JPS5826002A - Steam reforming method and reaction tube for steam reforming - Google Patents

Steam reforming method and reaction tube for steam reforming

Info

Publication number
JPS5826002A
JPS5826002A JP11931481A JP11931481A JPS5826002A JP S5826002 A JPS5826002 A JP S5826002A JP 11931481 A JP11931481 A JP 11931481A JP 11931481 A JP11931481 A JP 11931481A JP S5826002 A JPS5826002 A JP S5826002A
Authority
JP
Japan
Prior art keywords
catalyst
tube
steam reforming
filled
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11931481A
Other languages
Japanese (ja)
Inventor
Tomiaki Furuya
富明 古屋
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11931481A priority Critical patent/JPS5826002A/en
Publication of JPS5826002A publication Critical patent/JPS5826002A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor

Abstract

PURPOSE:To easily carry out the steam reforming of hydrocarbon with high thermal efficiency by using a reaction tube having a double-walled structure and by packing one of the inner and outer tubes with a catalyst for reforming and the other with a catalyst for burning gaseous fuel. CONSTITUTION:Each reaction tube 10 for reforming is provided with a double- walled structure composed of an inner tube 3 and an outer tube 4. One of the inside 5 of the tube 3 and the inside 6 of the tube 4 is packed with a catalyst for reforming, and the other with a catalyst having a monolithic structure or the like for burning gaseous fuel. The tube 10 is insulated from heat with a heat insulator 11, and starting material for reforming is introduced into the section packed with the catalyst for reforming from the starting material inlet 13. Gaseous fuel is mixed with air, preheated, introduced into the section packed with the catalyst for burning from the fuel inlet 14, and burned. Heat of the combustion is supplied to the reforming section through the wall. The reformed material is taken out of the gaseous product outlet 15. By this method startup and shutdown are easily conducted.

Description

【発明の詳細な説明】 本発明は、炭化水素のスチームリホーミング法及びスチ
ームリホーミング用反応管に関し、更に詳しくは、容易
且つ経済的に行なう仁とが出来るスチームリホーミング
法及びスチームリホーミング用反応管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam reforming method for hydrocarbons and a reaction tube for steam reforming, and more particularly, to a steam reforming method and a reaction tube for steam reforming that can be carried out easily and economically. Regarding reaction tubes.

現在、炭化水素のスチームリホーミングは、特殊な分野
を除き、Plば完成された技術であり、アンモニア合成
、水添脱硫略に使用する水素を供給する方法として大規
模に利用されて−る0しかしながら、現在のスチームリ
ホーミング装置は、アンモニア合成プラントのような、
大量に水素を必要とする方法に適用するためKJI立さ
れたものであ〕、他の特殊な分野・への適用#Cは、大
き′lk附−を伴う亀のである。
Currently, steam reforming of hydrocarbons is a complete technology, except in special fields, and is used on a large scale as a method of supplying hydrogen for use in ammonia synthesis and hydrodesulfurization. However, current steam reforming equipment, such as ammonia synthesis plants,
KJI was established to apply it to processes that require a large amount of hydrogen. Application #C to other special fields is a tortoise with a large addition.

従来、炭化水素のスチームリホーミングは、次のような
方法で行なわれている。即ち、炭化水素及び水蒸気を原
料として、次記反応式(I)で示される反応により、水
素及び−酸化炭素が製造される。かかる反応は吸熱反応
であり、その吸熱量が大量いために1製造に際しては、
リホーミング用触媒を充填した反応管を外側から加熱し
て反応を行なわしめる。反応管の管径は、通常、101
程度であり、この反応管を加熱炉の内に多数配電し、バ
ーナーで燃料を燃焼することにより反応管を加熱する。
Conventionally, steam reforming of hydrocarbons has been carried out by the following method. That is, hydrogen and carbon oxide are produced by the reaction represented by the following reaction formula (I) using hydrocarbons and steam as raw materials. This reaction is an endothermic reaction, and because the amount of heat absorbed is large, during production,
A reaction tube filled with a reforming catalyst is heated from the outside to carry out the reaction. The diameter of the reaction tube is usually 101
The reaction tubes are heated by distributing electricity to a large number of these reaction tubes in a heating furnace and burning fuel in a burner.

