminary reduction furnace, (3)...Fluidized bed gas reforming furnace, 14)@...Fluidized bed reduction furnace, +5) +6)・・Preheater, (
Country... Gas purification equipment, e21) (a)... Heater, 6th 111 1 Gen Haruma (way) t112Il1 Tanmaru-Kan ('η')

Claims (1)

【特許請求の範囲】 1、鉄鉱石粒子を流動状態に保持しつつ高温還元ガスと
接触させてこれを還元し、還元鉄を製造する方法であっ
て、次の■〜Gの工程を有することを特徴とする還元鉄
の製造方法。 ■ 鉄鉱石粒子を流動状態に保持した流動層予備還元炉
+2) K炭化水素を供給し、該炭化水素の一部を分解
ガス化すると共に鉄鉱石粒子を部分還元し、同時に該分
解によって副生ずる炭素を該鉄鉱石粒子に付着する工程 @ 前記炭素付着鉄鉱石粒子、分解ガス及び後述する流
動層還元炉(4)からの還元鉄の一部を流動層ガス改質
炉(3)に供給し、該鉄鉱石粒子及び還元鉄を流動状態
に保持しクク該分解ガスをCOとH2を主成分とする還
元ガスに改質する工程 ○ 前記eの流動層ガス改質炉(3)から排出される鉄
鉱石粒子及び一部酸化された還元鉄を流動層還元炉に供
給し、これらを流動状態に保持しクク前記0で生成した
還元ガスと接触させて還元鉄を製造する工程 0 前記Oの流動層還元炉から排出されるガスを前記■
の流動層予備還元炉(2)に供給する工程2、■の工程
において流動層予備還元炉に供給する炭化水素が天然ガ
スである特許請求の範囲第1項に記載の還元鉄の製造方
法。 3、■の工程において流動層予備還元炉に供給する炭化
水素が重質油である特許請求の範囲第1項に記載の還元
鉄の製造方法。 4、■の工程における流動層予備還元炉に供給する鉄鉱
石粒子を鉱石加熱器(1)で予じめ加熱すると共に、前
記流動層予備還元炉(2)から取り出された炭素付着鉄
鉱石粒子の一部を鉱石加熱器に帰還させて再加熱する特
許請求の範囲第1項乃至第3項のいづれかに記載の還元
鉄の製造方法。 5、磁石加熱器に空気を供給し、鉄鉱石粒子に付着した
炭素の一部を燃焼させて加熱に利用する特許請求の範囲
第4項に記載の還元鉄のfM造方法。 6、鉱石加熱器が鉄鉱石粒子を流動状態に保持しつつ加
熱する流動層加熱器である特許請求の範囲第4項又は第
5項に記載の還元鉄の製造方法。 7.0の工程における流動層予備還元炉からの排出ガス
を流動層ガス改質炉に供給するに当り、該排出ガスをガ
ス浄化装置(I8)を通して余剰不要成分を除去した後
、該ガス改質炉に供給する特許請求の範囲第1項乃至第
6項のいづれかに記載の還元鉄の製造方法。 &@の工程において、流動層予備還元炉(2)から排出
される炭素付着鉄鉱石粒子を流動1ガス改質炉(3)に
供給する特許請求の範囲第1項乃至第7項のいづれかに
記載の還元鉄の製造方法。 9.0の工程において、鉱石加熱器fl)にて加熱され
た炭素付着鉄鉱石粒子を流動層ガス改質炉(3)に供給
する特許請求の範囲第4項乃至第7項のいづれかに記載
の還元鉄の製造方法0 10、流動層還元炉が第1還元炉(4)と第2還元炉、
■とからなり、流動層ガス改質炉(3)から排出される
炭素付着鉄鉱石粒子及び一部酸化された還元鉄を第1還
元炉(4)に供給し、第1還元炉(4)から排出される
還元鉄を第2還元炉に供給して仕上還元に付すと共に、
前記ガス改質炉(3)からの還元ガスを第2還元炉、′
勾に供給した後第1還元炉(4)に供給するようにした
特許請求の範囲第1項乃至第9項のいづれかに記載の還
元鉄の製造方法。 11、流動層予備還元炉内温度が700〜1000’C
。 流動層還元炉内温度が700〜1200 ’C,流動層
ガス改質炉内温度が800〜1000°Cである特許請
求の範囲第1項乃至第10項のいづれかに記載の還元鉄
の製造方法。
[Scope of Claims] 1. A method for producing reduced iron by reducing iron ore particles by contacting them with a high-temperature reducing gas while maintaining them in a fluidized state, the method comprising the following steps (1) to (G). A method for producing reduced iron characterized by: ■ Fluidized bed pre-reduction furnace that holds iron ore particles in a fluidized state + 2) K hydrocarbons are supplied, part of the hydrocarbons is decomposed and gasified, and iron ore particles are partially reduced, and at the same time, by-products of the decomposition are Step of attaching carbon to the iron ore particles @ Supplying the carbon-attached iron ore particles, cracked gas, and a portion of reduced iron from the fluidized bed reduction furnace (4) to be described later to the fluidized bed gas reforming furnace (3). , a step of holding the iron ore particles and reduced iron in a fluidized state and reforming the decomposed gas into a reducing gas containing CO and H2 as main components. Step 0 of producing reduced iron by supplying iron ore particles and partially oxidized reduced iron to a fluidized bed reduction furnace, keeping them in a fluidized state, and bringing them into contact with the reducing gas produced in step 0 above. The gas discharged from the fluidized bed reduction furnace is
