JPS582648B2 - Methods and equipment for preserving aquatic animals - Google Patents

Methods and equipment for preserving aquatic animals

Info

Publication number
JPS582648B2
JPS582648B2 JP9639680A JP9639680A JPS582648B2 JP S582648 B2 JPS582648 B2 JP S582648B2 JP 9639680 A JP9639680 A JP 9639680A JP 9639680 A JP9639680 A JP 9639680A JP S582648 B2 JPS582648 B2 JP S582648B2
Authority
JP
Japan
Prior art keywords
water
activated carbon
aquatic animals
sodium hypochlorite
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9639680A
Other languages
Japanese (ja)
Other versions
JPS5722632A (en
Inventor
金田朗
秋林節美
小松民邦
福味広員
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9639680A priority Critical patent/JPS582648B2/en
Publication of JPS5722632A publication Critical patent/JPS5722632A/en
Publication of JPS582648B2 publication Critical patent/JPS582648B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

【発明の詳細な説明】 本発明は、水産動物を長期間、高密度、高生存率で保存
する方法及び装置に関するものであり、活魚貝類の沿岸
、陸上での蓄養、あるいは船舶や車輛による活魚貝類の
輸送において、大量の活魚貝類の蓄養もしくは輸送に適
した経済効率の高い活魚貝類の保存方法及び装置を提供
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for preserving aquatic animals for a long period of time, at high density, and with high survival rate. The purpose of the present invention is to provide a highly economically efficient method and device for preserving live fish and shellfish suitable for the cultivation or transportation of large quantities of live fish and shellfish in the transportation of shellfish.

水産動物を定量の収容水を循環使用して保存する場合、
水産動物によって生成もしくは***される老廃物あるい
は斃死体の分解生成物である腐敗物からのアンモニア態
窒素化合物、炭酸ガス、水溶性有機化合物(以下この水
溶性有機化合物を、cOD物質という。
When preserving aquatic animals by circulating a fixed amount of stored water,
Ammonia nitrogen compounds, carbon dioxide, and water-soluble organic compounds (hereinafter, these water-soluble organic compounds are referred to as cOD substances) from waste products produced or excreted by aquatic animals or putrefaction products that are decomposition products of carcasses.

)等を除去することが必要である。), etc. must be removed.

従来、収容水から、これら有毒有害物質を除去する方法
として自然水で換水する方法がある。
Conventionally, as a method for removing these toxic and harmful substances from stored water, there is a method of replacing the water with natural water.

この換水法は、収容活魚貝類に由来するあらゆる不要物
質を全て換水により収容系外へ除去するものであり、最
も安易な方法である。
This water change method is the simplest method as it removes all unnecessary substances originating from the housed live fish and shellfish out of the containment system through water change.

しかしながら、自然水使用のこのような換水法は、活魚
貝類の種類によってそれぞれ異なる収容適温(低温度範
囲域)を維持する場合の冷却温度調節設備やその維持の
ための負担を大きくする。
However, such a water exchange method using natural water increases the burden of cooling temperature control equipment and its maintenance when maintaining the appropriate storage temperature (low temperature range), which varies depending on the type of live fish and shellfish.

冷却温度調節設備等の負担は、特に、大量に活魚貝類を
保存したり、イワシの如く低密度収容の必要な魚種の保
存、あるいは夏期における活魚貝類の保存の場合に著し
い。
The burden on cooling temperature control equipment, etc. is especially significant when preserving large quantities of live fish and shellfish, preserving fish species such as sardines that require low-density storage, or preserving live fish and shellfish during the summer.

更に最近沿岸海水面、河川等の汚染が進み、清浄な天然
水を大量に得られない場合が多くなってきた。
Furthermore, recently, coastal seawater, rivers, etc. have become increasingly polluted, and it has become increasingly difficult to obtain large amounts of clean natural water.

又、活魚輸送車輛にみられるように、定量の収容水を用
いて循環曝気するだけでは、前記有毒物の蓄積を除くこ
とができず、したがって、活魚貝類を活きの良い状態で
輸送するためには、積載量と輸送距離が制限されるなど
の問題があった。
In addition, as seen in live fish transportation vehicles, it is not possible to remove the accumulation of toxic substances by simply using a fixed amount of stored water and circulating aeration. However, there were problems such as limitations on loading capacity and transportation distance.

換水に代わる経済効率の高い方法の一つとして、塩水を
電気分解して次亜塩素酸ソーダを生成せしめ、これによ
り前記有毒有害物質を酸化処理する方法が知られている
As an economically efficient alternative to water replacement, a method is known in which salt water is electrolyzed to produce sodium hypochlorite, thereby oxidizing the toxic and harmful substances.

そして、この力法を実施する場合、余剰の、あるいは未
反応の次亜塩素酸ソーダの収容槽への漏出を防ぐため、
酸化還元電位計(ORP)などによる次亜塩素酸ソーダ
生成量のフィードバックコントロール、あるいは酸化還
元電位を検知して還元剤を供給するなどの手段が付加さ
れる。
When implementing this force method, in order to prevent excess or unreacted sodium hypochlorite from leaking into the storage tank,
Feedback control of the amount of sodium hypochlorite produced using an oxidation-reduction potentiometer (ORP) or the like, or means for supplying a reducing agent by detecting the oxidation-reduction potential are added.

しかし、この方法は酸化処理が一般に不完全であること
、検出精度が低いORPだけでは酸化剤の残留をくいと
めることができないこと、電解に際し収容水の水素イオ
ン濃度(pH)低下が伴うことなどの欠点があり、安全
な水質を長期間維持することは困難である。
However, this method has several problems, including that the oxidation treatment is generally incomplete, that ORP alone with low detection accuracy cannot prevent residual oxidizing agents, and that the hydrogen ion concentration (pH) of the stored water is reduced during electrolysis. There are drawbacks and it is difficult to maintain safe water quality for a long period of time.

本発明者らは、これらの問題を解決すべく鋭意研究を行
なった結果、前記有毒有害物質を活性炭触媒下で酸化処
理を行なって、迅速、完全に有毒有害物質及び残余の酸
化剤を分解し、かつアルカリ性物質などを用い、収容水
のpHを一定にすることが良いという知見を得て本発明
を成すに至った。
As a result of intensive research in order to solve these problems, the inventors of the present invention conducted oxidation treatment of the above-mentioned toxic and harmful substances under an activated carbon catalyst to quickly and completely decompose the toxic and harmful substances and the remaining oxidizing agent. The present invention was realized based on the knowledge that it is good to keep the pH of the stored water constant by using an alkaline substance or the like.

すなわち本発明は、収容槽の収容水を循環再生系路によ
って循環再生しながら生きた水産動物を収容槽で保存す
る方法において、塩水を電気分解して次亜塩素酸ソーダ
を生成せしめる手段を設けて、生成した該次亜塩素酸ソ
ーダによって、収容水中の水産動物由来の老廃物及び腐
敗物を活性炭触媒の存在下で酸化処理する一方、収容水
のpHを調節する手段を設けて所定の値に設定するこさ
を特徴さする水産動物の保存方法に関するものである。
That is, the present invention provides a method for preserving live aquatic animals in a holding tank while circulating and regenerating the water contained in the holding tank through a circulation regeneration system, which includes means for electrolyzing salt water to generate sodium hypochlorite. The generated sodium hypochlorite is used to oxidize waste products and putrefactive substances derived from aquatic animals in the stored water in the presence of an activated carbon catalyst, while a means for adjusting the pH of the stored water is provided to maintain the pH at a predetermined value. This relates to methods for preserving aquatic animals, which are characterized by their small size.