反応管及びバーナーを有する反応装置は、これら反応管
とバーナーの設計或いは配置方式の違%/hKより種々
の変形を有している。かかゐスチームリホーミング装置
(以下、リホーマと称す。)の代表例を#IIFl!J
に示し念。第1図のリホーマは、装置全体が、装置上部
に設けられたバーナー2から下方へ放射される長炎によ
って加熱されろことにより、反応管1の温度が上昇する
ものであ抄、バーナーと反応管の列が交互に配置された
構造を有している。このようなリホーマは、熱貫性が大
量く、長期定常運転に適したものであるが、反応の開始
(スタートアップ)及び!止(シャットダウン)が容易
に離行なえないという−一点を有している。又、リホー
ミングにより生成するガスの量を調節するには種々の困
・園を伴う。
Reaction apparatuses having reaction tubes and burners have various modifications due to differences in the design or arrangement of the reaction tubes and burners. #IIFl is a typical example of Kakai steam reforming equipment (hereinafter referred to as reformer). J
A reminder. In the reformer shown in Fig. 1, the entire device is heated by a long flame radiated downward from a burner 2 installed at the top of the device, which causes the temperature of the reaction tube 1 to rise. It has a structure in which rows of tubes are arranged alternately. Such a reformer has a large amount of thermal penetration and is suitable for long-term steady operation, but it is difficult to start the reaction (start-up) and! It has one point: it cannot be easily shut down. In addition, various difficulties arise in adjusting the amount of gas generated by reforming.

例えd、生成ガスの量を減少させるには、原料の炭化水
素及び水蒸気のリホーミング用反応管への供給量を、す
べての反応管に対し平均的に減少させるか、或いは一部
の反応管への原料供給を停止するしかな−。一方、炉内
の温度は、反応を遂行するためには殆んど変化さ姥るこ
とが出来ないので、原料の供給量を減らすこと社、リホ
ー竜ング生成ガスの単位量当りの熱効率を減少せしめる
ことを意味し1間時に反応条件が変動することとなり、
Fラブルが発生し易くなる等の問題を生ずる。
For example, in order to reduce the amount of produced gas, the amount of raw material hydrocarbons and steam supplied to the reforming reaction tubes must be reduced on average to all reaction tubes, or some of the reaction tubes may be We have no choice but to stop supplying raw materials to. On the other hand, the temperature inside the furnace can hardly be changed in order to carry out the reaction, so reducing the feed rate of raw materials reduces the thermal efficiency per unit amount of produced gas. This means that the reaction conditions will fluctuate within 1 hour.
This results in problems such as F-rubble being more likely to occur.

又、原料の供給が停止された反応管においては、原料供
給中に比べて温度が上昇するために、触媒の劣化が促進
されるので好ましくなψo更?IC−バーナーにより燃
料を燃焼させ【熱源としているが、有効態−虞分量が少
ない燃料を効率良く燃焼畜せることam難である。
In addition, in the reaction tube where the supply of raw materials is stopped, the temperature increases compared to when the raw materials are being supplied, which accelerates the deterioration of the catalyst. Although fuel is used as a heat source by burning fuel using an IC burner, it is difficult to efficiently burn the fuel, which has a small amount of active substance.

