JPS5827350B2 - Kinzokufushiyokuboushizai - Google Patents

Kinzokufushiyokuboushizai

Info

Publication number
JPS5827350B2
JPS5827350B2 JP49085229A JP8522974A JPS5827350B2 JP S5827350 B2 JPS5827350 B2 JP S5827350B2 JP 49085229 A JP49085229 A JP 49085229A JP 8522974 A JP8522974 A JP 8522974A JP S5827350 B2 JPS5827350 B2 JP S5827350B2
Authority
JP
Japan
Prior art keywords
corrosion
water
initial
condensate
cyclohexylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49085229A
Other languages
Japanese (ja)
Other versions
JPS5114149A (en
Inventor
隆 近藤
健介 実守
隆靖 上田
孝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURITA INDUSTRIAL CO Ltd
Original Assignee
KURITA INDUSTRIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURITA INDUSTRIAL CO Ltd filed Critical KURITA INDUSTRIAL CO Ltd
Priority to JP49085229A priority Critical patent/JPS5827350B2/en
Priority to IT2571875A priority patent/IT1040115B/en
Priority to BR7504788A priority patent/BR7504788A/en
Publication of JPS5114149A publication Critical patent/JPS5114149A/en
Publication of JPS5827350B2 publication Critical patent/JPS5827350B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、金属腐食防止剤に関するものである。[Detailed description of the invention] The present invention relates to metal corrosion inhibitors.

更に詳しくは、特tこ水系1こ於ける金属の腐食を防止
するのに効果的な金属腐食防止剤を提供するものである
More specifically, the present invention provides a metal corrosion inhibitor that is effective in preventing metal corrosion, especially in water systems.

従来、水の系あるいは水−油の系1こ於ける主として水
1こ起因する腐食の防止剤としては種々の薬剤が使用さ
れでいる。
Conventionally, various agents have been used as inhibitors for corrosion mainly caused by water in water systems or water-oil systems.

これらの薬剤としては、例えば、リン酸系あるいはクロ
ム酸系腐食防止剤に代表される無機系腐食防止剤及び各
種アミン、アミン塩類、酸アミド、有機酸塩などの有機
系腐食防止剤を挙げることができる。
Examples of these agents include inorganic corrosion inhibitors such as phosphoric acid or chromic acid corrosion inhibitors, and organic corrosion inhibitors such as various amines, amine salts, acid amides, and organic acid salts. Can be done.

これらの腐食防止剤は金属表面上に例等かの防食皮膜を
形成して腐食を防止するものである。
These corrosion inhibitors form an anticorrosive film on metal surfaces to prevent corrosion.

一方、これらとは全く異質のものとして金属表面付近の
pHが低下することによって発生する腐食があり、これ
を防止するために、種々のアルカリ剤、例えばアンモニ
ア、モルホリン、シクロヘキシルアミンなどが使用され
ている。
On the other hand, corrosion occurs when the pH near the metal surface decreases, which is completely different from these, and to prevent this, various alkaline agents such as ammonia, morpholine, and cyclohexylamine are used. There is.

この種の腐食は、特に水蒸気から凝縮水が生ずるような
系に於いて問題となる。
This type of corrosion is particularly problematic in systems where water vapor condenses.

このような系として代表的なものは「復水器」と呼ばれ
る水蒸気の凝縮装置の系を挙げることができる。
A typical example of such a system is a steam condensing device system called a "condenser."

通常のパイプを用いた復水器を例にとって復水機構を模
式的に説明すると以下のようになる。
The condensation mechanism will be schematically explained below using a condenser using ordinary pipes as an example.

水蒸気流が冷却される1こ従って、まず水蒸気の一部が
凝縮して水の相を形成する。
As the water vapor stream is cooled, some of the water vapor first condenses to form a water phase.

この部分は通常、「初期凝縮部」と呼ばれ水蒸気と復水
が共存する混合系である。
This part is usually called the "initial condensation part" and is a mixed system in which water vapor and condensate coexist.

次いで、冷却が進んだ位置に於いては水蒸気は存在せず
水のみとなる系となる(復水部)。
Next, at a position where cooling has progressed, the system becomes a system in which there is no water vapor and there is only water (condensing part).

即ち復水器のパイプの内部は、水蒸気の流れに従って、
模式的には、蒸気部、初期凝縮部、次いで復水部を形成
することになる。
In other words, inside the condenser pipe, according to the flow of water vapor,
Schematically, a steam section, an initial condensation section, and then a condensation section are formed.