本発明によれば、収容水の浄化循環使用において、酸化
処理及び無毒化処理を軽量コンパクトな設備で安全かつ
確実に操作しうる。
According to the present invention, when using stored water for purification and circulation, oxidation treatment and detoxification treatment can be performed safely and reliably with lightweight and compact equipment.

本発明の好ましい実施態様では、電解槽で効率的に次亜
塩素酸ソーダを発生させるために、収容水(及び必要な
場合清浄な新水も同じく)として、0.8重量%以上の
食塩を含有した水を用いこれを電解槽へ供給する。
In a preferred embodiment of the present invention, in order to efficiently generate sodium hypochlorite in an electrolytic cell, 0.8% by weight or more of common salt is added to the stored water (and also clean fresh water if necessary). The contained water is used and supplied to the electrolytic cell.

食塩の濃度は、水産動物に与える生理的影響を配慮して
最大5重量%までが好ましい。
The concentration of salt is preferably up to 5% by weight in consideration of physiological effects on aquatic animals.

このような収容水自体を電解槽へ循環供給する方式にお
いては、収容水に含まれる食塩が電気化学的に次亜塩素
酸ソーダに変換され、その一部は酸化処理に消費されて
食塩に戻り、残りは活性炭により分解して食塩に戻るの
で、市販次亜塩素酸ソーダを注入する方法に比べて、収
容水中の食塩の蓄積がなく水中の塩濃度をほぼ一定に保
つことができる。
In such a system where the stored water itself is circulated and supplied to the electrolytic cell, the salt contained in the stored water is electrochemically converted to sodium hypochlorite, and a portion of it is consumed in the oxidation process and returned to salt. The remainder is decomposed by activated carbon and returned to common salt, so compared to the method of injecting commercially available sodium hypochlorite, there is no accumulation of salt in the stored water and the salt concentration in the water can be kept almost constant.

又、市販次亜塩素酸ソーダの注入力式における酸化剤貯
蔵設備、取扱い管理の規制の必要がないので、設置容積
、設備重量が大幅に小さくてすみ、操作が簡単で安全で
ある。
Furthermore, since there is no need to regulate the oxidizing agent storage equipment and handling management in the injection type of commercially available sodium hypochlorite, the installation volume and equipment weight can be significantly reduced, and the operation is simple and safe.

又、好都合なことには、電気分解の際に収容水に含まれ
るマグネシウムイオンのようなフロック形成金属イオン
が水溶性有機物を取り込みフロンクとなって析出するこ
とと、発生する水素ガスの気泡が懸濁固形物を凝集し、
浮上分離できることにより、収容水の濁り度を大幅に低
下せしめることができる。
Also, advantageously, during electrolysis, floc-forming metal ions such as magnesium ions contained in the stored water take in water-soluble organic matter and precipitate as flocs, and hydrogen gas bubbles are generated. Agglomerates cloudy solids,
By flotation separation, the turbidity of the stored water can be significantly reduced.

本発明で用いることのできる電解槽は、一般に市販され
ている電解槽を使うことができ、発明の主旨を達成する
限りにおいて、特に限定しない。
The electrolytic cell that can be used in the present invention may be any commercially available electrolytic cell, and is not particularly limited as long as the gist of the invention is achieved.

電解槽に通ずる電解電流は、水産動物が単位時間に放出
する***物及び腐敗物を酸化分解するのに必要な次亜塩
素酸ソーダの量から決めればよい。
The electrolytic current passed through the electrolytic cell may be determined based on the amount of sodium hypochlorite required to oxidize and decompose excreta and putrefaction substances released by aquatic animals per unit time.

一つの方法として、各物質の中で特に毒性の高いアンモ
ニアの重量の少なくとも約10〜30倍の次亜塩素酸ソ
ーダを発生させるに足る電流値に設定すれば、通常の水
産動物が放出する汚物はほぼ完全に酸化分解できる。
One method is to set the current to a value that is sufficient to generate at least 10 to 30 times the weight of sodium hypochlorite than ammonia, which is particularly toxic among substances, to eliminate the waste emitted by normal aquatic animals. can be almost completely decomposed by oxidation.

電解液の次亜塩素酸ソーダの濃度は、必要に応じて、電
解液リサイクル系路を設けるとか、電解槽を複数個直列
に連結するなどして、任意の値にすることができ、長期
にわたる連続運転の期間中、常に高い電流効率を維持で
きるような濃度範囲にすることが望ましい。
The concentration of sodium hypochlorite in the electrolyte can be adjusted to any desired value by installing an electrolyte recycling line or connecting multiple electrolytic cells in series, as necessary. It is desirable to maintain a concentration range that allows constant high current efficiency during continuous operation.

立方形又は円筒形の電解槽を約1カ年連続運転を行なう
場合、約1000ppm以下ならば80〜86%の電流
効率を維持できる。
When a cubic or cylindrical electrolytic cell is operated continuously for about one year, a current efficiency of 80 to 86% can be maintained if the concentration is about 1000 ppm or less.

そして、収容水を処理する時の次亜塩素酸ソーダの濃度
は、前記記載の如く収容水中のアンモニア濃度の約10
〜30倍にする。
The concentration of sodium hypochlorite when treating the stored water is approximately 10% of the ammonia concentration in the stored water, as described above.
~30 times.

又、収容海水を電解した時に、いわゆるスケールと称さ
れるアルカリ性物質が析出するので収容水を循環使用す
ると、収容水のpHが低下し、条件にもよるが、清浄な
天然海水(pH約8.4)の場合、水槽のpHは,1日
目で8.1,10日目で7.6位にまで低下する。
Also, when stored seawater is electrolyzed, alkaline substances called scale are precipitated, so if the stored water is recycled, the pH of the stored water decreases, and depending on the conditions, clean natural seawater (pH approximately 8 In the case of .4), the pH of the aquarium drops to 8.1 on the first day and 7.6 on the 10th day.

さらに腐敗物を含有した収容水を電解処理した時に、主
に水中のCOD物質が酸化分解して生成する有機酸及び
炭酸ガスのために、特に著しいpHの低下がみられ、1
0日間位でおよそpH6.2にまで低下する場合もある
Furthermore, when stored water containing putrefactive substances is subjected to electrolytic treatment, a particularly significant drop in pH is observed, mainly due to organic acids and carbon dioxide produced through oxidative decomposition of COD substances in the water.
The pH may drop to approximately 6.2 in about 0 days.

このことは、定量の収容水を用いて活魚貝類を保存する
場合に、致命的な影響を与える。
This has a fatal effect when preserving live fish and shellfish using a fixed amount of stored water.

本発明においては、このpHの低下を防ぐことも要件の
一つとしている。
In the present invention, one of the requirements is to prevent this decrease in pH.

そのpHを調節する方法として、アルカリ性物質を供給
する方法,と、イオン交換樹脂を用いる方法とがある。
Methods for adjusting the pH include a method of supplying an alkaline substance and a method of using an ion exchange resin.

イオン交換樹脂法は樹脂を大量に必要とし、高価である
のに対し、アルカリ性物質の供給は簡易で経済的である
ので、本発明にとってより好ましい方法である。
While the ion exchange resin method requires a large amount of resin and is expensive, supplying the alkaline substance is simple and economical, and is therefore a more preferred method for the present invention.

炭酸ガスは、一般に曝気によって除去できる。Carbon dioxide gas can generally be removed by aeration.

したがって、アルカリ性物質の供給量は基本的には析出
するスケール及び生成する有機酸のアルカリ当量に比例
させればよい。
Therefore, the amount of alkaline substance supplied may basically be made proportional to the scale to be precipitated and the alkali equivalent of the organic acid to be produced.

