JPS5827976A - Hydrogen storage material - Google Patents

Hydrogen storage material

Info

Publication number
JPS5827976A
JPS5827976A JP12513581A JP12513581A JPS5827976A JP S5827976 A JPS5827976 A JP S5827976A JP 12513581 A JP12513581 A JP 12513581A JP 12513581 A JP12513581 A JP 12513581A JP S5827976 A JPS5827976 A JP S5827976A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
earth metal
hydrogen gas
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12513581A
Other languages
Japanese (ja)
Inventor
Jiro Shiokawa
塩川二朗
Ginya Adachi
足立吟也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP12513581A priority Critical patent/JPS5827976A/en
Publication of JPS5827976A publication Critical patent/JPS5827976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a hydrogen storage material having superior occluding and releasing properties for gaseous hydrogen by sticking a thin film of an alloy of a rare earth metal with Ni on a substrate. CONSTITUTION:Thin films of <=10mu, more preferably 0.1-8mu of an alloy of a rare earth metals with Ni are stuck on a substrate of quartz, alumina, mullite, glass, a high polymer film (for example, PET, polyimide) or the like by a vacuum deposition, sputtering or ion beam depositing method. The rare earth metal- Ni alloy is an alloy of La, Ce, Sm, etc. and Ni, and may contain about 1- 50atom% other metals, for example, Mo, Co, Fe, Cr, Cu, etc. More specifically, such metals are LaNi5, MM(Ni0.8Co0.2)2 (MM is Mischmetal), Ce (Ni0.7Mn0.3)4.5, Sm(Ni0.3Fe0.3)5, etc.

Description

【発明の詳細な説明】 本発明は、水素ガス吸蔵・放出特性の優れた水素貯蔵材
料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen storage material with excellent hydrogen gas storage and release characteristics.

従来、クリーンエネルギー源としての水素ガスを貯蔵・
輸送するだめにLaNi、Hz (x≧θ)等の希土類
金属=Ni系合金を利用することが知られている。この
場合、希土類金属−Ni系合金はもっばら粉体の形で使
用されている。即ち、水素ガス吸蔵・放出特性を有する
希土類金属−N1系合金の粉体を例えばSUS 3/1
6等のステンレス製の面j圧容器中に充填し、該合金に
水素ガスを吸蔵する場合には容器内の水素ガス圧力を高
め、寸だ、水素ガスの放出を行なう場合には該合金の温
度を高めることによって水素の吸蔵・放出を行なってい
る。
Traditionally, hydrogen gas as a clean energy source has been stored and
It is known to use rare earth metal=Ni alloys such as LaNi and Hz (x≧θ) for transportation. In this case, the rare earth metal-Ni alloy is mostly used in the form of powder. That is, powder of a rare earth metal-N1 alloy having hydrogen gas storage and release characteristics is used, for example, SUS 3/1.
When the hydrogen gas is stored in a pressure vessel made of grade 6 stainless steel, the hydrogen gas pressure inside the vessel is increased, and when the hydrogen gas is to be released, the alloy is heated. Hydrogen is absorbed and released by increasing the temperature.

しかしながら、この様な希土類金属−Ni系合金の粉体
id、水素ガスの吸蔵・放出に伴い体積の膨張・収縮を
起すため、吸蔵・放出の繰り返しにより次第に破砕する
。このため、容器内に充填された希土類金属−Nl系合
金の粉体け、最初の均一な充填状態から次第に容器内で
充填の粗密分布を生じ、水素ガスの通気・拡散が不均一
なものとなる。希土類金属−Ni系合金は水素ガスの吸
蔵・放出に伴い発・吸熱するが、その際、水素ガスの通
気・拡散が不均一な場合、この発・吸熱は容器内で不均
一に生じるだめ、容器中の希土類金属−Ni系合金粉体
に温度分布のムラが生じ、水素ガス吸蔵・放出特性が−
様でなく、所望の吸蔵・放出特性が得られない。
However, since the rare earth metal-Ni alloy powder id expands and contracts in volume as it absorbs and releases hydrogen gas, it gradually fractures due to repeated occlusion and release. For this reason, the rare earth metal-Nl alloy powder filled in the container gradually becomes unevenly packed in the container from an initially uniform filling state, resulting in uneven ventilation and diffusion of hydrogen gas. Become. Rare earth metal-Ni alloys generate and absorb heat as they absorb and release hydrogen gas, but if the ventilation and diffusion of hydrogen gas is uneven, this generation and absorption of heat will occur unevenly within the container. Uneven temperature distribution occurs in the rare earth metal-Ni alloy powder in the container, resulting in poor hydrogen gas storage and release characteristics.
Therefore, the desired storage/release characteristics cannot be obtained.