これらの部位fこ於いて腐食が特に問題となるのは、初
期凝縮部と復水部で水と接触するパイプ内部の金属表面
である。
Corrosion is a particular problem in these parts f, particularly on the metal surfaces inside the pipe that come into contact with water in the initial condensation section and the condensation section.

これらの復水器の腐食防止を目的として添加される薬剤
の代表例としては、シクロヘキシルアミンが知られでい
る。
Cyclohexylamine is known as a typical example of a chemical added for the purpose of preventing corrosion of these condensers.

しかしながら、シクロヘキシルアミンは、水溶性が悪い
などの理由から初期凝縮水への移行性が劣っている。
However, cyclohexylamine has poor transferability to initial condensed water due to poor water solubility.

従って初期凝縮部での、溶存酸素や二酸化炭素に起因す
るpHの低下を防止することができず、このため初期凝
縮水lこ接するパイプ内部表面1こ腐食が発生する。
Therefore, it is impossible to prevent the pH from decreasing due to dissolved oxygen and carbon dioxide in the initial condensation section, and corrosion occurs on the inner surface of the pipe that comes in contact with the initial condensed water.

この初期凝縮部に於ける腐食は、シクロヘキシルアミン
の添加量を増すことにより防止することが可能である。
Corrosion in this initial condensation zone can be prevented by increasing the amount of cyclohexylamine added.

しかしその場合、蒸気のすべてが初期凝縮部を経て完全
に凝縮された系(復水部)に於いては、増量されて過剰
となったシクロヘキシルアミンのために非常に高いpH
を有するようになる。
However, in that case, in the system (condensate section) in which all of the steam has passed through the initial condensation section and is completely condensed, the pH is extremely high due to the increased amount of excess cyclohexylamine.
It comes to have.

通常、銅合金はpH約7〜9をはずれた系に於いては、
pHが低くでも又高くても腐食が発生するという特性を
有しでおり、過剰のシクロヘキシルアミンは、復水部で
の腐食をもたらす。
Normally, in a system where the pH of copper alloys is outside of about 7 to 9,
Corrosion occurs regardless of whether the pH is low or high, and excessive cyclohexylamine causes corrosion in the condensate section.

即ち、シクロヘキシルアミンを用いた場合、復水部を防
食しようとすると初期凝縮部で腐食が発生し、初期凝縮
部を防食しようとすると復水部で腐食が発生するという
ジレンマがある。
That is, when cyclohexylamine is used, there is a dilemma in that if an attempt is made to prevent corrosion of the condensate part, corrosion will occur in the initial condensation part, and if an attempt is made to prevent corrosion of the initial condensation part, corrosion will occur in the condensate part.

また、モルホリン等の他の腐食防止剤についても同様な
傾向が見られる。
A similar tendency is also observed for other corrosion inhibitors such as morpholine.

このため、例えば石油化学プロセスのオーバーヘッドコ
ンデンサーやボイラ復水系統の腐食防止上、大きな問題
となっていた。
For this reason, it has been a major problem in preventing corrosion of overhead condensers and boiler condensate systems in petrochemical processes, for example.

本発明は、上記の如き問題を解決する腐食防止剤を提供
するものであり、その横取とするところは、モノイソプ
ロパツールアミンおよび/またはジイソプロパツールア
ミンを有効成分として含むことを特徴とする金属腐食防
止剤である。
The present invention provides a corrosion inhibitor that solves the above problems, and is characterized in that it contains monoisopropanolamine and/or diisopropanolamine as an active ingredient. It is a metal corrosion inhibitor.

本発明において用いられるモノイソプロパツールアミン
(MIPA)及びジイソプロパツールアミン(DIPA
は高温高圧下でも安定で、塩基性が強く、かつ腐食防止
効果が優れでいるばかりではなく、初期凝縮水中への移
行性が優れたものである。
Monoisopropanolamine (MIPA) and diisopropanolamine (DIPA) used in the present invention
It is stable even under high temperature and high pressure, has strong basicity, and has excellent corrosion prevention effects, as well as excellent migration into the initial condensed water.

このため、従来使用されている、例えばアンモニア、モ
ルホリン、シクロヘキシルアミン等のアルカリ剤よりも
、種々の面ではるかに優れた効果を示すことができる。
Therefore, it can exhibit far superior effects in various respects than conventionally used alkaline agents such as ammonia, morpholine, and cyclohexylamine.

上記のMIPA及びDIPAは単独で使用しても、併用
してもよく、またシクロヘキシルアミン、モルホリン、
トリエタノールアミン、エチレンジアミンおよびエチレ
ントリアミンなどのアミンの一種以上と併用してもよい
The above MIPA and DIPA may be used alone or in combination, and cyclohexylamine, morpholine,
It may be used in combination with one or more amines such as triethanolamine, ethylenediamine and ethylenetriamine.