活魚貝類に対して実験的に求めた結果では、水酸化ナト
リウム換算で活魚貝類1kgあたり0.001〜o.t
(g/時)ほど供給すれば良い。
According to experimental results obtained for live fish and shellfish, the sodium hydroxide concentration ranges from 0.001 to 0.001 to 1 kg of live fish and shellfish. t
(g/hour) should be supplied.

アルカリ性物質としては、水酸化ナトリウム、水酸化カ
ルシウム緩衝液などを水溶液として、又、マグネシア、
水酸化マグネシウムなどを固形状で用いることができる
Examples of alkaline substances include sodium hydroxide, calcium hydroxide buffer, etc. as an aqueous solution, magnesia,
Magnesium hydroxide or the like can be used in solid form.

水に難溶性の水酸化マグネシウム、マグネシア、水酸化
カルシウムなどは塔に充填し、通過水に少しずつ溶解さ
せたり、網状の袋に詰めて水槽に入れたりして用いるこ
とができる。
Magnesium hydroxide, magnesia, calcium hydroxide, etc., which are sparingly soluble in water, can be used by filling a tower and dissolving them little by little in the passing water, or by packing them into a mesh bag and placing them in an aquarium.

アルカリ性物質の供給は、連続的に行なうこともできる
し、又、定期的に注入したり、投入したりすることもで
きる。
The alkaline substance can be supplied continuously, or can be periodically injected or added.

さらにこのアルカリ性物質は、収容水のpHを測定し、
これを所定の値に維持するように供給量のコントロール
を行なうことは好ましい。
Furthermore, this alkaline substance measures the pH of the contained water,
It is preferable to control the supply amount so as to maintain this at a predetermined value.

本発明で、活性炭を用いることの理由は、第1に、毒性
の高いアンモニアを含んだ収容水を処理する場合、アン
モニアと次亜塩素酸ソーダとの反応だけではアンモニア
を完全に分解するのに長時間を要し、未反応のアンモニ
アを含有したまま循環するような条件下であると、徐々
にアンモニア及び次亜塩素酸ソーダが蓄積して行き、遂
にはアンモニアをほとんど分解できなくなる。
The reason why activated carbon is used in the present invention is that, first, when treating water containing highly toxic ammonia, the reaction between ammonia and sodium hypochlorite alone cannot completely decompose the ammonia. If a long period of time is required and conditions are such that unreacted ammonia is circulated, ammonia and sodium hypochlorite will gradually accumulate, until it becomes almost impossible to decompose ammonia.

しかるに活性炭を触媒として用いると、このアンモニア
と次亜塩素酸ソーダとの反応を瞬時にして完結できアン
モニアをほとんどOppmにまで分解することが可能と
なるからである。
However, when activated carbon is used as a catalyst, the reaction between ammonia and sodium hypochlorite can be completed instantaneously, making it possible to decompose ammonia to almost Oppm.

第2に、魚種にもよるが通常致死濃度が0.01〜ip
pm程度の非常に高い毒性をもった次亜塩素酸ソーダを
本発明で用いる活性炭が完全に、しかも、中性、無毒な
食塩に分解でき、かつそれを再利用できるというすぐれ
た特徴を持っているからである。
Second, depending on the fish species, the lethal concentration is usually 0.01 to ip.
The activated carbon used in the present invention has the excellent feature of completely decomposing sodium hypochlorite, which has a very high toxicity of about pm, into neutral, non-toxic table salt, and that it can be reused. Because there is.

第3に、老廃物及び腐敗物と次亜塩素酸ソーダとの反応
の際に副生成するクロラミン及び有機塩化物などの有害
物質をも、この活性炭が同時に除去するからである。
Thirdly, this activated carbon simultaneously removes harmful substances such as chloramines and organic chlorides that are by-produced during the reaction of waste and putrefactive substances with sodium hypochlorite.

本発明で使用する活性炭としては、木材、鋸屑、木材乾
留物、木炭、ヤシ殼などの果実殼、及び同炭化物、リグ
ニン、パルプ、バガス、廃糖密等の植物系原料で作られ
るものと、泥炭、亜炭、草炭、瀝青炭、石炭コークス、
石油コークス、ピッチ、タールなどの鉱物系原科、及び
合成高分子原料で作られるものいずれも用いられる。
Activated carbon used in the present invention includes those made from wood, sawdust, wood carbonization, charcoal, fruit shells such as coconut shells, and vegetable materials such as charcoal, lignin, pulp, bagasse, and waste molasses; Peat, lignite, grass coal, bituminous coal, coal coke,
Mineral raw materials such as petroleum coke, pitch, and tar, and those made from synthetic polymer raw materials are all used.

活性炭は、いわゆる吸着剤として汎用される粉末活性炭
、粒状活性炭(30メッシュ以上)、ペレット状活性炭
、破砕炭のいずれでも使用することができるが、粒状活
性炭を使用するのが設計上有利である。
The activated carbon can be any of powdered activated carbon, granular activated carbon (30 mesh or more), pelleted activated carbon, and crushed carbon, which are commonly used as adsorbents, but it is advantageous in terms of design to use granular activated carbon.

活性炭の使用量は、基本的には活魚貝類の収容量、及び
次亜塩素酸ソーダの分解能力と、使用期間を考慮した上
で決める。
The amount of activated carbon to be used is basically determined by considering the capacity of live fish and shellfish, the ability to decompose sodium hypochlorite, and the period of use.

又、実際に活性炭を充填して汚水を処理する時に、活性
炭層の設計は、老廃物及び腐敗物の分解率が最犬になる
ように、酸化剤が完全に分解されるように、又使用期間
を考えた上で個々の水産動物に対して実験的に決める。
In addition, when actually filling activated carbon to treat wastewater, the activated carbon layer is designed so that the decomposition rate of waste and putrefactive substances is the best, and the oxidizing agent is completely decomposed. It is decided experimentally for each aquatic animal after considering the period.

われわれの実験では、アワビを10℃で保存する場合に
は、貝量(k9)の約1/20(1トンのアワビに対し
て50kg程度)、10℃のアカガイに対して約1/1
0,15℃のマダイに対して約1/10,5℃の鯉に対
して約1/7の活性炭を用いて半年以上十分使用に耐え
られることがわかった。
In our experiments, when storing abalone at 10°C, approximately 1/20 of the amount of shellfish (k9) (about 50 kg for 1 ton of abalone), and approximately 1/1 of the amount of shellfish stored at 10°C.
It has been found that using activated carbon that is approximately 1/10th of the amount for red sea bream at 0.15°C and approximately 1/7th of the amount for carp at 5°C, it can be used for more than half a year.

特に清浄な収容水を好む鱒等の魚類を除けば、通常、魚
量500トンあたりまでは海水を1000m3用い、処
理流量を1000m3/hr程度とした場合、活性炭を
10m3程度用いることによって、収容水のアンモニア
などの水溶性含窒素化合物濃度を天然水のそれと同程度
に約60日維持することができるので、活魚貝類を好体
調に保存できる。
Except for fish such as trout, which particularly prefer clean stored water, normally 1000 m3 of seawater is used for up to 500 tons of fish, and if the treatment flow rate is about 1000 m3/hr, then about 10 m3 of activated carbon is used to reduce the stored water. Since the concentration of water-soluble nitrogen-containing compounds such as ammonia can be maintained at the same level as that of natural water for about 60 days, live fish and shellfish can be stored in good condition.

又、好都合なことには、アンモニアのような有毒物を分
解するための活性炭の量はわずかの量で足り、この場合
多少酸化剤の量を多くしても、活性炭層から出てくる残
留酸化剤を数ppmのオーダーでほぼ一定に設定できる
ことがわかった。
Also, advantageously, only a small amount of activated carbon is required to decompose toxic substances such as ammonia, and in this case, even if the amount of oxidizing agent is slightly increased, the residual oxidation that comes out from the activated carbon layer will be reduced. It has been found that the amount of the agent can be set almost constant on the order of several ppm.