本発明社、上記した8Ili点を解消せんとしてなされ
たものであり、その目的社、スタートアップ及びシャッ
トダウンを容易に行なうことが出来、且つ熱効率の良好
な炭化水素のスチームリホーミング決及びスチームリホ
ーミング用反応管を提供するkある。本発明者らは、鋭
意検討を重ねた結果、二重管**を有するリホーミング
用反応管を用−て、リホーミングを行なわしめることに
より、本N豹が達成される仁とを見出し、本発明を完成
″S量るkM−′)た。
The present invention was made to solve the above-mentioned 8Ili points, and its purpose is to provide a hydrocarbon steam reforming solution and steam reforming solution that can be easily started up and shut down, and has good thermal efficiency. There are some that provide reaction tubes. As a result of extensive studies, the inventors of the present invention have discovered that the present N-leopard can be achieved by carrying out reforming using a reforming reaction tube having a double tube**. The present invention was completed ``S kM-').

jlち、本発明の炭化水素のスチームリホーミンダ快祉
、内管及び外管のいずれか一方の管内に1スチー^す本
−電シダ用触媒を充填し、他方の管内に燃料ガス燃焼用
触媒を充填した二重11構造を有するスチームリホーミ
ング用反応管の、燃料ガス燃飼用触媒充填部に予熱し友
燃料ガス及び空気を導入する一方、スチームリネー擢ン
グ用触媒充填IIKIk!化水素及び水蒸気を導入して
、炭化水素の改質を行なう仁とを特徴と・するものであ
る。
In the hydrocarbon steam reformer of the present invention, one of the inner and outer tubes is filled with a catalyst for electric fern, and the other tube is filled with a catalyst for fuel gas combustion. In a steam reforming reaction tube having a double 11 structure filled with a catalyst, preheated fuel gas and air are introduced into the fuel gas combustion catalyst filling section, while the steam reforming catalyst filling section IIKIk! It is characterized by introducing hydrocarbons and steam to reform hydrocarbons.

本発明方法にお−て、リホーミングに要する熱は、燃料
ガスm焼用触媒充填部において燃料ガスを触gに接触さ
一1c燃焼畜破ることにより、二重管の管■を遷して供
給される。燃料fスは、酸素存在するが、この温度は、
触媒を存在せしめることkよ抄紙(することが出来る。
In the method of the present invention, the heat required for reforming is transferred through the double-pipe pipe (1) by contacting the fuel gas (1c) in the fuel gas burning catalyst filling section (1c) and burning it. Supplied. Oxygen exists in the fuel gas, but the temperature is
It is possible to make paper by having a catalyst present.

本発明は、かかる触媒を燃料ガス燃焼用′触媒として使
用するものであり、燃料ガス祉、触媒による燃焼が可能
な温度まで予熱して供給する。
In the present invention, such a catalyst is used as a catalyst for fuel gas combustion, and the fuel gas is supplied after being preheated to a temperature at which it can be combusted by the catalyst.

本発明の方法は、炭化水素及び水蒸気のスチームリホー
ミング用触媒充填部への導入と、燃料ガスの燃料ガス燃
焼用触媒充填部への導入が、並流の状態で行なわれるも
のでもよく、又向流の状態で行なわれるものであっても
よい。
In the method of the present invention, the introduction of hydrocarbons and steam into the steam reforming catalyst filling section and the introduction of the fuel gas into the fuel gas combustion catalyst filling section may be carried out in parallel flow, or It may also be carried out in a countercurrent state.

本発明のスチームリホーミングは、通常の炭化水素のス
チームリホーミングと同様の条件で行なわれるものであ
り、温度500〜90o℃、圧力1〜20 atmであ
る。又、燃料ガスの予熱温度社、燃料ガスや燃料燃焼用
触媒の種IIKよってA&に、適宜選択し【決定する。
The steam reforming of the present invention is carried out under the same conditions as normal steam reforming of hydrocarbons, such as a temperature of 500 to 90° C. and a pressure of 1 to 20 atm. In addition, the preheating temperature of the fuel gas and the type of fuel gas and fuel combustion catalyst IIK are appropriately selected and determined.

