JPS5829735A - Preparation of enzaldehydes - Google Patents

Preparation of enzaldehydes

Info

Publication number
JPS5829735A
JPS5829735A JP12537481A JP12537481A JPS5829735A JP S5829735 A JPS5829735 A JP S5829735A JP 12537481 A JP12537481 A JP 12537481A JP 12537481 A JP12537481 A JP 12537481A JP S5829735 A JPS5829735 A JP S5829735A
Authority
JP
Japan
Prior art keywords
chloride
catalyst
benzal
metal
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12537481A
Other languages
Japanese (ja)
Other versions
JPS6230972B2 (en
Inventor
Takeshi Kondo
剛 近藤
Hiroshi Okazaki
岡崎 弘志
Yutaka Katsuhara
豊 勝原
Masaaki Matsuoka
松岡 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP12537481A priority Critical patent/JPS5829735A/en
Priority to GB08218612A priority patent/GB2103208B/en
Priority to IT22211/82A priority patent/IT1157289B/en
Priority to DE3226490A priority patent/DE3226490C2/en
Priority to US06/400,011 priority patent/US4450298A/en
Priority to FR8212665A priority patent/FR2510101B1/en
Publication of JPS5829735A publication Critical patent/JPS5829735A/en
Publication of JPS6230972B2 publication Critical patent/JPS6230972B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the titled substance continuously for a long time, by hydrolyzing a benzal chloride which may be replaced with a halogen or CF3 in the presence of active carbon supporting a metal chloride and/or a metal sulfate in a gaseous phase. CONSTITUTION:In preparing a compound shown by the formula II by hydrolyzing a compound shown by the formulaI(X is halogen or CF3; n is 1,2, or 3), the reaction is carried out in the presence of a catalyst supporting a metal chloride and/or a metal sulfate (e.g., manganous chloride, ferrous sulfate) in a gaseous phase. The catalyst is prepared usually by immersion process, water and the compound shown by the formulaIare vaporized at 200-340 deg.C by a vaporizer, and passed through a layer packed with the catalyst so that the compound is hydrolyzed. EFFECT:The reaction time is extremely shortened, and a reactor can be miniaturized. The catalyst has high activity and is not influenced by hydrogen fluoride as a by-product.

Description

【発明の詳細な説明】 本発明は、染料、香料、医薬、農薬、その他の有機合成
原料として有用なベンズアルデヒド類を製造する方法に
関し、更に詳しくはノ・ロゲン原子又はトリフルオロメ
チル基で置換された、又は置換されていないベンザルク
ロライド類ヲ加水分解してベンズアルデヒド類を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing benzaldehydes useful as dyes, fragrances, medicines, agricultural chemicals, and other raw materials for organic synthesis. The present invention relates to a method for producing benzaldehydes by hydrolyzing unsubstituted or unsubstituted benzal chlorides.

一般に、ベンザルクロライド類を単に水と混合して加熱
するたけではベンズアルデヒド類への加水分解速度が遅
いため、従来は種々の触媒を用いてベンザルクロライド
類を加水分解し、ベンズアルデヒド類を製造する方法が
知られている。
In general, simply mixing benzal chloride with water and heating it will result in slow hydrolysis to benzaldehyde, so conventionally benzal chloride was hydrolyzed using various catalysts to produce benzaldehyde. method is known.

