JPS5831977B2 - Catalyst for methane production and its manufacturing method - Google Patents

Catalyst for methane production and its manufacturing method

Info

Publication number
JPS5831977B2
JPS5831977B2 JP55028877A JP2887780A JPS5831977B2 JP S5831977 B2 JPS5831977 B2 JP S5831977B2 JP 55028877 A JP55028877 A JP 55028877A JP 2887780 A JP2887780 A JP 2887780A JP S5831977 B2 JPS5831977 B2 JP S5831977B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
nickel
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55028877A
Other languages
Japanese (ja)
Other versions
JPS56124444A (en
Inventor
道郎 荒木
晴生 高谷
忠資 細矢
清 小川
重光 新
尚之 藤堂
邦夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55028877A priority Critical patent/JPS5831977B2/en
Priority to US06/226,401 priority patent/US4331544A/en
Priority to DE3103171A priority patent/DE3103171C2/en
Publication of JPS56124444A publication Critical patent/JPS56124444A/en
Publication of JPS5831977B2 publication Critical patent/JPS5831977B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はメタンを効率よく製造し、且つその大きな反応
熱を有効に利用できるような耐熱性のメタン合成用触媒
及びその製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant catalyst for methane synthesis that can efficiently produce methane and effectively utilize the large heat of reaction, and a method for producing the same.

メタン合成反応は大きな反応熱の発生を伴う反応であり
、その反応熱をエネルギー源として有効に利用すること
は、メタン合成プロセスの経済性という点から非常に重
要である。
The methane synthesis reaction is a reaction that involves the generation of a large amount of reaction heat, and it is very important from the economical point of view of the methane synthesis process to effectively utilize the reaction heat as an energy source.

この反応熱を有効に回収し利用するには、可能なかぎり
高温で反応させることが好ましいが、メタン合成反応に
対し、高活性、高選択性を示す従来のニッケル系触媒は
、高温下で著しい活性劣化を起すなどの欠点があった。
In order to effectively recover and utilize this reaction heat, it is preferable to carry out the reaction at as high a temperature as possible, but conventional nickel-based catalysts, which exhibit high activity and high selectivity for methane synthesis reactions, show significant effects at high temperatures. There were drawbacks such as deterioration of activity.

したがって、これまでに提案されているニッケル系触媒
を用いるメタン合成反応に耘いては、高温反応を回避す
るために、常に反応熱を除去し、触媒床の温度制御に特
に注意する必要があった。
Therefore, in the methane synthesis reactions using nickel-based catalysts that have been proposed so far, it has been necessary to constantly remove the reaction heat and pay particular attention to temperature control of the catalyst bed in order to avoid high-temperature reactions. .

本発明者らは、これらの従来法の欠点を克服し、反応熱
をエネルギー源として有効利用して、高温下で効率的に
メタン合成を行うことができるように耐熱性の良い触媒
を開発するため鋭意研究を重ねた結果、マグネシアとア
ルミナを含む担体に担持させたニッケルーモリブデン合
金−炭化モリブデン系触媒が耐熱性に優れていることを
見出した。
The present inventors will overcome the drawbacks of these conventional methods and develop a catalyst with good heat resistance so that methane synthesis can be performed efficiently at high temperatures by effectively utilizing the reaction heat as an energy source. As a result of extensive research, it was discovered that a nickel-molybdenum alloy-molybdenum carbide catalyst supported on a carrier containing magnesia and alumina has excellent heat resistance.

このよう左耐熱性の良いメタン合成触媒の具備すべき条
件は高温反応を長時間行った後も、な釦低温でメタン合
成反応を開始するに足りる活性を保持していることであ
る。
A methane synthesis catalyst with good heat resistance must maintain sufficient activity to start the methane synthesis reaction at a low temperature even after a long period of high temperature reaction.

この低温に釦ける活性発現の重要性は断熱型反応管にか
いて触媒床入口部に合成ガスを導入した時に反応が開始
する必要があることを考えれば理解できる。
The importance of developing activity at low temperatures can be understood by considering that the reaction must start when synthesis gas is introduced into the inlet of the catalyst bed through an adiabatic reaction tube.