このことは残留酸化剤濃度を設定し、これを定量の還元
剤を添加して還元するという容易、かつ確実な処理水の
無毒化を可能にした。
This makes it possible to easily and reliably detoxify treated water by setting the residual oxidizing agent concentration and reducing it by adding a fixed amount of reducing agent.

この場合、酸化剤の使用に当っては活性炭層を出る水に
残留する酸化剤の濃度が活魚貝類の収容期間中、多くと
も数ppm以下、好ましくはlppm前後以下になるよ
うに設定するのが安全である。
In this case, when using an oxidizing agent, the concentration of the oxidizing agent remaining in the water leaving the activated carbon layer should be set at most several ppm or less, preferably around lppm or less, during the storage period for live fish and shellfish. It's safe.

又、魚種にもよるが、有毒有害物質を安全にまで処理し
なくても良いときには、残留酸化剤の大部分をまず還元
剤で還元し、残りを活性炭で分解する方法を用いても良
い。
Also, depending on the species of fish, if toxic and harmful substances do not need to be treated safely, a method may be used in which most of the residual oxidizing agent is first reduced with a reducing agent, and the rest is decomposed with activated carbon. .

還元剤は、活魚貝類にとって実質的に無害の物質なら如
何なる還元剤を使用してもよいが、低温度範囲域におい
て、迅速かつ定量的に次亜塩素酸ソーダと反応する水溶
性の還元剤であるべきである。
Any reducing agent may be used as long as it is substantially harmless to live fish and shellfish, but it should be a water-soluble reducing agent that reacts quickly and quantitatively with sodium hypochlorite in a low temperature range. It should be.

好適例としては、チオ硫酸塩があげられるが、他に過酸
化水素も使うことができる。
A suitable example is thiosulfate, but hydrogen peroxide can also be used.

還元剤の添加量は、活性炭層を出た処理水の次亜塩素酸
ソーダ濃度の1〜3倍当量とすれば良いが、大過剰の還
元剤は循環して再び活性炭層に導入されるのであるから
、活性炭層までに含まれる次亜塩素酸ソーダの酸化力を
相殺してしまうような量の添加は避けるべきである。
The amount of reducing agent added may be 1 to 3 times equivalent to the concentration of sodium hypochlorite in the treated water leaving the activated carbon layer, but a large excess of reducing agent will be circulated and reintroduced into the activated carbon layer. Therefore, it is necessary to avoid adding an amount that would cancel out the oxidizing power of the sodium hypochlorite contained up to the activated carbon layer.

又、以上の本発明の基本的力法に加えて、必要に応じ適
時、例えば、水産動物を高密度に収容した場合などの収
容水への酸素導入及び炭酸ガス駆逐のための曝気手段、
収容水の温度を調整するための温調手段を付加すること
が望ましい。
In addition to the above-mentioned basic force method of the present invention, an aeration means for introducing oxygen into the housed water and expelling carbon dioxide gas when necessary and timely, for example, when aquatic animals are housed at a high density,
It is desirable to add a temperature control means for adjusting the temperature of the stored water.

又、イワシなど新陳代謝が激しく、かつ水質変動に対し
て鋭敏な魚に対しては、曝気手段、温調手段の他に収容
水の一部を清浄な外部水と交換するような換水法を付加
することが望ましい。
In addition, for fish such as sardines that have a rapid metabolism and are sensitive to changes in water quality, in addition to aeration and temperature control methods, a water exchange method that replaces a portion of the stored water with clean external water is added. It is desirable to do so.

曝気は、収容槽内あるいは循環途上の収容水と空気又は
酸素と接触させることにより行なう。
Aeration is performed by bringing the stored water in the storage tank or in the process of circulation into contact with air or oxygen.

接触方法は任意であるが、吹込み法、シャワー曝気法、
送気法が最も一般的なものである。
The contact method is arbitrary, but blowing method, shower aeration method,
Insufflation is the most common method.

曝気の場所は水槽内あるいは循環処理ラインの任意の場
所とすることができる。
The aeration location can be within the water tank or at any location in the circulation treatment line.

曝気は1つの方法で行なっても良いし、各々の目的に合
った別の方法を組み合わせて行なっても良い。
Aeration may be carried out by one method, or may be carried out by combining different methods suitable for each purpose.

本発明にとって好ましい方法は、水槽内の生存環境を均
質に保つために水槽内から収容水を連続的に水槽外の曝
気装置にポンプで送り、循環させる方法である。
A preferred method for the present invention is to continuously pump and circulate stored water from inside the tank to an aeration device outside the tank in order to maintain a homogeneous living environment within the tank.

この場合の循環水の量は水槽内の活魚貝類の種類、収容
密度によって最適の条件に設定すべきものであるが、収
容活魚貝類1k9.1時間当たり2乃至1000l、よ
り好ましくは10乃至400l程度である。
In this case, the amount of circulating water should be set to the optimum condition depending on the type of live fish and shellfish in the aquarium and the storage density, but it should be 2 to 1000 liters, more preferably about 10 to 400 liters, per hour of stored live fish and shellfish. be.

収容水の温度は、活魚貝類の生存可能な低温度範囲域に
維持することが望ましい。
It is desirable to maintain the temperature of the stored water within a low temperature range where live fish and shellfish can survive.

低温度範囲域収容は水産動物の新陳代謝を抑え、水産動
物の体力消耗を減少させると共に体謝活動に基づく***
物、分泌物による有毒物質の生成を低レベルに保つ効果
がある。
Housing in a low temperature range has the effect of suppressing the metabolism of aquatic animals, reducing physical exhaustion of aquatic animals, and keeping the production of toxic substances from excreta and secretions based on metabolic activity at a low level.

収容水の循環系路内及び/又は取水系路内に冷凍機など
を挿入してこの目的を達することができる。
This purpose can be achieved by inserting a refrigerator or the like into the stored water circulation system and/or the water intake system.

低温度範囲域は活魚貝類の種類、生育段階等によって異
なるのは当然であるから、収容対象魚種毎に選ばれるべ
きである。
It goes without saying that the low temperature range varies depending on the type of live fish and shellfish, growth stage, etc., so it should be selected for each species of fish to be accommodated.

例えば、カタクチイワシでは12〜20℃、マダイでは
7〜20℃、コイ成魚では2〜10℃、アワビでは5〜
13℃、アカガイでは2〜18℃を中心とする均等な範
囲を言う。
For example, anchovy is 12-20℃, red sea bream is 7-20℃, adult carp is 2-10℃, and abalone is 5-20℃.
13 degrees Celsius, and for red clams it means an even range centered around 2 to 18 degrees Celsius.

換水は、水産動物に由来する水中浮遊固形物などの不溶
物、水溶性有害物質、これら有害物質の化学処理に伴う
分解生成物を、収容系外に運び出すのに効果がある。
Water replacement is effective in transporting insoluble substances such as suspended solids derived from aquatic animals, water-soluble harmful substances, and decomposition products resulting from chemical treatment of these harmful substances out of the containment system.

換水率は通常の使用では、犬体1/100以上は行なう
のが望まし<、1/5程度をこれることは多くの場合必
要でない。
In normal use, it is desirable that the water exchange rate be 1/100 or more of the dog's body weight, and it is not necessary in many cases to be less than 1/5 of the dog's body weight.

ここで換水率とは1時間当りに系に対し外部より注入す
る水量の収容水容積に対する割合を言う。
Here, the water exchange rate refers to the ratio of the amount of water injected into the system from the outside per hour to the capacity of the system.