例えば、 (1)  酸又はアルカリ水溶液を用いてベンザルクロ
ライド類を加水分解し、ベンズアルデヒド類を製造する
方法〔オーガニツクシンセシス(Organic 5i
nthesis ) )レクチイブ第■巻153頁、ア
ナリチカ・ケミ力・アクタ(Analytica Ch
imica Acta ) vol iO,P4ろ〕、
(2)塩化第−銅又は塩化第二銅の存在下、ベンザルク
ロライド類を加水分解し、ベンズアルデヒドを製造する
方法(特公昭46−7927号、同51へ6129号)
、 (3)  ベンザルクロライド類に鉄塩の水溶液を添加
し、加水分解してベンズアルデヒド類を製造する方法(
特公昭4B−691号)、(4)無水塩化亜鉛の存在下
、ベンザルクロライド類を加水分解し、ベンズアルデヒ
ド類を製造する方法(特公昭5B−766号)、(5)
  酸化亜鉛の存在下、ベンザルクロライド類を加水分
解し、ベンズアルデヒド類を製造する方法(特開昭52
−25755号)、等の方法がある。
For example, (1) A method for producing benzaldehydes by hydrolyzing benzal chlorides using an acid or alkaline aqueous solution [Organic Synthesis (Organic 5i)]
(nthesis)) Lective Volume ■, page 153, Analytica Ch.
imica Acta) vol iO, P4ro],
(2) A method for producing benzaldehyde by hydrolyzing benzal chlorides in the presence of cupric chloride or cupric chloride (Japanese Patent Publication No. 7927/1986, No. 6129 of 1986)
, (3) A method for producing benzaldehydes by adding an aqueous solution of iron salt to benzal chlorides and hydrolyzing them (
(4) A method for producing benzaldehydes by hydrolyzing benzal chloride in the presence of anhydrous zinc chloride (Japanese Patent Publication No. 5B-766), (5)
A method for producing benzaldehydes by hydrolyzing benzal chlorides in the presence of zinc oxide (Japanese Unexamined Patent Publication No. 52
-25755), etc.

しかし、以上の方法は次に述べるような欠点がある。However, the above method has the following drawbacks.

(1)の酸又はアルカリ水溶液?用いる方法は、必要と
し、かつ廃アリカリ又は廃酸の処理が厄介である。
(1) Acid or alkaline aqueous solution? The method used requires and is cumbersome to dispose of waste alkali or waste acid.

(21、(3) 、 +41の金属塩を触媒とする方法
は、一般に、反応速度が遅く、特に電子吸引基を有する
ベンザルクロライド類の場合は非常に遅くなるし、触媒
量?増やすと重合反応等の副反応が増大する。
(21, (3), In the method using a metal salt of +41 as a catalyst, the reaction rate is generally slow, especially in the case of benzal chloride having an electron-withdrawing group, and increasing the amount of catalyst causes polymerization. Side reactions such as reactions increase.

(5)の酸化亜鉛を触媒とする方法は、トリフルオロ置
換ベンザルクロライド類を原料とする場合、反応が殆ん
ど進行しないばかりでなく、酸化亜鉛と反応生成物の分
離工程が含まれ、連続式の反応方法には適していない。
In the method (5) using zinc oxide as a catalyst, when trifluoro-substituted benzal chloride is used as a raw material, not only does the reaction hardly proceed, but also a step of separating zinc oxide and the reaction product is involved. Not suitable for continuous reaction methods.

以上のように、従来の方法は、副生物の生成、容器効率
の低さ、連続処理が不可能、反応残渣の後処理、トリフ
ルオロ置換ベンザルクロライド類に対する反応速度が極
めて遅い等の欠点があり、工業的に適した方法とは言い
難い。
As mentioned above, conventional methods have drawbacks such as the production of by-products, low container efficiency, inability to perform continuous treatment, post-treatment of reaction residues, and extremely slow reaction rate for trifluoro-substituted benzal chlorides. However, it is difficult to say that it is an industrially suitable method.

また、以上の液相での加水分解のほかに、二酸化珪素又
は酸化アルミニウム単独、もしくはこれに塩化第−銅又
は塩化第二銅?担持させた触媒を用いて気相にてペンザ
ルハロアナイド類を加水分解する方法が提案されている
(特開昭48−5755号)。
In addition to the above hydrolysis in the liquid phase, silicon dioxide or aluminum oxide alone, or cupric chloride or cupric chloride? A method has been proposed in which pensal haloanides are hydrolyzed in the gas phase using a supported catalyst (Japanese Patent Application Laid-open No. 5755/1983).