本発明の金属腐食防止剤は、主として水に起因する金属
の腐食に対して効果がある。
The metal corrosion inhibitor of the present invention is effective against metal corrosion mainly caused by water.

特にボイラの復水系統、あるいは原油常圧蒸留装置に於
ける塔頂部、塔配管、オーバーへッドコンア゛ンサーな
ど蒸気が凝縮する凝縮部を含む系の腐食の防止1こ効果
を発揮する。
In particular, it is effective in preventing corrosion of boiler condensation systems or systems that include condensing parts where steam condenses, such as the column top, column piping, and overhead condensers in crude oil atmospheric distillation equipment.

本発明の金属腐食防止剤の添加濃度は1〜10.000
ppmの範囲内である。
The concentration of the metal corrosion inhibitor of the present invention is 1 to 10,000.
It is within the ppm range.

例えば、ボイラの復水系統の腐食防止には1〜500W
の範囲の添加濃度が望ましく、また石油化学プロセスの
腐食防止には、水に対して5〜1,000p−の範囲の
添加濃度が望ましい。
For example, 1 to 500 W is required to prevent corrosion of a boiler condensate system.
An additive concentration in the range of 5 to 1,000 p- to water is desirable for corrosion prevention in petrochemical processes.

次fこ本発明tこ含まれる化合物及びそれに性質の類似
した他の化合物の熱安定性、腐食防止効果及び初期凝縮
水中への移行性に関する試験結果を示し、さらに本発明
の実施例を示す。
Next, test results regarding the thermal stability, corrosion prevention effect, and migration into initial condensed water of the compound contained in the present invention and other compounds having similar properties are shown, and further examples of the present invention are shown.

但し、これらは、本発明の腐食防止剤及びそれらの実施
態様を限定するものではない。
However, these are not intended to limit the corrosion inhibitors of the present invention and their embodiments.

試験例 (L) 熱安定性 試験方法:所定濃度のアミン水溶液を調製し、Llのオ
ートクレーブに、このアミン水溶液600−を入れ、3
00℃で1時間加熱した。
Test example (L) Thermal stability test method: Prepare an amine aqueous solution with a predetermined concentration, put this amine aqueous solution 600- into an Ll autoclave, and
Heated at 00°C for 1 hour.

なお、水溶液に溶けている酸素によるアミンの分解を防
ぐために、オートクレーブの温度が約100’cfこ達
した時点で、適宜水蒸気を抜いた。
In order to prevent decomposition of the amine by oxygen dissolved in the aqueous solution, water vapor was appropriately removed when the temperature of the autoclave reached approximately 100'cf.

加熱後冷却し、水溶液のpHおよびアンモニア濃度を測
定して熱安定性の指標とした。
After heating and cooling, the pH and ammonia concentration of the aqueous solution were measured and used as indicators of thermal stability.

得られた結果を第1表に示す。The results obtained are shown in Table 1.

上記の表より、MIPA及びDIPAが高温でも安定な
ことがわかる。
From the above table, it can be seen that MIPA and DIPA are stable even at high temperatures.

(2)腐食防止効果 脱塩水を沸とうさせて脱酸素し、薬剤を50mになるよ
うに溶解させて試験液とした。
(2) Corrosion prevention effect Demineralized water was boiled to remove oxygen, and the chemical was dissolved in a solution of 50 m to prepare a test solution.

研磨した後エツチングをしたテストチューブ〔ガス管(
SGP(長さ) I 3.6CrfLX 2.1CrI
l(径))〕ニ電熱ヒーターをセットしてテストチュー
ブを伝熱面とした試験体を、上記の試験液(600rr
ll)中1こ入れた。
Polished and etched test tube [gas pipe]
SGP (length) I 3.6CrfLX 2.1CrI
l (diameter))] The test specimen with the electric heater set and the test tube as the heat transfer surface was heated with the above test solution (600rr
ll) I put one in.

常圧沸とう条件で、約5日間(110時間)加熱した後
のテストチューブ表面の状態と、試験液中lこ溶出した
腐食鉄の濃度を調べた。
After heating for about 5 days (110 hours) under normal pressure boiling conditions, the condition of the test tube surface and the concentration of corroded iron eluted into the test solution were investigated.

また薬剤無添加によるブランクの試験も同様をこ行なっ
た。
A blank test with no added drug was also conducted in the same manner.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

MIPA及びDIPAtこよる腐食防止効果が明瞭であ
る。
The corrosion prevention effect of MIPA and DIPAt is clear.