なお、換水は同じ割合で連続的に行なってもよいし、周
期が換水の目的を逸脱する程長くない限りにおいて間欠
的に行なっても差支えない。
Note that water exchange may be performed continuously at the same rate, or may be performed intermittently as long as the period is not so long as to deviate from the purpose of water exchange.

収容容量にもよるが、冷却能力、循環再生処理能力を最
大限に活用できる範囲で換水集件を選定する必要があろ
う。
Although it depends on the storage capacity, it is necessary to select a water exchange facility within the range that allows maximum use of cooling capacity and circulation regeneration processing capacity.

換水の具体的方法は、設備のバリエーションに応じて適
宜慣例の既知力法を採用することができる。
As a specific method for water exchange, a conventional known force method can be adopted as appropriate depending on the variation of the equipment.

本発明の方法は、基本的に水産動物を収容する収容槽1
、活性炭塔2、電解槽3a,直流電流供給部3b,アル
カリ性物質供給千段4、還元剤供給手段5と、又、必要
に応じて上記装置に電解液リサイクル槽3c,電解液ス
トック槽3d1水素ガス脱気手段、戸過手段、曝気千段
6、冷却千段7、換水手段を付加し、本発明の趣旨に従
って配置した1又は複数の収容水循環系路から構成され
る装置を用いて実施することができる。
The method of the present invention basically consists of a housing tank 1 for housing aquatic animals;
, an activated carbon tower 2, an electrolytic cell 3a, a DC current supply section 3b, an alkaline material supply stage 4, a reducing agent supply means 5, and, if necessary, an electrolyte recycling tank 3c, an electrolyte stock tank 3d1 and hydrogen. It is carried out using a device that includes gas degassing means, door passing means, aeration stages 6, cooling stages 7, and water exchange means, and is composed of one or more contained water circulation system lines arranged according to the spirit of the present invention. be able to.

第1図A−Gは、これら要素手段の5つの基本的な結合
配置態様の各種の具体例の説明図である。
FIGS. 1A to 1G are illustrations of various examples of five basic combination arrangements of these element means.

図中P1〜P1oはポンプである。In the figure, P1 to P1o are pumps.

第1図Aは、活性炭塔2を通過する収容水の全量を電解
槽3aに供給することを特徴とする。
FIG. 1A is characterized in that the entire amount of stored water passing through the activated carbon tower 2 is supplied to the electrolytic cell 3a.

第1図B,Cは、活性炭塔2に行く水の一部を電解槽3
aに供給する。
Figure 1 B and C show that part of the water going to the activated carbon tower 2 is transferred to the electrolytic tank 3.
supply to a.

第1図D,E,F,Gは、電解液の少なくとも一部ヲリ
サイクルすることにより濃縮した電解液を供給できる。
1D, E, F, and G can supply a concentrated electrolyte by recycling at least a portion of the electrolyte.

又、第1図Eは、新水を電解槽3aに供給する例である
Further, FIG. 1E shows an example in which fresh water is supplied to the electrolytic cell 3a.

第1図F.Gは換水手段を付加したことが特徴である。Figure 1 F. G is characterized by the addition of water exchange means.

アルカリ性物質供給手段4は、第1図にみられるように
、本発明の主旨が達成される限りにおいて収容水の水路
系、あるいは直接収容槽に設けることができる。
As shown in FIG. 1, the alkaline substance supply means 4 can be provided in the water conduit system of the stored water or directly in the storage tank as long as the gist of the present invention is achieved.

還元剤供給手段5は、活性炭を十分に使ったときには必
ずしも必要でない。
The reducing agent supply means 5 is not necessarily required when activated carbon is used sufficiently.

還元剤を添加する場所は用途に応じて活性炭塔以後でも
よいし、第1図Bのように手前でもよい。
Depending on the application, the reducing agent may be added after the activated carbon tower or before the activated carbon tower as shown in FIG. 1B.

活性炭塔に収容水を通ずる時の流し方は、下向流上向流
のいずれでも良く、適時、都合の良い流し方をすれば良
い。
When passing the stored water through the activated carbon tower, the flow may be either downward flow or upward flow, and any convenient flow method may be used at the appropriate time.

一例さして第1図Gの方法を用いた時、収容槽1内の収
容水は循環ポンプP2により、活性炭塔2に送られ、又
、新水が定量ポンプP4により、電解槽3aに供給され
、電解槽に直流電流供給装置3bから直流電流が送られ
て次亜塩素酸ソーダ溶液となり、定量ボンプP,により
、電解槽と電解液リサイクル槽3cを循環して、濃縮次
亜塩素酸ソーダ溶液となり、定量ポンプP6により、活
性炭塔2に送られ、活性炭塔2を出た所に、還元剤貯蔵
槽5により還元剤が定量ボンブP8により供給され、収
容槽1に戻る。
For example, when the method shown in FIG. 1G is used, the stored water in the storage tank 1 is sent to the activated carbon tower 2 by the circulation pump P2, and fresh water is supplied to the electrolytic tank 3a by the metering pump P4, A DC current is sent to the electrolytic cell from the DC current supply device 3b to form a sodium hypochlorite solution, which is circulated through the electrolytic cell and the electrolyte recycling tank 3c by a metering pump P, and becomes a concentrated sodium hypochlorite solution. The reducing agent is sent to the activated carbon tower 2 by the metering pump P6, and after leaving the activated carbon tower 2, the reducing agent is supplied by the metering bomb P8 from the reducing agent storage tank 5, and then returned to the storage tank 1.

一方、収容水は冷凍機7を通って収容槽に戻る。On the other hand, the stored water passes through the refrigerator 7 and returns to the storage tank.

清浄な新水は給水ポンプP,により曝気槽の手前の系路
に供給され、曝気槽を経て収容槽に入る。
Clean fresh water is supplied to the system in front of the aeration tank by a water supply pump P, and enters the storage tank via the aeration tank.

収容水の一部は排水ポンプPIOにより糸外に排水され
る。
A portion of the stored water is drained out of the thread by the drain pump PIO.

電解槽の極板吉しては、電解の際に溶出しない材料が望
ましい。
For the electrode plates of the electrolytic cell, it is desirable to use a material that does not dissolve during electrolysis.

例えば、陽極に白金、チタンに白金層を重ねたもの、陰
極にはヂクン、ステンレス鋼、鉄などを用いればよい。
For example, the anode may be made of platinum, titanium layered with a platinum layer, and the cathode may be made of metal, stainless steel, iron, or the like.