しかし、この方法は連続処理には適するものの、特にト
リフルオロメチル基のように強い電子吸引基を有するベ
ンザルクロライド類を原:料とする場合、二酸化珪素又
は酸化アルミニウム単独を担持させた触媒では、初期の
反応速度も極めて遅い上、トリフルオロメチル基の一部
カ加水分解を受けて副生ずる弗化水素により二酸化珪素
又は酸化アルミニウムが弗素化されて、活性が低下して
しまい、トリフルオロメチル基置換ベンザルクロライド
類には適用できない。
However, although this method is suitable for continuous processing, especially when benzal chlorides with strong electron-withdrawing groups such as trifluoromethyl groups are used as raw materials, catalysts supported solely on silicon dioxide or aluminum oxide cannot be used. In addition, the initial reaction rate is extremely slow, and silicon dioxide or aluminum oxide is fluorinated by hydrogen fluoride, which is a by-product of partial hydrolysis of the trifluoromethyl group, resulting in a decrease in activity. Not applicable to group-substituted benzal chlorides.

また、二酸化珪素又は酸化アルミニウムに塩化第−銅又
は塩化第二銅を担持させた触媒を用いる場合においても
、tリフルオロメチル置換ベンザル々ロライドに適用す
る場合には、初期の活性が充分でなく、しかも活性の経
時的低下が著しく、長時間の連続製造には適していない
Furthermore, even when using a catalyst in which cupric chloride or cupric chloride is supported on silicon dioxide or aluminum oxide, the initial activity may not be sufficient when applied to t-trifluoromethyl-substituted benzalyl chloride. Moreover, the activity decreases significantly over time, making it unsuitable for long-term continuous production.

本発明者らは、加水分解され離く、かつ高沸点のトリフ
ルオロメチル基置換ベンザルクロライド類分原料とする
場合でも短時間に目的とするベンズアルデヒド類が高純
度、高収率で得られ、しかも連続して製造できる製造方
法について鋭意検討を重ねた結果、触媒としては金属塩
化物、金属硫酸塩が有効であり、担体としては活性炭が
優れていることを見い出し、本発明に到達した。
The present inventors have discovered that the desired benzaldehydes can be obtained with high purity and high yield in a short time even when used as raw materials for trifluoromethyl group-substituted benzal chlorides that are hydrolyzed and separated and have a high boiling point. Furthermore, as a result of extensive research into a manufacturing method that allows for continuous production, it was discovered that metal chlorides and metal sulfates are effective as catalysts, and activated carbon is excellent as a carrier, leading to the present invention.

すなわち本発明は、金属塩化物及び/又は金属硫酸塩を
担持した活性炭の存在下で、一般式(Xはハロゲン原子
又はトリフルオロメチル基を表わし、n二O,j、2を
示す) で示されるベンザルクロライド類?気相にて加水分解し
て一般式 (X、nは上述の通り) で示されるベンズアルデヒド類を製造すること全特徴と
するベンズアルデヒド類の製造法に関するものである。
That is, the present invention provides the following method in the presence of activated carbon supporting a metal chloride and/or metal sulfate: Benzal chlorides? The present invention relates to a method for producing benzaldehydes, which is characterized by producing benzaldehydes represented by the general formula (X and n are as described above) by hydrolysis in a gas phase.

本発明方法において、活性炭は、その種類、形状、粒径
等について特に限定されるものではなく、通常用いられ
る市販の活性炭でよい。活性炭に金属塩化物、金属硫酸
塩を担持させる方法は特に限定されないが、通常は浸漬
法によって行われ、これら金属塩の水m液に数時間〜−
昼夜漬漕した後、80〜100”Cで空気乾燥すればよ
い。なお、浸漬時の温度は特に限定されず、室温で充分
であるが、硫酸塩は一般に溶解度が低いため担持量を大
きくしたい場合には加温して浸漬すればよい。これら金
属塩の担持量は担体罠対して10〜40重量%が好まし
い範囲であり、10重量%以下では触媒としての活性に
問題があり、40重量%以上にしても担持量にみあった
効果はない。また、浸漬の際に用いる金属塩水溶液の濃
度は、上記の担持量になるように決定すればよい。
In the method of the present invention, the activated carbon is not particularly limited in its type, shape, particle size, etc., and may be any commonly used commercially available activated carbon. The method for supporting metal chlorides and metal sulfates on activated carbon is not particularly limited, but is usually carried out by immersion, in which the activated carbon is immersed in an aqueous solution of these metal salts for several hours to -
After soaking day and night, it may be air-dried at 80 to 100"C.The temperature during soaking is not particularly limited, and room temperature is sufficient, but since sulfates generally have low solubility, it is desirable to increase the amount supported. In such cases, the metal salts may be heated and immersed.The preferred range of supported amount of these metal salts is 10 to 40% by weight based on the weight of the carrier trap; % or more, there is no effect commensurate with the supported amount.Furthermore, the concentration of the metal salt aqueous solution used during immersion may be determined so as to achieve the above-mentioned supported amount.