(3)初期凝縮水中への移行性 各種アミンの初期凝縮水中への移行性を調べた。(3) Migration into initial condensed water The migration properties of various amines into the initial condensed water were investigated.

薬剤を添加した純水を加熱して気化させ、蒸気を蒸気系
に導き蒸気部を形成した。
Pure water added with chemicals was heated and vaporized, and the steam was introduced into the steam system to form a steam section.

蒸気部の終りで蒸気を冷却した復水と蒸気が共存する初
期凝縮部を形成した。
At the end of the steam section, an initial condensation section was formed where the steam coexisted with condensate water that cooled the steam.

そして、初期凝縮部の終りで再び冷却し、全ての蒸気を
凝縮させて復水部を形成した。
Then, at the end of the initial condensation section, it was cooled again to condense all the steam and form a condensate section.

初期凝縮水は初期凝縮部からドレンで抜き出し、初期凝
縮量と薬剤の濃度を測定した結果を第3表に示した。
The initial condensed water was extracted from the initial condensation section by a drain, and the initial condensation amount and drug concentration were measured, and the results are shown in Table 3.

MIPAの優れた移行性が明らかである。The excellent migration properties of MIPA are evident.

実施例 l 使用圧力10Kll/cmt、純水給水(脱気器なし)
のボイラ復水系統の腐食抑制の目的でシクロヘキシルア
ミン3ppmを使用し、復水のpHを9.0に調整して
いたが、復水系配管(材質は銅合金)の腐食が起った。
Example l Working pressure 10Kll/cmt, pure water supply (no deaerator)
In order to suppress corrosion in the boiler condensate system, 3 ppm of cyclohexylamine was used to adjust the pH of the condensate to 9.0, but corrosion occurred in the condensate system piping (made of copper alloy).

この腐食の原因は炭酸と酸素と推定されたが、シクロヘ
キシルアミンによる管理方法にかえて、MIPAを3p
戸注入し、復水のpHを8.5とする管理方法に変更し
た。
It was assumed that the cause of this corrosion was carbonic acid and oxygen, but instead of using cyclohexylamine, MIPA was
The management method was changed to one in which the pH of the condensate was adjusted to 8.5.

両管理方法をこおける水質分析結果を第4表に示した。Table 4 shows the water quality analysis results for both management methods.

()内は試験期間3ケ月間の平均値 この結果はMIPAが初期凝縮部での炭酸腐食を完全に
抑制したことを示している。
The values in parentheses are the average values over the three-month test period.This result shows that MIPA completely suppressed carbonic acid corrosion in the initial condensation zone.

実施例 2 アンモニアを(NH3として100−150pP)添加
し、最終ドレン水のpHを8.01こ調整していた石油
化学プロセスにおいて、酢酸、ギ酸、フェノール、塩化
水素、硫化水素等を含有するプロセス水の流れるコンテ
゛ンサーが1年間で開孔するという腐食がおこった。
Example 2 A process containing acetic acid, formic acid, phenol, hydrogen chloride, hydrogen sulfide, etc. in a petrochemical process in which ammonia (100-150 pP as NH3) was added and the pH of the final drain water was adjusted to 8.01. Corrosion occurred in the condenser through which water was flowing, causing holes to form within a year.

原因を調査したところ、初期凝縮水に、これらの酸性物
質が選択的に溶解濃縮しp)Ii、s〜3.51こ低下
するためであった。
When the cause was investigated, it was found that these acidic substances were selectively dissolved and concentrated in the initial condensed water, resulting in a decrease of p)Ii,s~3.51.

そこで、MIPAとシクロヘキシルアミンを30重量係
対重0重量係配合したアミン混液をプロセス水に対して
120ppm添加することにより、最終ドレン水のpH
を7.0になるように調整した。
Therefore, by adding 120 ppm of an amine mixture containing MIPA and cyclohexylamine in a ratio of 30 to 0 by weight to the process water, the pH of the final drain water was increased.
was adjusted to 7.0.

このアミン混液の初期凝縮部への移行性は初期凝縮率1
6.5%で濃縮倍数は1.OOであった。
The transferability of this amine mixture to the initial condensation section is the initial condensation rate of 1.
At 6.5%, the concentration factor is 1. It was OO.

この結果、この石油化学プロセスでは過去2年の間腐食
問題は全く生じなかった。
As a result, this petrochemical process has not experienced any corrosion problems during the past two years.