本発明に適用できる水産動物は、マダイ、イシダイ、ク
ロダイ、ヒラアジ、スズキ、ボラ、ハマチ、カンパチ、
トラフグ、カタクチイワシ、マイワシ、ヒラメ、マガレ
イ、マコガレイ、ハモ、アナゴ、カツオ、サンマ、ブリ
、サケ、マスなどの海産魚類、クルマエビ、クマエビ、
シバエビ、ホッカイエビ、モエビ、イセエビ、シャコ、
ケガニ、タラバガニ、ズワイガニ、ガザミ、コマセアミ
、;ニホンアミなどの海産節足動物、マガキ、ホタテガ
イ、アカガイ、ハマグリ、アサリ、ミルガイ、タイラギ
、トリガイ、メガイ、クロアワビ、エゾアワビ、トコブ
シ、サザエ、アカニシなどの海産貝類、マダコ、イカな
どの軟体動物、ウニ、ナマコなどの隷皮動物、ゴカイ、
イワムシなどの環形動物、モクヨクカイメン、ウマ力イ
メンなどの海綿動物、ビゼンクラゲ、ユウレイクラゲ、
シロサンゴ、アカサンゴ、モモイロサンゴなどの腔腸動
物、マボヤなどの原素動物、ベニマス、ニジマス、アユ
、ドジョウ、フナ、コイ、ウナギ、テラピアなどの淡水
魚類、シジミ、カワシンジュガイなどの淡水貝類、グッ
ピー、ワグプラテイ、レースエンゼル、ネオンテトラ、
ニシキゴイ、メダカ、キンギョなどの観賞用魚類などを
例示することかでテきる。
Aquatic animals that can be applied to the present invention include red sea bream, rock bream, black porgy, trevally, perch, mullet, yellowtail, amberjack,
Marine fish such as tiger puffer, anchovy, sardine, flounder, flounder, flathead flounder, conger conger, conger eel, bonito, saury, yellowtail, salmon, and trout;
Shiba shrimp, Hokkai shrimp, Moe shrimp, spiny shrimp, giant shrimp,
Marine arthropods such as red crab, red king crab, snow crab, sea bream, Japanese sea bream, marine molluscs such as Japanese oyster, scallop, red clam, clam, clam, snail, Japanese snail, black abalone, Japanese abalone, tokobushi, turban shell, red crab, etc. , molluscs such as octopus and squid, slagworms such as sea urchins and sea cucumbers, lugworms,
Annelids such as rotifers, sponges such as snail sponge and porcupine sponge, Bizen jellyfish, Yurei jellyfish,
Coelenterates such as white coral, red coral, and white coral, primitive animals such as maboya, freshwater fish such as sockeye trout, rainbow trout, sweetfish, loach, crucian carp, carp, eel, and tilapia, freshwater molluscs such as corbicula and snail, and guppies. , Wag Platy, Lace Angel, Neon Tetra,
Examples include ornamental fish such as Japanese carp, killifish, and goldfish.

又、本発明は、活魚船輸送とか、沿岸での蓄養に際し、
従来の換水法と容易に組み合わせることができ、そのこ
とにより技術の適用を広範囲に拡げることができる。
In addition, the present invention can be used for transporting live fish by boat or for farming on the coast.
It can be easily combined with conventional water exchange methods, thereby widening the application of the technology.

次の実施例において、水質の分析は以下の方法で行なっ
た。
In the following examples, water quality was analyzed by the following method.

実施例1−(1) 第1図Aの要素手段を用いて実験した。Example 1-(1) An experiment was conducted using the element means shown in FIG. 1A.

水槽1に天然海水(pH8.35、塩濃度3.41%)
をi.om3入れ、伊豆産クロアワビ(平均重量250
g/1個)を1トンほどプラスチック製の籠に20kg
ずつ小分けにして入れ、水槽に収容し、曝気、冷却し、
本発明の方法を用いて保存した。
Natural seawater in tank 1 (pH 8.35, salt concentration 3.41%)
i. om3, Izu black abalone (average weight 250
20 kg of 1 ton of 1 piece) in a plastic basket.
They are divided into small portions, placed in a water tank, aerated and cooled,
Preserved using the method of the invention.

曝気は循環水配管の部分に空気導入エジエクターを設け
、循環水量5m3/hrに対し空気を5m3/hr自吸
して行なった。
Aeration was carried out by installing an air introduction ejector in the circulating water piping and self-suctioning air at 5 m3/hr for the circulating water amount of 5 m3/hr.

冷凍機7には、プレート式熱交換機を用いた。For the refrigerator 7, a plate heat exchanger was used.

電解槽3aは、円筒形の二重管構造であり、陽極には白
金メッキのチタン管、陰極にはチタン管を用い、極間距
離を5朋とした。
The electrolytic cell 3a had a cylindrical double tube structure, using a platinum-plated titanium tube as the anode and a titanium tube as the cathode, with a distance between the electrodes of 5 mm.

又、実施例1−(2)として、活性炭の減量と還元剤の
供給を行ない、その他の条件を実施例1−(1)と同一
にした実験、実施例1−(3)として、第1図Bの装置
を用いて収容水と酸化剤との反応を10分間行なった後
に還元剤を注入し、そのあと活性炭処理を行なった実験
、比較例1−(1)として、実施例1−(1)における
マグネシアを使わなかった実験、比較例1−(2)とし
て、実施例1−(2)における活性炭を用いなかった実
験、比較例1−(3)として、本発明を用いないで、全
換水法を用いた実験を行なった。
Further, as Example 1-(2), an experiment was conducted in which the amount of activated carbon was reduced and a reducing agent was supplied, and other conditions were the same as in Example 1-(1), and as Example 1-(3), the first Example 1-( An experiment in which magnesia was not used in 1), an experiment in which activated carbon was not used in Example 1-(2) as Comparative Example 1-(2), and an experiment in which the present invention was not used as Comparative Example 1-(3). An experiment was conducted using the total water exchange method.

実験条件及び結果を表−1に示した。The experimental conditions and results are shown in Table-1.

実施例1−(1),1−(2),1−(3)の生き残り
のアワビはすべて活きが良かったのに比べ、比較例1一
(1)は著しいpH低下のため、比較例1−(2)は酸
化剤の蓄積のために生き残りのアワビの活きが低下して
いた。
Compared to the surviving abalones of Examples 1-(1), 1-(2), and 1-(3), which were all alive and well, the pH of Comparative Example 1-(1) was significantly lower. - (2) The survival of the surviving abalone was reduced due to the accumulation of oxidizing agents.

実施例2−(1) 第1図Dの装置を用いて実験した。Example 2-(1) The experiment was conducted using the apparatus shown in FIG. 1D.

水槽1(容積15m3、深さ2m.縦3m、横2.5m
)に天然海水(PH8.35、塩濃度3.41%)を1
0m3入れ、活きの良い仙台産アカガイ(平均重量70
g)を5トン、多孔性プラスチック製の籠に10kgず
つ小分けにして入れ、水槽に収容し、水温を10℃に維
持し、本発明の方法を用いて収容実験を行なった。
Water tank 1 (volume 15m3, depth 2m, length 3m, width 2.5m
) and natural seawater (PH 8.35, salt concentration 3.41%).
0m3 filled with lively red clams from Sendai (average weight 70
5 tons of g) were divided into 10 kg portions into porous plastic baskets, housed in a water tank, and the water temperature was maintained at 10° C., and a housing experiment was conducted using the method of the present invention.

曝気槽6には収容水を毎時60m3流し、冷凍機7には
毎時8d流した。
The stored water was allowed to flow at 60 m3/hour into the aeration tank 6, and at 8 d/hour into the refrigerator 7.

又実施例2−(2)として、活性炭の減量と還元剤供給
を行なった実験、比較例2−(1)として、実施例2一
(1)における活性炭を用いないで、かつ、40%一N
aOHの供給をしないで行なった実験、参考例2−(2
)として、電解槽の代わりに、酸化剤貯蔵槽(容積1m
3,1カ月分の市販次亜塩素酸ソーダ(濃度17wt%
,pH12.7、比重1.22)を820l、重量にし
て1トンストックしている。
Further, as Example 2-(2), an experiment was conducted in which activated carbon was reduced and reducing agent was supplied, and as Comparative Example 2-(1), the activated carbon in Example 2-(1) was not used, and 40% N
Experiment conducted without supplying aOH, Reference Example 2-(2
), an oxidizer storage tank (volume 1 m
3.1 month's worth of commercially available sodium hypochlorite (concentration 17 wt%)
, pH 12.7, specific gravity 1.22) in stock at 820 liters, which weighs 1 ton.

〕から酸化剤の薬液注入を行なった実験、比較例2−3
として、本発明を用いないで全換水法による実験を行な
った。
], Comparative Example 2-3
As such, an experiment was conducted using the total water exchange method without using the present invention.