2. The method for producing reduced iron according to claim 1, wherein the hydrocarbon supplied to the fluidized bed pre-reduction furnace (2) in step 2 and step (2) is natural gas. 3. The method for producing reduced iron according to claim 1, wherein the hydrocarbon supplied to the fluidized bed pre-reduction furnace in step (2) is heavy oil. 4. The iron ore particles to be supplied to the fluidized bed pre-reduction furnace in step (2) are preheated in the ore heater (1), and the carbon-attached iron ore particles taken out from the fluidized bed pre-reduction furnace (2). The method for producing reduced iron according to any one of claims 1 to 3, wherein a part of the iron is returned to an ore heater and reheated. 5. The fM production method for reduced iron according to claim 4, wherein air is supplied to the magnetic heater to burn part of the carbon attached to the iron ore particles and utilize it for heating. 6. The method for producing reduced iron according to claim 4 or 5, wherein the ore heater is a fluidized bed heater that heats the iron ore particles while maintaining them in a fluidized state. When supplying the exhaust gas from the fluidized bed preliminary reduction furnace to the fluidized bed gas reforming furnace in step 7.0, the exhaust gas is passed through the gas purification device (I8) to remove excess unnecessary components, and then the gas reformer is A method for producing reduced iron according to any one of claims 1 to 6, which is supplied to a quality furnace. In the process of &@, the carbon-attached iron ore particles discharged from the fluidized bed pre-reduction furnace (2) are supplied to the fluidized 1 gas reforming furnace (3) according to any one of claims 1 to 7. The method for producing reduced iron described. In step 9.0, the carbon-attached iron ore particles heated in the ore heater fl) are supplied to the fluidized bed gas reforming furnace (3) according to any one of claims 4 to 7. Method for producing reduced iron 0 10, the fluidized bed reduction furnace includes a first reduction furnace (4) and a second reduction furnace,
The carbon-adhered iron ore particles and partially oxidized reduced iron discharged from the fluidized bed gas reforming furnace (3) are supplied to the first reduction furnace (4), and the first reduction furnace (4) The reduced iron discharged from the furnace is supplied to the second reduction furnace for final reduction, and
The reducing gas from the gas reforming furnace (3) is transferred to a second reducing furnace,'
The method for producing reduced iron according to any one of claims 1 to 9, wherein the reduced iron is supplied to the first reduction furnace (4) after being supplied to the furnace. 11. Temperature inside the fluidized bed pre-reduction furnace is 700-1000'C
. The method for producing reduced iron according to any one of claims 1 to 10, wherein the temperature inside the fluidized bed reduction furnace is 700 to 1200°C, and the temperature inside the fluidized bed gas reforming furnace is 800 to 1000°C. .
JP13178381A 1981-08-21 1981-08-21 Manufacture of reduced iron Granted JPS5834114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13178381A JPS5834114A (en) 1981-08-21 1981-08-21 Manufacture of reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13178381A JPS5834114A (en) 1981-08-21 1981-08-21 Manufacture of reduced iron

Publications (2)

Publication Number Publication Date
JPS5834114A true JPS5834114A (en) 1983-02-28
JPS6325044B2 JPS6325044B2 (en) 1988-05-24