一度反応が始1ればその反応熱により触媒床温度が上昇
するから、反応ガスは容易に平衡組成に達する。
Once the reaction starts, the catalyst bed temperature increases due to the reaction heat, so that the reaction gas easily reaches an equilibrium composition.

この時の生成ガスの温度は反応した水素と一酸化炭素の
量により定するが、断熱型反応管では、この温度は触媒
床出口部の触媒温度と等しく々る。
The temperature of the produced gas at this time is determined by the amounts of reacted hydrogen and carbon monoxide, and in an adiabatic reaction tube, this temperature is equal to the catalyst temperature at the outlet of the catalyst bed.

このたとは反応ガス温度を触媒の最高使用可能温度以上
にできないことを意味する。
This means that the reaction gas temperature cannot be raised above the maximum usable temperature of the catalyst.

従って触媒の活性発現温度と最高使用可能温度の温度幅
により、メタンへ転換できる水素、−酸化炭素量が定1
す、従って原料ガス中のそれらの濃度が定することにな
る。
Therefore, the amount of hydrogen and carbon oxide that can be converted to methane is determined by the temperature range between the catalyst's activation temperature and the maximum usable temperature.
Therefore, their concentration in the raw material gas is determined.

本発明の触媒は、多孔質担体に担持されたニッケルーモ
リブデン合金−炭化モリブデンからiるものである。
The catalyst of the present invention is composed of a nickel-molybdenum alloy-molybdenum carbide supported on a porous carrier.

この場合多孔質担体としては、マグネシアとアルミナと
の化合物(例えばマグネシウムアルミネート)咬たは混
合物を全部または一部として含むものが用いられる。
In this case, the porous carrier used is one containing, in whole or in part, a compound of magnesia and alumina (for example, magnesium aluminate) or a mixture thereof.

この場合、マグネシウムとアルミニウムとの原子比は5
/95〜90/10.好オしくけ20/80〜70/3
0の範囲である。
In this case, the atomic ratio of magnesium and aluminum is 5
/95-90/10. Good luck 20/80~70/3
The range is 0.

触媒中のニッケル含有率は、NiOとして1〜50重量
宏好1しくは3〜30重量多であり、モリブデン含有率
はMoO3として1〜40重量転好1しくは5〜30重
量多である。
The nickel content in the catalyst is 1 to 50% by weight or 3 to 30% by weight as NiO, and the molybdenum content is 1 to 40% by weight or 5 to 30% by weight as MoO3.

本発明触媒中のニッケル成分およびモリブデン成分は、
合金を形成している状態で作用するが、炭化モリブデン
粒子と良好に混合されているか、あるいは炭化モリブデ
ン粒子上に良好に担持された状態にある必要がある。
The nickel component and molybdenum component in the catalyst of the present invention are
Although it acts while forming an alloy, it must be well mixed with the molybdenum carbide particles or well supported on the molybdenum carbide particles.

その為には酸化物の状態にかいてニッケルとモリブデン
は化合物として存在するかあるいは良く混合されている
必要があり、それを水素で還元した時にニッケルーモリ
ブデン合金あるいはニッケルーモリブデン金属間化合物
のようによく混合された状態にあることが好ましい。
For this purpose, nickel and molybdenum must exist as a compound or be well mixed in the oxide state, and when reduced with hydrogen, they form a nickel-molybdenum alloy or a nickel-molybdenum intermetallic compound. Preferably, the mixture is well mixed.

これらのよく混合された状態を水素、−酸化炭素を含む
混合ガスを使用して高圧下で処理することにより、ニッ
ケルーモリブデン合金粒子炭化処理中に生成する炭化モ
リブデン粒子の間に良好に分散し、耐熱性のよい触媒に
なる。
By treating these well-mixed conditions under high pressure using a mixed gas containing hydrogen and carbon oxide, the nickel-molybdenum alloy particles can be well dispersed among the molybdenum carbide particles generated during the carbonization process. , it becomes a catalyst with good heat resistance.