本発明方法を連続式で実施するには、先ず、加熱した気
化器に所定量の水層ベンザルクロライド類を送入、気化
させる。この場合の気化器の温度は、ベンザルクロライ
ド類の処理量と気化器の能力を勘案して後段の反応にお
いて充分に気相状態が維持できる範囲を設定すればよく
、一般的ニは200〜540 ’Cの範囲が採られる。
To carry out the method of the present invention in a continuous manner, first, a predetermined amount of aqueous benzal chloride is introduced into a heated vaporizer and vaporized. In this case, the temperature of the vaporizer should be set within a range that can sufficiently maintain the gas phase state in the subsequent reaction, taking into account the amount of benzal chloride to be treated and the capacity of the vaporizer. A range of 540'C is taken.

次いで、気化した水とベンザルクロライド類は加熱した
触媒充填層に通過させ、これにより所、定の金属塩?担
持した活性炭の表面に接触して気相加水分解と生起する
。この場合の温度は、当然、用いるベンザルクロライド
類の沸点以上であればよく、反応全体を通じて気相状態
が保持でき、しかも用いる金属塩触媒が昇華あるいは気
化逸散しない温度範囲が好適であり、一般には100〜
500℃の範囲が採用される。この一連続式におけるベ
ンザルクロライド類と水蒸気との使用モル比は、化学量
論的には−cHct2基1個に対してほぼ1モルの水蒸
気とするのが゛好ましいが、通常は5〜10倍モル過剰
量の水蒸気を使用し、触媒充填層?通過する速度はり、
H,S、V、 (液空間速度)で0.15〜L5 hr
−’が好ましい。また反応時間は通常数秒〜数十秒、好
ましくは2秒〜20秒程度で充分である。このよう圧し
て連続して生成するベンズアルデヒド類の多くは水と分
離した状態で得られるが、いくつかのアルデヒド類は水
と懸濁した状態で得られる。後者の場合は適当な有機溶
媒にて抽出し単離することができ、更に真空蒸留で精製
することができる。
Next, the vaporized water and benzal chloride are passed through a heated catalyst packed bed, thereby converting the predetermined metal salts into a predetermined amount. Gas phase hydrolysis occurs upon contact with the surface of supported activated carbon. The temperature in this case need only be above the boiling point of the benzal chloride used, and is preferably within a temperature range where the gas phase can be maintained throughout the reaction and where the metal salt catalyst used does not sublimate or vaporize. Generally 100~
A range of 500°C is adopted. The molar ratio of benzal chloride to water vapor used in this one-continuous formula is preferably approximately 1 mole of water vapor per 1 -cHct2 group, but is usually 5 to 10 molar. Using a double molar excess of water vapor and using a catalyst packed bed? Speed beam passing through,
H, S, V, (liquid space velocity) 0.15 to L5 hr
-' is preferred. Further, the reaction time is usually several seconds to several tens of seconds, preferably about 2 seconds to 20 seconds. Most of the benzaldehydes produced continuously under pressure are obtained in a state separated from water, but some aldehydes are obtained in a state suspended in water. In the latter case, it can be isolated by extraction with a suitable organic solvent, and further purified by vacuum distillation.