電解槽は、陽極にチタン一白金メッキ平板、陰極にチタ
ン平板とから構成される縦長平板式であり、電解装置一
式の容量は約200l,重量は150kg程度であった
The electrolytic cell was a vertically long plate type consisting of a titanium-platinum plated plate as an anode and a titanium plate as a cathode, and the capacity of the electrolytic apparatus set was about 200 liters and the weight was about 150 kg.

実験条件及び結果を以下の表−2に示した。The experimental conditions and results are shown in Table 2 below.

比較例2−(1)において、生き残りの貝のほとんどに
弱りがみられた。
In Comparative Example 2-(1), most of the surviving shellfish were found to be weakened.

上記実施例及び比較例の結果から本発明の方法により、
コンパクト、軽量な設備で、収容水の水質を一段と天然
水に近い状態に維持でき、アカガイを高生存率で保存で
きることを実証できた。
From the results of the above examples and comparative examples, by the method of the present invention,
Using compact, lightweight equipment, we were able to maintain the water quality of the stored water in a state closer to that of natural water, and were able to demonstrate that red clams could be preserved with a high survival rate.

実施例3 第1図Cの装置を用いて実1験した。Example 3 An experiment was conducted using the apparatus shown in FIG. 1C.

天然井戸水(pH7.65)に食塩を約6kg溶かして
塩濃度を1.5%に調整した水を400lほと収容槽(
縦65crrL1横65cIrL,深さ120cfrt
)に入れ、活きの良い鯉(平均重量65g)を100k
g収容し、曝気流量を4m3/hr,空気自吸量を2m
3/hr,冷却機を流れる流量を1001/hrとし、
水温を約10℃に維持し本発明の方法を用いて保存した
Approximately 400 liters of water was prepared by dissolving approximately 6 kg of table salt in natural well water (pH 7.65) and adjusting the salt concentration to 1.5% in a storage tank (
Length: 65 crrL, Width: 65 cIrL, Depth: 120 cfrt
) and put 100k of live carp (average weight 65g) into
g, the aeration flow rate is 4m3/hr, and the air self-priming amount is 2m.
3/hr, the flow rate through the cooler is 1001/hr,
The water temperature was maintained at approximately 10° C. and stored using the method of the present invention.

又、比較例3−1として、本発明の方法を用いないで、
天然井戸水を用いた全換水法により保存した。
Also, as Comparative Example 3-1, without using the method of the present invention,
It was preserved by a total water exchange method using natural well water.

実験条件及び結果を以下の表−3に示した。The experimental conditions and results are shown in Table 3 below.

結果より低塩分濃度の収容水を用いても高生存率で生か
すことができることを実証できた。
The results demonstrate that it is possible to maintain a high survival rate even when using stored water with low salinity.

実施例4 第1図Cの装置を用いて実験した。Example 4 The experiment was conducted using the apparatus shown in FIG. 1C.

天然海水(pH 8、35、塩濃度3.41%)を約6
m゜ほど収容槽1(容積6.4m3)に入れ、活きの良
い伊豆産養殖マダイ(平均重量1.2kg)を12尾入
りのプラスチックス製の籠に収容し、1400ゆほど収
容し、曝気、冷却、本発明の方法を用いて保存した。
Natural seawater (pH 8.35, salt concentration 3.41%) about 6
A plastic cage containing 12 live Izu-produced red sea bream (average weight 1.2 kg) was placed in a storage tank 1 (volume 6.4 m3) about 1,400 m°, and then aerated. , cooled and stored using the method of the invention.

曝気は循環水配管の部分に空気導入エジエクターを設け
、循環水を60m/hr流し、空気を20m/hr自吸
して行なった。
Aeration was carried out by installing an air introduction ejector in the circulating water piping, flowing circulating water at 60 m/hr, and self-priming air at 20 m/hr.

冷凍機7にはチューブラ一式熱交換器を用い、収容水を
6m/hr流した。
A tubular heat exchanger was used for the refrigerator 7, and the stored water was allowed to flow at 6 m/hr.

電解装置は実施例2と同じものを用いた。The same electrolyzer as in Example 2 was used.

又、比較例4−1として、実施例4におけるアルカリ供
給を行なわなかった実験、比較例4−2として、本発明
の方法を用いないで、全換水法による実験を行なった。
Furthermore, as Comparative Example 4-1, an experiment was conducted in which the alkali supply was not performed as in Example 4, and as Comparative Example 4-2, an experiment was conducted using the total water exchange method without using the method of the present invention.

実験条件及び結果を表−4に示した。The experimental conditions and results are shown in Table 4.

比較例4−1においてpHの著しい低下がみられ、生き
残りのマダイの活きが悪かったのに比べ、実施例4は生
存率が高く活きがすべて良かった。
In Comparative Example 4-1, a significant decrease in pH was observed and the survival of the surviving red sea bream was poor, whereas in Example 4, the survival rate was high and all the survival was good.

実施例5 第1図Gで示される装置を船上に設置し実験した。Example 5 The equipment shown in Figure 1G was installed on board the ship and tested.

天然海水(pH8.35)を約20m3ほど収容槽(深
さ2.90m,縦2.65m,横2.65m)に入れ、
活きの良い伊豆産カタクチイワシ(平均重量7.59)
を4.00kgほど入れ、曝気、冷却、部分換水し本発
明の方法を用いて保存した。
Approximately 20 m3 of natural seawater (pH 8.35) was placed in a storage tank (depth 2.90 m, length 2.65 m, width 2.65 m).
Lively anchovies from Izu (average weight 7.59)
Approximately 4.00 kg of water was put into the container, and the container was aerated, cooled, partially replaced with water, and stored using the method of the present invention.

曝気は、曝気槽6の手前の配管に空気エジエクターを設
け、循環水を40m3/hr流し、空気を30m3/h
r自吸して行ない、冷凍機7には収容水を10m/hr
流した。
For aeration, an air ejector is installed in the piping in front of the aeration tank 6, circulating water flows at a rate of 40m3/hr, and air flows at a rate of 30m3/hr.
r It is self-primed, and the stored water is pumped into the refrigerator 7 at a rate of 10 m/hr.
It flowed.

換水量は1m3/hrとし、そのうち曝気槽6に750
l/hr,電解液リサイクルタンク3cに2501/h
r供給した。
The water exchange rate is 1 m3/hr, of which 750 is added to the aeration tank 6.
l/hr, 2501/hr to electrolyte recycling tank 3c
r supplied.

電解槽(容積約10l)は円筒式を用い、電解液リサイ
クル槽3C(容積50l)の間で電解液を循環させて濃
度を480ppm近辺に維持した。
A cylindrical electrolytic cell (capacity: about 10 liters) was used, and the electrolytic solution was circulated between electrolytic solution recycling tanks 3C (volume: 50 liters) to maintain the concentration around 480 ppm.

電解装置一式の容積は300l程度であった。The volume of the electrolyzer set was approximately 300 liters.

なお、各送水ポンプの前に20メッシュの金網より成る
ストレーナーを設置し、死亡イワシ、残餌などを定期的
に除去し、イワシの餌の投餌及び水中ポンプによる死魚
、残餌の取出しを定期的に行なった。
In addition, a strainer made of a 20-mesh wire mesh is installed in front of each water pump, and dead sardines and leftover bait are removed regularly. It was done regularly.

又、比較例5−1として実施例5におけるアルカリ供給
を行なわなかった実験、比較例5−2として実施例5に
おける活性炭を用いず、代わりに未反応の酸化剤を還元
剤の注入の手前に設置したORP計により検知し、酸化
剤の生成量をフィードバックコントロールする方式を用
いた実験を行なった。
In addition, Comparative Example 5-1 was an experiment in which the alkali supply was not performed in Example 5, and Comparative Example 5-2 was an experiment in which activated carbon was not used in Example 5, and instead, unreacted oxidizing agent was added before the reducing agent was injected. An experiment was conducted using a system in which the amount of oxidizing agent produced was controlled by feedback using an installed ORP meter.