本発明触媒の製造には格別の困難はなく通常の方法によ
り、先ず酸化ニッケルと酸化モリブデンとの化合物また
はそれらの良好な混合物を担体に担持させた触媒を調製
し、次にこの触媒を400〜900℃の温度に釦いて水
素ガスで処理した後、−酸化炭素と水素を含む還元ガス
により、温度500〜800℃で処理するか、あるいは
水素処理することなしに温度500〜800℃で水素及
び−酸化炭素を含むガスで処理すればよい。
There is no particular difficulty in producing the catalyst of the present invention. First, a catalyst in which a compound of nickel oxide and molybdenum oxide or a good mixture thereof is supported on a carrier is prepared, and then this catalyst is After treatment with hydrogen gas at a temperature of 900°C, treatment with a reducing gas containing carbon oxide and hydrogen at a temperature of 500 to 800°C, or without hydrogen treatment at a temperature of 500 to 800°C with hydrogen and - It may be treated with a gas containing carbon oxide.

実際には、酸化ニッケルと酸化モリブデンとの化合物ま
たはそれらの良好i混合物を担持させた触媒をメタン製
造装置に充填し、これに水素ガスを400〜900℃で
流通させた後、反応条件下、メタン製造原料ガスを流通
させるか、触媒充填後、水素処理することなしに直接反
応条件下メタン製造原料ガスを流通させればよい。
In practice, a methane production device is filled with a catalyst supporting a compound of nickel oxide and molybdenum oxide or a good mixture thereof, hydrogen gas is passed through it at 400 to 900°C, and then under reaction conditions, The raw material gas for methane production may be passed through, or the raw material gas for methane production may be passed directly under reaction conditions after being charged with the catalyst without being subjected to hydrogen treatment.

本発明の触媒を用いてメタンを合成する反応は反応温度
300〜700℃、反応圧力30〜100kg/crt
tであり、反応方式としては流通方式が採用される。
The reaction for synthesizing methane using the catalyst of the present invention is carried out at a reaction temperature of 300 to 700°C and a reaction pressure of 30 to 100 kg/cr.
t, and a distribution method is adopted as the reaction method.

反応原料ガスの組成は、通常、水素10〜75vol多
、−酸化炭素3〜25vol多 であり、この原料ガス
にはメタン、エタンなどの低級炭化水素が混入していて
もよい。
The composition of the reaction raw material gas is usually 10 to 75 vol of hydrogen and 3 to 25 vol of carbon oxide, and lower hydrocarbons such as methane and ethane may be mixed in this raw material gas.

次に本発明を実施例に基づき、さらに詳細に説明する。Next, the present invention will be explained in more detail based on examples.

実施例 硝酸ニッケル、パラモリブデン酸アンモニウムと後述す
るマグネシア−アルミナ担体より、混練法によりその組
成がNiO: MoO3:担体−20:25:55(重
量%)となるように調製した触媒2mlを反応管に充填
し、700℃で15時間、常圧の水素気流中で処理した
後、水素45俤、−酸化炭素15宏及びメタン40%よ
りなる原料ガスを80 kt)/cvlの高圧下で流通
させ々から、650℃で一夜炭化処理した。
Example 2 ml of a catalyst prepared by a kneading method using nickel nitrate, ammonium paramolybdate, and a magnesia-alumina carrier (described later) to have a composition of NiO:MoO3:carrier-20:25:55 (wt%) was placed in a reaction tube. After being treated at 700°C for 15 hours in a hydrogen stream at normal pressure, a raw material gas consisting of 45 tons of hydrogen, 15 tons of carbon oxide and 40% methane was passed under high pressure of 80 kt/cvl. Each sample was carbonized at 650°C overnight.