本発明方法で用いられる代表的な金属塩化物としては、
塩化第一マンガン、塩化第二鉄、塩化第一コバルト、塩
化第一ニッケル、塩化第一パラジウム、塩化第二銅、塩
化亜鉛、塩化第一スズ等があり、また金属硫酸塩として
は、硫酸第一鉄、硫酸第二銅等があり、これらはいずれ
もハロゲン原子、トリフルオロメチル基等の強い電子吸
引基を有し、加水分解2受は難い高沸点のベンザルクロ
ライド類に対しても充分高い活性を示し、かつ経時的な
活性の低下も極めて少ないものである。
Typical metal chlorides used in the method of the present invention include:
Examples of metal sulfates include manganese chloride, ferric chloride, cobaltous chloride, nickel chloride, palladium chloride, cupric chloride, zinc chloride, and stannous chloride. Iron, cupric sulfate, etc., all of which have strong electron-withdrawing groups such as halogen atoms and trifluoromethyl groups, are sufficient for high-boiling benzal chlorides that are difficult to undergo hydrolysis. It shows high activity and shows very little decrease in activity over time.

また、本発明方法で用いられる代表的なベンザルクロラ
イド類としては、ベンザルクロライド、o−、rn−ま
たはp−クロルベンザルクロライド、o−、m−または
p−ブロムベンザルクロライド、o−、m−またはp−
フルオロベンザルクロライド、O−,1ll−またはp
−)リフルオロメチルベンザルクロライド、2,4−ジ
クロルベンザルクロライド、2.5−ジクロルベンザル
クロライド、2,6−ジクロルベンザルクロライド、2
,4−ジブロムベンザルクロライド1.2,5−ジブロ
ムベンザルクロライド、2,6−ジブロムベンザルクロ
ライド等をあげることができる。
Further, typical benzal chlorides used in the method of the present invention include benzal chloride, o-, rn- or p-chlorobenzal chloride, o-, m- or p-bromobenzal chloride, o- , m- or p-
Fluorobenzal chloride, O-, 1ll- or p
-) Lifluoromethylbenzal chloride, 2,4-dichlorobenzal chloride, 2,5-dichlorobenzal chloride, 2,6-dichlorobenzal chloride, 2
, 4-dibromobenzal chloride, 1,2,5-dibromobenzal chloride, 2,6-dibromobenzal chloride, and the like.

そして上記のようなベンザルクロライド類より本発明方
法によって次のようなベンズアルデヒド類を得ることが
できる。ペンズアルデヒード、0−9■−またはp−ク
ロルベンズアルデヒド、o−、m−1りはp−ブロムベ
ンズアルデヒド、o−、m−4&はp−フルオロベンズ
アルテヒ”、’ −s ffl −”!りはI)−)リ
フルオロメチルベンズアルデヒド、2,4−ジクロルベ
ンズアルデヒド、2,5−ジクロルベンズアルデヒド、
2.6−ジクロルベンズアルデヒド、2,4−ジブロム
ベンズアルデヒド、2,5−ジブロムベンズアルデヒド
、2,6−ジブロムベンズアルデヒド等である。
The following benzaldehydes can be obtained from the above-mentioned benzalchlorides by the method of the present invention. Penzaldehyde, 0-9 ■- or p-chlorobenzaldehyde, o-, m-1 is p-bromobenzaldehyde, o-, m-4 & is p-fluorobenzaltehy", ' -s ffl -" ! I)-) Lifluoromethylbenzaldehyde, 2,4-dichlorobenzaldehyde, 2,5-dichlorobenzaldehyde,
These include 2,6-dichlorobenzaldehyde, 2,4-dibromobenzaldehyde, 2,5-dibromobenzaldehyde, 2,6-dibromobenzaldehyde, and the like.

次に、本発明方法における利点を説明すると、先ず第一
は本発明方法は気相加水分解反応であるため、長期間に
わたり連続してベンズアルデヒド類?製造できる点であ
る。第2は反応時間を著しく短縮できるので反応装置を
小型化できる点である。第5はハロゲン原子、トリフル
オロメチル基等の強い電子吸引基を有する加水分解を受
は難い高沸点のベンザルクロライド類に対しても充分な
高活性を示し、かつトリフルオロメチル基の一部の加水
分解により生成してくる弗化水素による影響を受けない
気相加水分解触媒゛を用いる点である。
Next, to explain the advantages of the method of the present invention, first of all, since the method of the present invention is a gas phase hydrolysis reaction, benzaldehyde is continuously processed over a long period of time. The point is that it can be manufactured. Second, since the reaction time can be significantly shortened, the reactor can be made smaller. Fifth, it shows sufficiently high activity even against high-boiling point benzal chlorides that are difficult to undergo hydrolysis and have strong electron-withdrawing groups such as halogen atoms and trifluoromethyl groups, and also has a part of trifluoromethyl group. The point is to use a gas phase hydrolysis catalyst which is not affected by hydrogen fluoride produced by the hydrolysis of .