本発明のスチームリホーミング用反応管は、内管及び外
管から成る二重管構造を有し、該内管及び外管のいずれ
か一方の管内にスチームリネー2ンダ層触Is−他方の
管内に燃料ガス燃焼用触媒を充填し1なることを時機と
するものである。
The reaction tube for steam reforming of the present invention has a double tube structure consisting of an inner tube and an outer tube. This is an opportunity for the fuel gas to be filled with a fuel gas combustion catalyst.

本発明のリホーミング用反応管の一具体例を第2i11
及びSSaに示した0図において、本発明のす傘−電ン
ダ用反応管#f1内管3及び外管4を有する二重9構@
Elkっており、内側の管内5を又唸外偏の管内6.7
にリホーミング用触媒を充填し、他:JFIlc燃料ガ
ス燃焼用触謀を充填したものである・かかる反応管轄、
二重管の管11が、例えば、外管紘5〜!lag’s内
管社3〜15傷を有するものeToす、管の厚11社2
〜12■、及び長さ轄40〜800−である・又%反応
管の形状は、必ずしも阿曽廖である必要轢な(、熱交換
が効率よく行なえるI#横であれぜよ−。更に、本発明
のリホー竜ンダ菅紘、熱交換効率を向上させるために、
その外層を断熱材によって断熱したものであることが#
重し−。
A specific example of the reforming reaction tube of the present invention is shown in Section 2i11.
In Figure 0 shown in Figure 1 and SSa, a double 9 structure having an inner tube 3 and an outer tube 4 of the umbrella-conductor reaction tube #f1 of the present invention
It is Elk, and the inside pipe is 5, and the outside of the pipe is 6.7.
is filled with a catalyst for reforming, and filled with a catalyst for combustion of JFIlc fuel gas.
The double pipe pipe 11 is, for example, the outer pipe 5~! Thickness of lag's pipe 3 to 15 with scratches, pipe thickness 11 2
~12 mm, and the length range is 40 ~ 800 cm.The shape of the reaction tube does not necessarily have to be horizontal (it should be horizontal so that heat exchange can be carried out efficiently). In order to improve the heat exchange efficiency,
The outer layer is insulated with a heat insulating material.
Weight.

本働@r:勿−(使用寥れる燃料fス燃焼眉触媒鐘、燃
料ダスをその尭火点よりも低一温度で尭火宴セることが
出来るものであれは何でも使用可能であるが、圧力損失
が小さいという点で1啼ノリス構造を有する触媒を用い
ることが好ましい。毫ノリス構造とは、流体が触媒構造
体と平行に流れるような構造のものを言い、この構造を
有するものとして社、セルのli:が正方廖、8彫、多
角廖、又社平板Wl噂であることが好重し−・かかる触
媒として祉、例えけ、pt s C@vow、pt −
11s P*−Pd s Pt −N10 s Pt−
(olOいPt −Pd −NiO皓が挙げられ1これ
らは、通常、担体IIc担持された状態で使用畜れる・
担体として杜、伺え杜、α−γに業す、ジルコエアース
ピネル、ムライト、コーゾライ)等が挙げられ、目的に
応じ【上記触媒と種々組み舎わ−t″C使用されるもの
である。
Main work @r: Of course - (Any fuel that can be used can be used to burn the catalyst, but anything that can burn the fuel at a temperature lower than its flash point can be used. It is preferable to use a catalyst having a single Norris structure in terms of low pressure loss.The double Norris structure is a structure in which fluid flows parallel to the catalyst structure. Sha, cell's li: is square square liao, 8 carving, polygon liao, and also sha flat plate Wl rumor -- such a catalyst is shi, example, pt s C@vo, pt -
11s P*-Pds Pt-N10s Pt-
(Pt-Pd-NiO) is commonly used.
Examples of the carrier include Mori, Alpine Mori, alpha-gamma, Zircoair Spinel, Mullite, Kosolite, etc., which are used in various combinations with the above-mentioned catalysts depending on the purpose.