この状態では当触媒中のニッケル成分釦よびモリブデン
成分はニッケルーモリブデン合金と炭化モリブデンに変
化していることがX線解析により確められた。
In this state, it was confirmed by X-ray analysis that the nickel component and molybdenum component in the catalyst had changed into a nickel-molybdenum alloy and molybdenum carbide.

この際の担体は、MfとA7 との原子比が1/2とな
るように調製した硝酸アルミニウムと硝酸マグネシウム
の混合水溶液より、炭酸アンモニウム水溶液、または、
アンモニア水を用いて共沈させ、充分洗浄口過した後、
500℃で焼成して得たものである。
The carrier at this time is an ammonium carbonate aqueous solution, an aqueous mixed solution of aluminum nitrate and magnesium nitrate prepared so that the atomic ratio of Mf and A7 is 1/2, or an aqueous solution of ammonium carbonate.
After co-precipitating with ammonia water and thoroughly washing the mouth,
It was obtained by firing at 500°C.

当触媒を用いて650℃、80 @/cryXS V二
15000−’ の条件下で9日間反応を行った。
Using this catalyst, a reaction was carried out for 9 days at 650°C and 80@/cryXS V215000-'.

400℃にj4る生成ガス中のメタン濃度で表現した「
触媒のメタン合成活性」の経時変化を図面にC印で示し
た。
Expressed by the methane concentration in the generated gas at 400℃
The change over time in the methane synthesis activity of the catalyst is indicated by C in the drawing.

当触媒では、650℃、80@/cmに釦いて、生成ガ
ス組成がその条件における平衡組成に達してち・す、6
50℃では触媒の活性劣化の様子が判断できないため、
2日毎に反応温度400℃における活性の経時変化を調
べた。
With this catalyst, when the temperature is 650°C and 80@/cm, the produced gas composition reaches the equilibrium composition under those conditions.
At 50℃, it is not possible to determine the deterioration of catalyst activity.
Changes in activity over time were examined at a reaction temperature of 400° C. every two days.

この結果、本発明の触媒では650℃にむいて長期間反
応を続けても低温で高い活性を維持していることがわか
り、メタン合成用触媒としてその活性及び耐熱性が非常
に優れていることが明らかになった。
As a result, it was found that the catalyst of the present invention maintains high activity at low temperatures even when the reaction is continued for a long period of time at temperatures up to 650°C, indicating that its activity and heat resistance are extremely excellent as a catalyst for methane synthesis. has become clear.

比較例 比較のために、前述のマグネシア−アルミナ担体のかわ
りに、1000℃で焼成したアル□す及びシリカゾルを
用いる他は全〈実施例と同様にして調製した触媒及び低
温に釦けるメタン合成反応に高活性を示す市販のメタン
合成用ニッケル触媒をそれぞれ2mlを実施例と同様の
反応管に充填し、700℃で15時間常圧の水素気流中
で処理した後(市販のメタン合成用ニッケル触媒の場合
には400℃で同時間水素処理した)、水素45%、−
酸化炭素15%及びメタン40俤よりなる原料ガスを、
80 kg/caの高圧下で流通させながら、650℃
で一夜、炭化処理した。
Comparative Example For comparison, all catalysts were prepared in the same manner as in the example, except that aluminum calcined at 1000°C and silica sol were used instead of the magnesia-alumina carrier described above. After filling 2 ml of each commercially available nickel catalyst for methane synthesis into the same reaction tube as in the example and treating it in a hydrogen stream at normal pressure at 700°C for 15 hours, (commercially available nickel catalyst for methane synthesis) (in the case of hydrogen treatment at 400℃ for the same time), hydrogen 45%, -
A raw material gas consisting of 15% carbon oxide and 40 tons of methane,
650℃ while flowing under high pressure of 80 kg/ca
It was carbonized overnight.

この状態では、これらの触媒はニッケルーモリブデン合
金と炭化モリブデンに(市販のメタン合成用ニッケル触
媒の場合には金属ニッケルに)変化していることがX線
解析により認められた。
In this state, it was confirmed by X-ray analysis that these catalysts had changed into a nickel-molybdenum alloy and molybdenum carbide (in the case of a commercially available nickel catalyst for methane synthesis, into metallic nickel).