このように本発明方法は、従来の方法よりも非常に優れ
た方法であり、特にベンゼン核にトリフルオロメチル基
をもったベンザルクロライド類の工業的加水分解に適し
た方法である。
As described above, the method of the present invention is much superior to conventional methods, and is particularly suitable for industrial hydrolysis of benzal chlorides having a trifluoromethyl group in the benzene nucleus.

以下、本発明を実施例により更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 加熱した気化器に、水を0.5797分、ベンザルクロ
ライドを0.5597分の割合で夫々定量ポンプで送ス
した。気化しなベンザルクロライドと水蒸気の混合気体
を、180℃に加熱した触媒充填反応管(4〜10メツ
シユの活性炭を20重量%塩化第二鉄水溶液に室温で2
4時間浸漬した後、80℃で5時間空気乾燥したものC
塩化第二鉄の担持量は活性炭に対して16重量%))を
25m7!充填)に導入し、接触反応させた。生成した
気体をクーラーにて冷却し、得られた懸濁液よりエーテ
ル抽出を行ない、乾燥後、エーテルを留去し、窒素気流
下で減圧蒸留を行った。
Example 1 Water and benzal chloride were pumped into a heated vaporizer at a rate of 0.5797 minutes and 0.5597 minutes, respectively, using a metering pump. A mixed gas of unvaporized benzal chloride and water vapor was heated to 180°C in a catalyst-filled reaction tube (4 to 10 meshes of activated carbon was added to a 20% by weight ferric chloride aqueous solution at room temperature for 2 hours).
After soaking for 4 hours, air drying at 80°C for 5 hours C
The supported amount of ferric chloride is 16% by weight based on activated carbon)) is 25m7! (filling), and a catalytic reaction was carried out. The generated gas was cooled in a cooler, and the resulting suspension was extracted with ether. After drying, the ether was distilled off, and vacuum distillation was performed under a nitrogen stream.

以上の要領でベンザルクロライド100gを連続反応さ
せたところ、64.177のベンズアルデヒドが得られ
た。生成物の収率は理論量の97.4%であった。
When 100 g of benzal chloride was continuously reacted in the above manner, 64.177 benzaldehyde was obtained. The yield of product was 97.4% of theory.

実施例2 水o、1997分、m−クロルベンザルクロライドo、
211I/分を250″CK加熱した気化器で連続的に
気化し、200”Cの触媒充填層(実施例1と同一のも
のを25rnl充填)に通して反応させた。
Example 2 Water o, 1997 minutes, m-chlorobenzal chloride o,
211 I/min was continuously vaporized in a 250"CK heated vaporizer and passed through a 200"C catalyst packed bed (25rnl of the same as in Example 1) for reaction.

この要領での一クロルベンザルクロライド100gを連
続反応させた結果、69;o gのm−クロルベンズア
ルデヒドを得た。生成物の収量は理論量の96.0%で
あった。
As a result of continuous reaction of 100 g of monochlorobenzal chloride in this manner, 69;o g of m-chlorobenzaldehyde was obtained. The product yield was 96.0% of theory.

実施例3〜11 o −) +) フルオロメチルベンザルクロライドo
、25g/分、水o、18JF/分の供給割合とし、触
媒として表IK示すもの?用いる以外は実施例2と同一
の条件で、0−ト1yフルオロメチルベンザルクロライ
ド100gを連続的に加水分解した結果、0−)リフル
オロメチルベンズアルデヒドを表1に示す収量および収
率で得た。
Examples 3-11 o −) +) Fluoromethylbenzal chloride o
, 25 g/min, water o, 18 JF/min, and the catalyst is as shown in Table IK? As a result of continuously hydrolyzing 100 g of 0-trifluoromethylbenzalchloride under the same conditions as in Example 2 except for the use of .