まだ、局所的に生じた発熱により希土類金属−Ni系合
金粉体によるフィルターやパイプ等の目づまりが生じる
場合もあり、一様な水素ガスの通気・拡散に重大な支障
を来す。
However, locally generated heat may cause clogging of filters, pipes, etc. due to rare earth metal-Ni alloy powder, which seriously impedes uniform ventilation and diffusion of hydrogen gas.

本発明者等は、上記のような欠点のない優れた水素ガス
吸蔵・放出特性を有する水素貯蔵月別を提供中べく種々
研究を行なった結果、希土類金属−Ni系合金を薄膜に
して使用すれば、水素ガスの吸蔵・放出の繰り返(−に
より破砕されることなく、安定にその形状を保ち、経時
劣化の少ない水素貯蔵旧制が得られることを見い出し、
本発明を完成するに到った。
The inventors of the present invention have conducted various studies to provide a hydrogen storage device that has excellent hydrogen gas storage and release characteristics without the above-mentioned drawbacks, and have found that if rare earth metal-Ni alloy is used in a thin film, We discovered that it is possible to obtain an old hydrogen storage system that stably maintains its shape without being crushed due to repeated storage and release of hydrogen gas (-) and has little deterioration over time.
The present invention has now been completed.

すなわち、本発明の要旨は、基板上に、希土類金属−N
1系合金の薄膜を有することを特徴とする水素貯蔵材料
に存する。
That is, the gist of the present invention is to deposit rare earth metal-N on a substrate.
The present invention resides in a hydrogen storage material characterized by having a thin film of a type 1 alloy.

以下本発明を説明するに、本発明で使用される希土類金
属−Nl系合金は、ランタン、セリウム、ザマリウム等
の希土類とN1の合金であり、/〜soy子%程度子細
程度属、例えば、Mn、  CO,Fe、  Or、 
 C++  49を含イ]していてもよい。具体的には
、例えば、LaN :t、、、MM(N:111.8C
Oo、2)、、 (MMはミツシュメタルを表わ+)、
 ce(N10.7 Mn003 )4j s Sm(
N1(14Fe(1,3’)5 等が挙げbhる。
To explain the present invention below, the rare earth metal-Nl alloy used in the present invention is an alloy of rare earth metals such as lanthanum, cerium, and zamarium and N1, and contains small metals such as Mn. , CO, Fe, Or,
C++49]. Specifically, for example, LaN:t,...MM(N:111.8C
Oo, 2), (MM represents Mitsushmetal +),
ce(N10.7 Mn003)4j s Sm(
Examples include N1(14Fe(1,3')5).

中でもLa−Ni系合金、!11に、LaNj、、が好
適である。
Among them, La-Ni alloy! 11, LaNj, is suitable.

かかる希土類金属−Nl系合金の薄膜に、石英、アルミ
ナ、ムライト、ガラス、高分子フィルム(例えば、PE
T、ポリイミド)1qの基板上に、通常の金属薄膜製造
方法に従ってf6°土類金属−N]系合金を固着さぜる
ことにより得られる。
A thin film of such a rare earth metal-Nl alloy may be coated with quartz, alumina, mullite, glass, or a polymer film (for example, PE).
It is obtained by fixing an f6° earth metal-N] based alloy on a 1q substrate (T, polyimide) according to a normal metal thin film manufacturing method.

水素貯蔵材料の熱伝導を良くして容器内の温度分布を一
定にするためには、基板として金属基板を用いることが
有利であり、一定容器中での水素ガス吸蔵・放出特性を
高めるには、合金の薄膜をS]C、ジルコニア、アルミ
ナ、シリカ系繊維、カーボン繊維、ポリマー繊組等の繊
組状物質、或いは、セラミックス、金属等の多孔質微粒
子上に固湘させるのが好ましい。
In order to improve the heat conduction of the hydrogen storage material and make the temperature distribution within the container constant, it is advantageous to use a metal substrate as the substrate. It is preferable to solidify a thin film of the alloy on a fibrous material such as S]C, zirconia, alumina, silica fiber, carbon fiber, polymer fiber, or porous fine particles such as ceramics or metal.

薄膜の固着法としては、通常の真空蒸着法、スパッタ法
、イオンビーム蒸着法等が挙げられる。
Examples of methods for fixing the thin film include ordinary vacuum evaporation, sputtering, and ion beam evaporation.