実験条件及び結果を表−5に示した。The experimental conditions and results are shown in Table-5.

上記実施例及び比較例の結果から本発明の方法により、
コンパクト、軽量な設備で、収容水の水質を一段と天然
水に近い状態に維持でき、イワシを高生存率で保存でき
ることを実証できた。
From the results of the above examples and comparative examples, by the method of the present invention,
Using compact, lightweight equipment, we were able to maintain the quality of stored water closer to that of natural water, demonstrating that sardines can be preserved with a high survival rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Gは本発明の保存装置の数例を示したもので
ある。 図において、1・・・水産動物の収容槽、2・・・活性
炭塔、3a・・・電解槽、3b・・・直流電流供給部、
3C・・・電解液リサイクル槽、3d・・・電解液スト
ック槽、4・・・アルカリ性物質供給手段、5・・・還
元剤供給手段、6・・・曝気手段、T・・・冷却手段、
P1〜PIO・・・ポンプ。
1A to 1G illustrate several examples of storage devices of the present invention. In the figure, 1... Aquatic animal housing tank, 2... Activated carbon tower, 3a... Electrolytic tank, 3b... DC current supply unit,
3C... Electrolyte recycling tank, 3d... Electrolyte stock tank, 4... Alkaline substance supply means, 5... Reducing agent supply means, 6... Aeration means, T... Cooling means,
P1~PIO...Pump.

Claims (1)

【特許請求の範囲】 1 収容槽の収容水を循環再生系路によって循環再生し
ながら、生きた水産動物を収容槽で保存ずる方法におい
て、塩水を電気分解して次亜塩素酸ソーダを生成せしめ
る手段を設けて、生成した該次亜塩素酸ソーダによって
、収容水中の水産動物由来の老廃物及び腐敗物を、活性
炭触媒の存在下で酸化処理する一方、収容水のpHを調
節する手段を設けて所定の値に調節することを特徴とす
る水産動物の保存力法。 2 塩水が、塩化ナトリウムを含有した収容水の少なく
とも一部及び/又は循環再生系路に補給される新水であ
る特許請求の範囲第1項記載の方法。 3 収容水のpHを調節する手段が、収容水の少なくと
も一部あるいは循環再生系路に補給される新水にアルカ
リ性物質を供給することである特許請求の範囲第1項記
載の方法。 4 酸化処理した循環水に残存する次亜塩素酸ソーダを
還元する手段を設けた特許請求の範囲第1項記載の方法
。 5 水産動物を収容する収容槽と、該収容槽中の収容水
を循環再生するための循環再生系路とからなる生きた水
産動物を保存ずる装置において、塩水を電気分解して次
亜塩素酸ソーダを生成するための電解槽と、活性炭が充
填された活性炭触媒層手段と、収容水のpHを調節する
ための手段とが前記再生系路に設けられていることを特
徴とする水産動物の保存装置。 6 pHを調節するための手段はアルカリ性物質供給手
段を含むものである特許請求の範囲第5項記載の装置。
[Claims] 1. A method for preserving living aquatic animals in a holding tank while circulating and regenerating the water contained in the holding tank through a circulation and regeneration system, in which salt water is electrolyzed to produce sodium hypochlorite. Means is provided to oxidize waste products and putrefactions derived from aquatic animals in the accommodated water using the generated sodium hypochlorite in the presence of an activated carbon catalyst, and a means is provided for adjusting the pH of the accommodated water. A conservation power method for aquatic animals characterized by adjusting the power to a predetermined value. 2. The method according to claim 1, wherein the salt water is at least part of the stored water containing sodium chloride and/or fresh water supplied to the circulation and regeneration system. 3. The method according to claim 1, wherein the means for adjusting the pH of the stored water is to supply an alkaline substance to at least a portion of the stored water or fresh water supplied to the circulation and regeneration system. 4. The method according to claim 1, further comprising means for reducing sodium hypochlorite remaining in the oxidized circulating water. 5 In an apparatus for preserving living aquatic animals, which consists of a holding tank for holding aquatic animals and a circulation regeneration system for circulating and regenerating the water contained in the holding tank, salt water is electrolyzed to produce hypochlorous acid. An aquatic animal characterized in that an electrolytic cell for producing soda, an activated carbon catalyst layer means filled with activated carbon, and a means for adjusting the pH of the stored water are provided in the regeneration system path. storage device. 6. The device according to claim 5, wherein the means for adjusting the pH includes an alkaline substance supply means.
JP9639680A 1980-07-15 1980-07-15 Methods and equipment for preserving aquatic animals Expired JPS582648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9639680A JPS582648B2 (en) 1980-07-15 1980-07-15 Methods and equipment for preserving aquatic animals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9639680A JPS582648B2 (en) 1980-07-15 1980-07-15 Methods and equipment for preserving aquatic animals

Publications (2)

Publication Number Publication Date
JPS5722632A JPS5722632A (en) 1982-02-05
JPS582648B2 true JPS582648B2 (en) 1983-01-18

Family

ID=14163795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9639680A Expired JPS582648B2 (en) 1980-07-15 1980-07-15 Methods and equipment for preserving aquatic animals

Country Status (1)

Country Link
JP (1) JPS582648B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853813B1 (en) * 2003-04-15 2005-05-20 Amblard Overseas Trading METHOD AND INSTALLATION FOR RECONDITIONING LIVE AQUATIC ANIMALS, IN PARTICULAR FOR AQUARIUMS
SG185852A1 (en) 2011-05-26 2012-12-28 Qian Hu Corp Ltd Apparatus for purifying water in an aquarium

Also Published As

Publication number Publication date
JPS5722632A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
EP0202952B1 (en) Fish transport system
ES2881344T3 (en) Disinfection and removal of nitrogen species from saline aquaculture systems
US20190380313A1 (en) Physico-chemical process for removal of nitrogen species from recirculated aquaculture systems
US6284793B1 (en) Process for preventing contamination of the aquatic environment with organisms from ballast water
CN101124168A (en) Method of treating ship ballast water
KR101498990B1 (en) Continuous Flow Sterile Water Fish Aquaculture System
JP5343209B2 (en) Live fish transport device and squid live fish transport device
Ben-Asher et al. Proof of concept of a new technology for prolonged high-density live shellfish transportation: Brown crab as a case study
US6921488B1 (en) Process and apparatus for the control of undesirable organisms in a water system
CA3173570A1 (en) Continuous in-situ therapeutic treatment system for fish in freshwater, from seawater
JPS582648B2 (en) Methods and equipment for preserving aquatic animals
JP3840190B2 (en) Seafood culture method
JP3840250B2 (en) Closed circulation culture system and pH adjusting device
JPH0364094B2 (en)
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
JP2006280212A (en) Method for treating water used in fishery system
WO2016031827A1 (en) Closed rearing method and closed rearing apparatus
JP2005245329A (en) Closed circulating culture system
JP3840189B2 (en) Seafood farming equipment
JP2000157100A (en) Device for treating water for producing and breeding fry of fishes or the like and method for treating water
JPS6345878B2 (en)
GB1583996A (en) Method and apparatus for keeping aquatic animals alive over a long period of time
Stobart The Chemistry of a New Water-recirculation Aquaculture System with Emphasis on the Influence of Ozone on Water Quality
JP2005245328A (en) Closed circulating culture system
KR20100090059A (en) Method of reserving the freshness of live fishes and the cultivation using mineral ions