Claims (1)

【特許請求の範囲】[Claims] 1 モノイソプロパツールアミンおよび/またはジイソ
プロパツールアミンを有効成分として含むことを特徴と
する水蒸気の凝縮部を含む系の金属腐食防止剤。
1. A metal corrosion inhibitor containing a water vapor condensation part, which is characterized by containing monoisopropanolamine and/or diisopropanazoleamine as an active ingredient.
JP49085229A 1974-07-26 1974-07-26 Kinzokufushiyokuboushizai Expired JPS5827350B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP49085229A JPS5827350B2 (en) 1974-07-26 1974-07-26 Kinzokufushiyokuboushizai
IT2571875A IT1040115B (en) 1974-07-26 1975-07-24 Mono- and or di-isopropanol amine metal corrosion inhibitor - added to water
BR7504788A BR7504788A (en) 1974-07-26 1975-07-25 CORROSION INHIBITOR, AND PROCESS FOR CORROSION INHIBITION FOR METALS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49085229A JPS5827350B2 (en) 1974-07-26 1974-07-26 Kinzokufushiyokuboushizai

Publications (2)

Publication Number Publication Date
JPS5114149A JPS5114149A (en) 1976-02-04
JPS5827350B2 true JPS5827350B2 (en) 1983-06-08

Family

ID=13852726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49085229A Expired JPS5827350B2 (en) 1974-07-26 1974-07-26 Kinzokufushiyokuboushizai

Country Status (3)

Country Link
JP (1) JPS5827350B2 (en)
BR (1) BR7504788A (en)
IT (1) IT1040115B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317889B2 (en) * 1985-08-08 1988-04-15 Rozai Kogyo Kk

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821053Y2 (en) * 1975-11-14 1983-05-04 テイコクツウシンコウギヨウ カブシキガイシヤ Takairotasetsuten Switch
JPS56161514U (en) * 1980-04-30 1981-12-01
JPS62205292A (en) * 1986-03-05 1987-09-09 Kurita Water Ind Ltd Corrosion inhibitor composition for vapor system
JP5849409B2 (en) * 2011-03-08 2016-01-27 栗田工業株式会社 Boiler water treatment agent and boiler water treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921024A (en) * 1972-06-16 1974-02-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921024A (en) * 1972-06-16 1974-02-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317889B2 (en) * 1985-08-08 1988-04-15 Rozai Kogyo Kk

Also Published As

Publication number Publication date
BR7504788A (en) 1976-07-06
JPS5114149A (en) 1976-02-04
IT1040115B (en) 1979-12-20

Similar Documents

Publication Publication Date Title
JP3962919B2 (en) Metal anticorrosive, metal anticorrosion method, hydrogen chloride generation inhibitor and method for preventing hydrogen chloride generation in crude oil atmospheric distillation equipment
US4067690A (en) Boiler water treatment
JPS5942073B2 (en) Anticorrosion composition
US4143119A (en) Method and composition for inhibiting the corrosion of ferrous metals
JPS6256950B2 (en)
RU2279464C2 (en) Method of preventing ammonium chloride-caused contamination and corrosion in crude oil processing processes and in petrochemical processes
JPH04346682A (en) Method and agent for removing oxygen from boiler water
JP2005502789A5 (en)
JPS5827350B2 (en) Kinzokufushiyokuboushizai
US4595723A (en) Corrosion inhibitors for alkanolamines
CA1289846C (en) Control of corrosion in aqueous systems
CA2306235C (en) Gas treating solution corrosion inhibitor
US4596849A (en) Corrosion inhibitors for alkanolamines
KR101938142B1 (en) Water treatment composition containing carbohydrazide for power plant boiler system
JP3855961B2 (en) Oxygen absorber and deoxygenation method
CN109868477B (en) Vapor phase corrosion inhibitor and preparation method thereof
JPH02209493A (en) Anticorrosive for steam or condensate system
KR101654700B1 (en) Water treatment composition containing diethyl hydroxylamine for power plant boiler system
US4657740A (en) Method of scavenging oxygen from aqueous mediums
CA1052086A (en) Boiler water treatment
IE47613B1 (en) Composition and method for inhibiting corrosion in steam condensate systems
US4693866A (en) Method of scavenging oxygen from aqueous mediums
US4590036A (en) Process for corrosion inhibition utilizing an antimony-molybdenum salt corrosion inhibitor composition
US4512909A (en) Use of a hydroquinone compound with hydrazine (1:1 molar ratio) as an oxygen-scavenging and a corrosion-inhibiting agent
JP5034483B2 (en) Anticorrosive for reducing erosion and corrosion