一般に、合金の蒸着は成分金属の蒸気圧が異なる場合、
生成した薄膜組成にムラを生じる。
In general, alloy deposition is performed when the vapor pressures of the component metals are different.
This causes unevenness in the composition of the produced thin film.

これは、合金成分金属が異なる温度で蒸発するだめで、
特に、ヒータ一温度が低い場合顕著である。そこで本発
明においては、使用する合金の成分金属の沸点以上に加
熱したヒーター上に合金を落下し、合金を瞬時に蒸発さ
せて基板上に蒸着させる所謂フラッシュ蒸着法が特に好
適である。
This is because the alloy component metals evaporate at different temperatures.
This is particularly noticeable when the heater temperature is low. Therefore, in the present invention, a so-called flash vapor deposition method is particularly suitable, in which the alloy is dropped onto a heater heated to a temperature higher than the boiling point of the component metal of the alloy used, and the alloy is instantaneously evaporated and deposited on the substrate.

薄膜の膜厚は、希土類金属−Nl系合金のフィード量に
より所望の膜厚に調節する。あまり膜厚が大きすぎると
水素ガス吸蔵・放出の繰り返しにより、次第に破砕する
傾向になってくるので、通常は、10μ以下、好ましく
は、0./〜ざμの範囲になるように調節する。
The thickness of the thin film is adjusted to a desired thickness by adjusting the feed amount of the rare earth metal-Nl alloy. If the film thickness is too large, it will tend to gradually fracture due to repeated absorption and release of hydrogen gas, so it is usually 10 μm or less, preferably 0.5 μm or less. Adjust so that it is within the range of /~zaμ.

かくして得られる本発明の水素貯蔵材料は、水素ガスの
吸蔵・放出ザイクルを多数回繰り返しても、薄膜合金は
全く破砕現象を示さない。
In the thus obtained hydrogen storage material of the present invention, the thin film alloy does not show any fracture phenomenon even if the hydrogen gas absorption/release cycle is repeated many times.

従って、この材料を容器中に充填した場合、水素ガスの
吸蔵・放出に伴って合金の充填形態が経時劣化すること
がなく、常に安定した水素ガス吸蔵・放出特性が達成さ
れるのである。
Therefore, when this material is filled into a container, the filling form of the alloy does not deteriorate over time due to the storage and release of hydrogen gas, and stable hydrogen gas storage and release characteristics are always achieved.

以下に実施例を挙げて更に本発明を具体的に説明する。EXAMPLES The present invention will be further explained in detail by giving examples below.

実施例/ 図−/に示す様なフラッシュ蒸着装置を使用して、石英
基板上にLaNi、の薄膜を有する水素貯蔵旧制を製造
した。すなわち、系内の真空度が約/θ−”I’orr
の高真空に保だわだ装置において、粒状LaNi、合金
/を、ホッパー−を通じベルトコンベヤー3であらかじ
め約20’00℃に加熱されたタングステンフィラメン
トク上に落下した。合金は瞬時に蒸発して矢印の方向に
進み、上部に設置された石英基板!上に蒸着さゎた。
EXAMPLE A hydrogen storage system having a thin film of LaNi on a quartz substrate was manufactured using a flash evaporation apparatus as shown in FIG. In other words, the degree of vacuum in the system is approximately /θ−”I'orr
In a high-vacuum rutting apparatus, granular LaNi alloy/was dropped through a hopper onto a tungsten filament tank preheated to about 20'00 DEG C. by a belt conveyor 3. The alloy instantly evaporates and moves in the direction of the arrow, and the quartz substrate is placed on top! It was vapor deposited on top.

石英基板上の蒸着膜厚は約θ、37rとなる」:うにL
aNj 、粒のフィード量を制御しプこ。次いでこの石
英基板を圧力容器中に充填し、J“0℃、2!a、t;
 m水素ガス圧で水素ガスを吸蔵させ、真空排気により
水素ガスの放1]」を行うサイクルを750回繰り返し
たところ、LaNi、薄膜は全く破砕を示さず、水素吸
蔵、放出特性の経時劣化は見られなかった。
The thickness of the deposited film on the quartz substrate is approximately θ, 37r”: Sea urchin L
aNj, to control the grain feed amount. Next, this quartz substrate was filled into a pressure vessel and heated to J"0°C, 2!a,t;
When the cycle of storing hydrogen gas at m hydrogen gas pressure and releasing hydrogen gas by vacuum evacuation was repeated 750 times, the LaNi thin film did not show any fracture, and the hydrogen storage and release characteristics did not deteriorate over time. I couldn't see it.