表  1 実施例12、比較例1 加熱した気化器に水を16 g / hro、〇−トリ
フルオロメチルベンザルクロライドを20g7”hr、
の割合で定量ポンプにて供給し気化した。気化した0−
)リフルオロベンザルクロライドと水の混合気・体を2
00 ’Cに加熱した次の触媒f25rnl充填した反
応管にそれぞれ導入し、15時間の連続接触反応2行わ
せた。
Table 1 Example 12, Comparative Example 1 16 g/h of water in a heated vaporizer, 20 g/h of 〇-trifluoromethylbenzal chloride,
It was supplied using a metering pump and vaporized at a ratio of . vaporized 0-
) Lifluorobenzal chloride and water mixture gas/body 2
They were each introduced into a reaction tube filled with 25rnl of the following catalyst heated to 00'C, and a continuous contact reaction 2 was carried out for 15 hours.

(1)4〜10メツシユの活性炭を20重量%塩化第二
鉄水溶液に室温で24時間浸漬した後、80℃で3時間
空気乾燥したもの。塩化第二鉄の担持量は活性炭に対し
て16重量%。・・・実施例12゜ f2)  r −11205f、  100ccの水に
1609のCuCl2’2H20f 90℃で溶解され
な液に2時間浸漬後、400°Cで2時間加熱したもの
(1) 4 to 10 meshes of activated carbon were immersed in a 20% by weight ferric chloride aqueous solution at room temperature for 24 hours, and then air-dried at 80°C for 3 hours. The amount of ferric chloride supported was 16% by weight based on activated carbon. ...Example 12°f2) r -11205f, 1609 CuCl2'2H20f dissolved in 100 cc of water at 90°C for 2 hours, then heated at 400°C for 2 hours.

塩化第二銅の担持量はγ−At203に対して28.0
重量%・・・・・・比較例1゜上記の結果は、第1図に
示す通りであった。
The supported amount of cupric chloride is 28.0 for γ-At203
Weight %...Comparative Example 1゜The above results were as shown in FIG.

第1図中、曲線1は実施例12の、曲線2は比較例1の
結果である。
In FIG. 1, curve 1 is the result of Example 12, and curve 2 is the result of Comparative Example 1.

第1図から明らかなように、比較例1は実施例12に比
べ、転化率が低いばかりでなく、触゛媒活性の経時劣化
も著しいことが判る。
As is clear from FIG. 1, Comparative Example 1 not only has a lower conversion rate than Example 12, but also shows that the catalyst activity deteriorates significantly over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の結果を示すグラフである。 FIG. 1 is a graph showing the results of Examples.

Claims (1)

【特許請求の範囲】 金属塩化物及び/又は金属硫酸塩を担持した活性炭の存
在下で、一般式 (Xはハロゲン原子又はトリフルオロメチル基を表わし
、n = 0.1.2を示す)で示されるベンザルクロ
ライド類を気相にて加水分解して一般式 (X、nは前述の通り) で示されるベンズアルデヒド類を製造することを特徴と
するベンズアルデヒド類の製造法。
[Claims] In the presence of activated carbon supporting a metal chloride and/or metal sulfate, according to the general formula (X represents a halogen atom or a trifluoromethyl group, and n = 0.1.2) A method for producing benzaldehydes, which comprises producing benzaldehydes represented by the general formula (X and n are as described above) by hydrolyzing the shown benzal chlorides in a gas phase.
JP12537481A 1981-07-21 1981-08-12 Preparation of enzaldehydes Granted JPS5829735A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12537481A JPS5829735A (en) 1981-08-12 1981-08-12 Preparation of enzaldehydes
GB08218612A GB2103208B (en) 1981-07-21 1982-06-28 Vapor phase catalytic hydrolysis of benzal chloride or its halogen- or trifluoromethyl-substitute to form benzaldehyde or substitute
IT22211/82A IT1157289B (en) 1981-07-21 1982-07-02 CATALYTIC HYDROLYSIS IN FAS OF PETROL CHLORIDE VAPOR OR ITS HALOGEN OR TRIFLUOROMETHY-SUBSTITUTE TO FORM BENZALDEHYDE OR SUBSTITUTE
DE3226490A DE3226490C2 (en) 1981-07-21 1982-07-15 Process for the preparation of benzaldehyde or its halogen or trifluoromethyl compounds by catalytic vapor phase hydrolysis of benzal chloride or the correspondingly substituted compounds
US06/400,011 US4450298A (en) 1981-07-21 1982-07-20 Vapor phase catalytic hydrolysis of benzal chloride or its halogen- or trifluoromethyl-substitute to form benzaldehyde or substitute
FR8212665A FR2510101B1 (en) 1981-07-21 1982-07-20 PROCESS FOR CATALYTIC VAPOR HYDROLYSIS OF BENZAL CHLORIDE OR ITS SUBSTITUTE WITH A HALOGEN OR A TRIFLUOROMETHYL, TO FORM BENZALDEHYDE OR ITS SUBSTITUTE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12537481A JPS5829735A (en) 1981-08-12 1981-08-12 Preparation of enzaldehydes