これらの触媒を用いて650℃、80 Ay/cmz
S V−15000hr ’の条件下で反応を行い、そ
の結果を図面に示した。
Using these catalysts at 650°C, 80 Ay/cmz
The reaction was carried out under the conditions of SV-15000 hr', and the results are shown in the drawing.

なか、図面に釦いて符号を付して示した結果は、次の触
媒を用いて得られたものである。
Among them, the results shown with buttons and symbols in the drawings were obtained using the following catalysts.

○:マグネシアーアルミナ担持ニッケルーモリブデン合
金−炭化モリブデン触媒 Q:1000℃焼戊アル焼成担持ニッケルーモリブデン
合金−炭化モリブデン触媒 △ニジリカゾル担持ニッケルーモリブデン合金−炭化モ
リブデン触媒 ◇:市販メタン合合成ニッケル触媒 図面に示した結果から、1000℃で焼成したアルミナ
を担体とするニッケルーモリブデン合金−炭化モリブデ
ン触媒においては初期活性は良好であるが、5日目以降
の活性低下が大きいこと、シリカゾルを担体原料とする
ニッケルーモリブデン合金−炭化モリブデン触媒におい
ては反応初期から活性が低いこと、市販のメタン合成用
ニッケル触媒に釦いては、触媒の炭化処理により活性が
全く失われることが明らかになった。
○: Magnesia alumina supported nickel-molybdenum alloy-molybdenum carbide catalyst Q: Calcined at 1000°C Supported nickel-molybdenum alloy-molybdenum carbide catalyst △ Nisilica sol supported nickel-molybdenum alloy-molybdenum carbide catalyst ◇: Commercially available methane synthesis nickel catalyst From the results shown in the drawing, the initial activity of the nickel-molybdenum alloy-molybdenum carbide catalyst using alumina calcined at 1000°C as a carrier is good, but the activity decreases significantly after the 5th day. It was revealed that the activity of the nickel-molybdenum alloy-molybdenum carbide catalyst was low from the initial stage of the reaction, and that the activity of the commercially available nickel catalyst for methane synthesis was completely lost when the catalyst was carbonized.

実施例及び比較例に示した結果より明らかなように上述
のように調製されたニッケルーモリブデン合金−分化モ
リブデン系触媒は650℃の高温条件下で長時間使用し
た後も低温で高いメタン合成活性を有し、耐熱性触媒と
して優れていることがわかる。
As is clear from the results shown in the Examples and Comparative Examples, the nickel-molybdenum alloy-differentiated molybdenum catalyst prepared as described above has high methane synthesis activity at low temperatures even after being used for a long time at a high temperature of 650°C. , indicating that it is an excellent heat-resistant catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はニッケルーモリブデン合金−炭化モリブデン系触
媒の耐熱性試験の結果を示すグラフである。
The drawing is a graph showing the results of a heat resistance test of a nickel-molybdenum alloy-molybdenum carbide catalyst.

Claims (1)