又、本発明におい【使用宴れる燃料ガス燃焼層触媒は、
燃料ガスが水素等の比咬的発熱量が小宴(燃焼温度が低
−ものを主成分とする場合に線、先ず、貴金属を含有す
る触媒(転)を充填し、次いで貴金属を含有しな一触媒
俤)を、この順序でそれぞれ充填したものであることが
好ましい。かかる場合に辻、(転)層にお−【、水素を
燃焼せしめ、次−で伽)層において(4)層で燃焼しき
れずに残留している燃料ガス分を燃焼破しめるものであ
る。かかる反応管の一具体例が第3図である・この図に
おいて、触媒■が6に充填され、触媒(四が7に充填さ
れており、燃料ガス9は(4)層及び(至))層を通過
することにより完全燃焼する。
In addition, in the present invention, the fuel gas combustion layer catalyst that can be used is
When the fuel gas is mainly composed of hydrogen, etc., which has a small relative calorific value (low combustion temperature), a catalyst containing a precious metal is first filled, and then a catalyst containing no precious metal is charged. It is preferable that the catalysts are filled in this order. In such a case, hydrogen is combusted in the (transfer) layer, and in the next layer, the remaining fuel gas that has not been completely combusted in the (4) layer is combusted. A specific example of such a reaction tube is shown in Fig. 3. In this figure, the catalyst (6) is filled with the catalyst (4), the catalyst (4) is filled with the catalyst (7), and the fuel gas 9 is in the (4) layer and (to)). It burns completely by passing through the layer.

貴金属を含有する触媒として社、白金、パラジウム、又
轄銀かも成る群より選ばれた1種もしく#i2種以上の
ものを含もものが好ましく、例えば、Pt s Pt−
Ir s Pt−Pd s Pt−N1p、Pt−Co
tOs、Pt−Pd−N10、Pd−鮎 等が挙けられ
る。
Preferably, the catalyst containing a noble metal contains one or more selected from the group consisting of silver, platinum, palladium, and silver, for example, Pt s Pt-
Irs Pt-Pds Pt-N1p, Pt-Co
Examples include tOs, Pt-Pd-N10, Pd-Ayu, and the like.

又、貴金属を含有しない触媒としては、マンガン、コバ
ルシ、銅等を含むものが好ましく、例えば、MnO,、
Cocos、CO,O,、CuO*が拳けられる。
Moreover, as a catalyst that does not contain noble metals, those containing manganese, cobalt, copper, etc. are preferable, such as MnO,
Cocos, CO, O,, CuO* are punched.

又、本発明において使用されるリホーミング用餉媒は、
遷常、スチームリホーミングに用いられC−ゐものであ
れば何でもよく、例えば、耐火物担体上W−二ラフケル
る一社コバルトを相持したものが拳けられ為。
In addition, the reforming medium used in the present invention is
Any type of material that is conventionally used in steam reforming may be used, for example, a material containing cobalt such as W-20K on a refractory carrier may be used.

本発明のリホーミング用反応管を使用したりホーマの一
例を第4図に示す。第4図において、二重管構造のリホ
ーミング用反応管106Fi、断熱材11によって断熱
され′C−る。リホーミング用原料社、原料導入口13
かも反応管10の内側に充填されたリネー(ング用触媒
充填部に導入されて、リホーミングされた後に1生*ガ
ス導出口15から系外Km!!1出される。一方、燃料
ガスは、空気と混合された後、予熱されて燃料ガス導入
口14より反応管10の外側に充填された燃料ガス燃焼
用触媒充填部に導入され、触媒に接触して燃焼し、燃焼
熱を管壁を通してリホーミング部に供給する。
An example of a homer using the reforming reaction tube of the present invention is shown in FIG. In FIG. 4, a reforming reaction tube 106Fi having a double tube structure is insulated by a heat insulating material 11. Reforming materials company, raw material inlet 13
The fuel gas is introduced into the lining catalyst filling section filled inside the reaction tube 10, reformed, and then discharged outside the system from the raw*gas outlet 15.On the other hand, the fuel gas is After being mixed with air, it is preheated and introduced from the fuel gas inlet 14 into the fuel gas combustion catalyst filling section filled outside the reaction tube 10, where it is combusted in contact with the catalyst and the combustion heat is passed through the tube wall. Supply to the rehoming department.