Publications (2)

Publication Number Publication Date
JPS5829735A true JPS5829735A (en) 1983-02-22
JPS6230972B2 JPS6230972B2 (en) 1987-07-06

Family

ID=14908544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12537481A Granted JPS5829735A (en) 1981-07-21 1981-08-12 Preparation of enzaldehydes

Country Status (1)

Country Link
JP (1) JPS5829735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621678A (en) * 1982-09-13 1986-11-11 Cosden Technology, Inc. Heat exchanger apparatus for extruding thermoplastic compositions
JP2006045095A (en) * 2004-08-03 2006-02-16 Central Glass Co Ltd 3-formyl-5-trifluoromethylbenzonitrile derivative and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621678A (en) * 1982-09-13 1986-11-11 Cosden Technology, Inc. Heat exchanger apparatus for extruding thermoplastic compositions
JP2006045095A (en) * 2004-08-03 2006-02-16 Central Glass Co Ltd 3-formyl-5-trifluoromethylbenzonitrile derivative and method for producing the same

Also Published As

Publication number Publication date
JPS6230972B2 (en) 1987-07-06

Similar Documents

Publication Publication Date Title
US3767706A (en) Hydration of aliphatic nitriles to amides using copper metal catalysts
JPS5829735A (en) Preparation of enzaldehydes
JPS5865241A (en) Carbonylation of secondary benzylhalide
US4450298A (en) Vapor phase catalytic hydrolysis of benzal chloride or its halogen- or trifluoromethyl-substitute to form benzaldehyde or substitute
WO1993010067A1 (en) Process for producing 1,1,1,4,4,4-hexafluorobutane
US6855662B2 (en) Catalyst for preparing fluorine-containing alcohol compound and a process for preparation of fluorine-containing alcohol compound
WO1993016023A1 (en) 1,1,1,2,2,5,5,5-octafluoropentane and production thereof
JP2568093B2 (en) Process for producing perhalohydrocarbon hypochlorite
TWI294423B (en) Method for producing ketal and/or acetal
US2393532A (en) Catalytic oxidation of ketones
US4036887A (en) Preparation of 3-bromobenzaldehyde
US2294955A (en) Process for the manufacture of unsaturated aldehydes
JPS629576B2 (en)
JPS60248640A (en) Production of benzaldehyde compound
JPS6092234A (en) Production of cyclopentanone
KR930005305B1 (en) Catalyst for preparation of dimethyl carbonate and process for preparation of it and its use
JPH07103064B2 (en) Process for producing 3-alkylbutene-1-al
JPS5917087B2 (en) Hexafluoropropylene epoxide
US3067238A (en) Dimerization of active methylene compounds by oxidation
JPS5935917B2 (en) Method for producing organic germanium compounds and organic germanium sesquioxides
JPH04182473A (en) Production of triglycidylisocyanurate
JPS62129242A (en) Production of fluorine-containing alpha,beta-unsaturated carboxylic acid
JPS5883639A (en) Preparation of chlorotrifluoromethylbenzene
JPH0514694B2 (en)
JPS6052134B2 (en) Manufacturing method of hexafluoroisobutene