【特許請求の範囲】 1 マグネシア及びアルミナよりなる化合物または混合
物を含む多孔質担体に担持されたニッケルモリブデン合
金と炭化モリブデンからなる一酸化炭素と水素を含む混
合ガスからメタンを製造するための耐熱性メタン製造用
触媒。 2 マグネシア及びアルミナよりなる化合物又は混合物
を含む多孔質担体に担持された酸化ニッケルと酸化モリ
ブデンとの化合物または混合物を温度400〜900℃
で水素で処理した後、温度500〜800℃で水素及び
−酸化炭素を含むガスで処理するか、あるいは水素処理
することなしに温度500〜80 ’O℃で水素及び−
酸化炭素を含むガスで処理することを特徴とする一酸化
炭素と水素を含む混合ガスからメタンを製造するための
耐熱性メタン製造用触媒の製法。
[Claims] 1. Heat resistance for producing methane from a mixed gas containing carbon monoxide and hydrogen, consisting of a nickel-molybdenum alloy and molybdenum carbide supported on a porous carrier containing a compound or mixture of magnesia and alumina. Catalyst for methane production. 2. A compound or mixture of nickel oxide and molybdenum oxide supported on a porous carrier containing a compound or mixture of magnesia and alumina at a temperature of 400 to 900°C.
After treatment with hydrogen at a temperature of 500-800°C, treatment with a gas containing hydrogen and -carbon oxide, or without hydrogen treatment at a temperature of 500-80'O°C with hydrogen and -
A method for producing a heat-resistant methane production catalyst for producing methane from a mixed gas containing carbon monoxide and hydrogen, which is characterized by processing with a gas containing carbon oxide.
JP55028877A 1980-02-01 1980-03-06 Catalyst for methane production and its manufacturing method Expired JPS5831977B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP55028877A JPS5831977B2 (en) 1980-03-06 1980-03-06 Catalyst for methane production and its manufacturing method
US06/226,401 US4331544A (en) 1980-02-01 1981-01-19 Catalyst for methanation and method for the preparation thereof
DE3103171A DE3103171C2 (en) 1980-02-01 1981-01-30 Solid catalyst for the synthesis of methane and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55028877A JPS5831977B2 (en) 1980-03-06 1980-03-06 Catalyst for methane production and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS56124444A JPS56124444A (en) 1981-09-30
JPS5831977B2 true JPS5831977B2 (en) 1983-07-09

Family

ID=12260606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55028877A Expired JPS5831977B2 (en) 1980-02-01 1980-03-06 Catalyst for methane production and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5831977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127062A (en) * 1984-07-14 1986-02-06 Maspro Denkoh Corp Battery compartment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084257A (en) * 2007-10-03 2009-04-23 Mitsubishi Chemicals Corp Method for producing aromatic compound
KR101236636B1 (en) * 2011-01-31 2013-02-22 주식회사 포스코 Ni-M-Al2O3 xerogel catalyst, preparation method thereof, and method for preparing methane using said catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127062A (en) * 1984-07-14 1986-02-06 Maspro Denkoh Corp Battery compartment

Also Published As

Publication number Publication date
JPS56124444A (en) 1981-09-30

Similar Documents

Publication Publication Date Title
JP4812993B2 (en) Method and catalyst structure for steam reforming hydrocarbons
Tang et al. Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO 2
Hu et al. On the inhomogeneity of low nickel loading methanation catalyst
RU2247600C2 (en) Catalyst and ammonia synthesis method
JP5402683B2 (en) Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas
JPH0640962B2 (en) Method for producing modified copper- and zinc-containing catalyst composition and method for producing methanol using the catalyst composition
JPWO2011065194A1 (en) Reverse shift reaction catalyst and synthesis gas production method using the same
US4126581A (en) Catalyst containing copper oxide and zinc oxide, its manufacture and its use for the conversion of carbon monoxide
US3903149A (en) Process for production of acrylic acid
JPH0230740B2 (en)
JP3912077B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
US4455391A (en) Passivated CRG catalysts
JPS5831977B2 (en) Catalyst for methane production and its manufacturing method
JP2004523459A (en) How to use molybdenum carbide catalyst
GB2106415A (en) A method of preparing a supported catalyst
JPS5831976B2 (en) Catalyst for methane production and its manufacturing method
JPS5948140B2 (en) Catalyst for steam reforming of hydrocarbons
JP3225078B2 (en) Catalyst for syngas production
JPS6044972B2 (en) Catalyst for methane synthesis
US3395104A (en) Promoted catalyst used for town gas production
JPS59189937A (en) Preparation of steam reforming catalyst of methanol
JPH03106445A (en) Catalyst for preparing ammonia
CN116078386A (en) Thermocatalytic CO 2 Preparation and application of reduced nickel-iron alloy catalyst
JPH04367501A (en) Production of synthetic gas