燃!Ia後の排ガスは、反応管10の上端から装置上部
12を通過して燃焼ガス排出口16から排出される。
Burn! The exhaust gas after Ia passes through the upper part 12 of the apparatus from the upper end of the reaction tube 10 and is discharged from the combustion gas outlet 16.

以下において、本発明のスチームリホー電ンダ用反応管
を燃料電池発電システムにおいて使用した場合につ−て
説明する。
In the following, the case where the reaction tube for a steam reformer of the present invention is used in a fuel cell power generation system will be explained.

第5図は、燃料電池発電システムの70−シートの一例
である。この発電システムは、水素を燃料源として、こ
れを燃焼させ発電を行なうものである。
FIG. 5 is an example of a 70-sheet of a fuel cell power generation system. This power generation system uses hydrogen as a fuel source and burns it to generate electricity.

第5図において、水素の原料となる炭化水素は、ポンプ
27により系内に導入される。そして、燃料電池本体3
4、又は熱交換器28を通過してきた水蒸気と混合され
た後、リホー!の燃焼ガス排出口16より排出された排
ガスと熱交換器26で熱交換を行ない加熱される・次い
で、リホーミングによりatした水素を多く含むガスと
混合された後、パルプ19により流量が調節されて、リ
ホー!20に導入される。導入されたリホーミング用原
料ガスは、リホーマ上部の熱交換1117で燃焼ガスに
よ9更に加熱された後、二重管構造のり傘−ミンダ用反
応管10の内側でリホーミング用触媒に接し、リホーミ
ングが行なわれる。リホーミングされ【生成した水素及
び−醗化炭素を主成分とするガスは、各反応管より集め
られ、導出口15を通して導出される。そして熱交換1
22により冷1s″Sれた後、転化反応装置24によつ
【、生成ガス中の一一化炭素が水蒸気と接触せしめられ
て、ニー化炭素と水素に変換される。変換された水素を
主成分とするガスは、燃料電池アノード32に供給され
、発電を行なうため(、ここで水素の70〜90%が消
費される。アノード出口から排出されたガスは、熱交換
器29及び30で冷却され1コンデンサー31で水を凝
縮・除去した後、リホーマの加熱用溶料ガスとして供給
される。
In FIG. 5, hydrocarbons, which are raw materials for hydrogen, are introduced into the system by a pump 27. Then, the fuel cell main body 3
4, or after being mixed with the water vapor that has passed through the heat exchanger 28, Reho! Heat is exchanged with the exhaust gas discharged from the combustion gas outlet 16 in the heat exchanger 26, and the mixture is heated.Next, after being mixed with the hydrogen-rich gas that has been attenuated by reforming, the flow rate is adjusted by the pulp 19. Hey, Reho! It will be introduced in 2020. The introduced raw material gas for reforming is further heated by the combustion gas in the heat exchanger 1117 at the upper part of the reformer, and then comes into contact with the reforming catalyst inside the double-tube structure reaction tube 10 for umbrella-minder. Rehoming takes place. The reformed gas, which is mainly composed of hydrogen and carbon fluoride, is collected from each reaction tube and led out through the outlet 15. and heat exchange 1
After being cooled for 1 s'' by 22, the carbon monoxide in the product gas is brought into contact with water vapor and converted into carbon nitride and hydrogen in the conversion reactor 24. The main component gas is supplied to the fuel cell anode 32 to generate electricity (70 to 90% of the hydrogen is consumed here). After being cooled and condensing and removing water in the first condenser 31, it is supplied as a heating solvent gas for the reformer.