Family

ID=15066038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13178381A Granted JPS5834114A (en) 1981-08-21 1981-08-21 Manufacture of reduced iron

Country Status (1)

Country Link
JP (1) JPS5834114A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282091A (en) * 1985-06-10 1986-12-12 Kanegafuchi Chem Ind Co Ltd Production of cacao butter substitute fat
US4630813A (en) * 1983-11-28 1986-12-23 Kabushiki Kaisha Toshiba Method of and device for detecting displacement of paper sheets
JPS62230921A (en) * 1986-03-31 1987-10-09 Kobe Steel Ltd Method for reducing iron ore in fluidized bed
JPS63213613A (en) * 1987-03-02 1988-09-06 Kobe Steel Ltd Combining type direct iron making method
JPH0681019A (en) * 1992-05-22 1994-03-22 Voest Alpine Ind Anlagen Gmbh Method and plant for direct reduction of material containing fine particles of iron oxide
AT409386B (en) * 2000-06-28 2002-07-25 Voest Alpine Ind Anlagen Process and installation for the direct reduction of particulate oxide-containing ores
US6960238B2 (en) 2000-06-28 2005-11-01 Voest-Alpine Industrieanlagenbau Gmbh & Co. Method and installation for the indirect reduction of particulate oxide-containing ores

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630813A (en) * 1983-11-28 1986-12-23 Kabushiki Kaisha Toshiba Method of and device for detecting displacement of paper sheets
JPS61282091A (en) * 1985-06-10 1986-12-12 Kanegafuchi Chem Ind Co Ltd Production of cacao butter substitute fat
JPH0574350B2 (en) * 1985-06-10 1993-10-18 Kanegafuchi Chemical Ind
JPS62230921A (en) * 1986-03-31 1987-10-09 Kobe Steel Ltd Method for reducing iron ore in fluidized bed
JPS63213613A (en) * 1987-03-02 1988-09-06 Kobe Steel Ltd Combining type direct iron making method
JPH0681019A (en) * 1992-05-22 1994-03-22 Voest Alpine Ind Anlagen Gmbh Method and plant for direct reduction of material containing fine particles of iron oxide
AT409386B (en) * 2000-06-28 2002-07-25 Voest Alpine Ind Anlagen Process and installation for the direct reduction of particulate oxide-containing ores
US6960238B2 (en) 2000-06-28 2005-11-01 Voest-Alpine Industrieanlagenbau Gmbh & Co. Method and installation for the indirect reduction of particulate oxide-containing ores

Also Published As

Publication number Publication date
JPS6325044B2 (en) 1988-05-24

Similar Documents

Publication Publication Date Title
US5064467A (en) Method and apparatus for the direct reduction of iron
EP2024521B1 (en) Method and apparatus for producing direct reduced iron
US3475160A (en) Method of producing reducing gases for the fluidized bed reduction of ores
CN107128876A (en) The manufacture device and its manufacture method of forming gas containing carbon monoxide and hydrogen
CN108474048B (en) Method and system for producing high carbon DRI by using syngas
AU4792197A (en) Method and apparatus for controlling dri carburization
JP2013544960A (en) Method and apparatus for directly producing reduced iron using a reducing gas containing hydrogen and carbon monoxide as a supply source
US6620398B2 (en) Method for the production of ammonia
JPH0454601B2 (en)
US3136624A (en) Method for reducing metal oxides
RU2726175C1 (en) Methods and systems for increasing carbon content in cancellous iron in reducing furnace
JPS5834114A (en) Manufacture of reduced iron
JPS5847449B2 (en) direct iron making method
CA2465990C (en) Method for reducing a particulate material containing a metal, especially iron ore
JP3342670B2 (en) Manufacturing method of iron carbide
KR20100078327A (en) A apparatus for treatmenting exhaust gas and apparatus for manufacturing molten irons used thereof and method for producing hydrogen using exhaust gas
US20230038218A1 (en) Facility and method for production of direct reduced iron
US3136625A (en) Method for reducing metal oxides
JPS60155627A (en) Metal compound reduction and apparatus therefor
JPS5819601B2 (en) Method for producing reducing gas
JPS5834113A (en) Manufacture of reduced iron
US3591364A (en) Reducing gas generation
JP2001520310A (en) Method and apparatus for controlling carburization of DRI
CN109652604A (en) A method of cementite is prepared using ferriferous oxide two-step method
JP2005089797A (en) Method of producing hydrogen and reduced iron, and device therefor