【図面の簡単な説明】[Brief explanation of drawings]

図−/は実施例/で使用したフラッシュ蒸着装置の一部
概略図を示す。 /:粒状LaN1合金 2二ホッパー 3:ベルトコンベヤー Z:タングステンフィラメント 3−二石英基板 出 願 人  三菱化成工業株式会社  7− 図一!
Figure -/ shows a partial schematic diagram of the flash evaporation apparatus used in Example/. /: Granular LaN1 alloy 22 Hopper 3: Belt conveyor Z: Tungsten filament 3-2 Quartz substrate Applicant: Mitsubishi Chemical Industries, Ltd. 7- Figure 1!

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に、希土類金属−Ni系合金の薄膜を有す
ることを特徴とする水素貯蔵材料。
(1) A hydrogen storage material characterized by having a thin film of a rare earth metal-Ni alloy on a substrate.
(2)希土類金属−Ni系合金の薄膜が、フラッシュ蒸
着法により得られたものである特許請求の範囲第1項記
載の水素貯蔵材料。
(2) The hydrogen storage material according to claim 1, wherein the rare earth metal-Ni alloy thin film is obtained by a flash vapor deposition method.
(3)希土類金属−N1系合金が、La −Ni系合金
である特許請求の範囲@7項記載の水素貯蔵材料。
(3) The hydrogen storage material according to claim 7, wherein the rare earth metal-N1 alloy is a La-Ni alloy.
JP12513581A 1981-08-10 1981-08-10 Hydrogen storage material Pending JPS5827976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12513581A JPS5827976A (en) 1981-08-10 1981-08-10 Hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12513581A JPS5827976A (en) 1981-08-10 1981-08-10 Hydrogen storage material

Publications (1)

Publication Number Publication Date
JPS5827976A true JPS5827976A (en) 1983-02-18

Family

ID=14902719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12513581A Pending JPS5827976A (en) 1981-08-10 1981-08-10 Hydrogen storage material

Country Status (1)

Country Link
JP (1) JPS5827976A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145200A (en) * 1984-08-10 1986-03-05 Sanyo Electric Co Ltd Hydrogen storage device
CN109666908A (en) * 2018-11-30 2019-04-23 汽解放汽车有限公司 Solid-state hydrogen storage core and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145200A (en) * 1984-08-10 1986-03-05 Sanyo Electric Co Ltd Hydrogen storage device
CN109666908A (en) * 2018-11-30 2019-04-23 汽解放汽车有限公司 Solid-state hydrogen storage core and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101429644B (en) Production method of metal or metal oxide nano particle
NL8005772A (en) FIELD EMISSION CATHOD AND METHOD FOR MANUFACTURING SUCH A CATHOD
JPH0639687B2 (en) Carrier gas source for heated clusters
JP4384866B2 (en) Vacuum vaporizer
JPS5827976A (en) Hydrogen storage material
JPS634628B2 (en)
JPH0651600B2 (en) Diamond manufacturing method
JPH0511491B2 (en)
JP5242062B2 (en) Hydroxyapatite particle-dispersed metal film and method for forming the same
JP4947358B2 (en) Physical vapor deposition apparatus and physical vapor deposition method
JPS6169931A (en) Method for making intermetallic compound amorphous by chemical reaction
JP2004068049A (en) Bcc solid solution type hydrogen storage alloy with excellent hydrogen migration capacity, and method for manufacturing the hydrogen storage alloy
JPS583971A (en) Evaporation-deposition
JPS637092B2 (en)
JP5123567B2 (en) Vaporizer and plasma processing apparatus equipped with vaporizer
US20090008842A1 (en) Method and apparatus for producing metallic ultrafine particles
Jardine et al. Cavitation-erosion resistance of thick-film thermally sprayed niti
Ishii et al. A new process for producing a granular material
JPWO2019030890A1 (en) Manufacturing member and manufacturing device for carbon nanohorn aggregate
TW200832521A (en) Method of vaporizing solid organometallic compound
JPS6036648A (en) Material for high vacuum vessel
JP2009526907A (en) A crucible that removes the perspective line between the source material and the target
JP2023181794A (en) Method of producing resin composite hydrogen storage alloy, and method of producing hydrogen storage module
KR20240045105A (en) Vapor deposition method and vapor deposition container
JPH04121466A (en) Evacuation method