この燃料ガスは、熱交換器35で加熱され、Iアゾ21
から供給される空気と混合された後、〕ぐルプ18によ
り流量が調節されて、反応管10の外側に配置された燃
料ガス燃焼用触媒充填部に導入され1触媒によシ燃焼さ
れる。燃焼により発生した燃焼熱は、二重管構造の反応
管10の管壁を還し【リホーミング反応部に供給される
。燃焼後の排ガスは、リホーマ上部の熱交換−517で
原料ガスと熱交換をした後、リホーマの燃焼ガス排出口
16より排出され、更に熱交換器26を通過して系外に
排出される。
This fuel gas is heated in a heat exchanger 35 and
After being mixed with the air supplied from the fuel gas, the flow rate is adjusted by the group 18, and the fuel gas is introduced into a fuel gas combustion catalyst filling section disposed outside the reaction tube 10, where it is combusted by one catalyst. The combustion heat generated by the combustion returns to the tube wall of the reaction tube 10 having a double tube structure and is supplied to the reforming reaction section. The exhaust gas after combustion exchanges heat with the raw material gas in the heat exchanger 517 in the upper part of the reformer, and then is discharged from the combustion gas outlet 16 of the reformer, further passes through the heat exchanger 26, and is discharged to the outside of the system.

かかる燃料電池発電システムに使用されるリホー!に要
求される重要な点は、スタートアップ及びシャットダウ
ンが容易に行なえること、並びに燃料電池本体の負荷変
動に対する追随性が良好であることである。本発明は、
これらの点をすべて満足するものである。
Reho! used in such fuel cell power generation system! Important points required for this are that startup and shutdown can be performed easily, and that the fuel cell main body has good ability to follow load fluctuations. The present invention
It satisfies all of these points.

本発明のスチームリネーミング法及びスチームリ卓−セ
ンダ用反応管を使用すれば、次のような利点がある。即
ち、リホーミングが反応管毎に独立して行なえろもので
あるために、リホーマ全体な加熱する必要がなへ従って
、使用する燃料の量が少なくて済み、熱効率が良く、ス
タートアッグ及びシャットダウンを容易に行なうことが
出来る。
The use of the steam renaming method and the steam renaming process and reaction tube for steam renaming and sender of the present invention provides the following advantages. That is, since reforming can be carried out independently for each reaction tube, there is no need to heat the entire reformer, which means that less fuel is used, the thermal efficiency is good, and startup and shutdown times are reduced. It can be done easily.

又、生成するリホーミングガス量を増減する必要がある
場合には、使用するりネーミング用反応管の歌を増減し
て関節すればよく、従来のリホーマのように熱効率が低
下することがない。この際に、使用し′Cvhない反応
管においては、断熱されているために11度上昇が起こ
らず、従って、触媒が劣化することがない。更に、燃料
ガスは触媒を用いて181m−1Lめられるので、その
+W威に拘らず完全燃IIが可能であ〉、且つ通常の燃
焼よりも低温で均一な燃1が行なえるので、高温燃焼時
程発生量の多くなるNOx lが抑制出来る。
In addition, if it is necessary to increase or decrease the amount of reforming gas produced, it is sufficient to increase or decrease the number of reaction tubes used, and there is no reduction in thermal efficiency unlike in conventional reformers. At this time, in the reaction tube that is not used, the temperature rise of 11 degrees does not occur because it is insulated, and therefore the catalyst does not deteriorate. Furthermore, since the fuel gas is reduced to 181 m-1L using a catalyst, complete combustion is possible regardless of its +W power.Furthermore, uniform combustion can be achieved at a lower temperature than normal combustion, resulting in high-temperature combustion. NOx 1, which increases in amount over time, can be suppressed.

以上のような利点を有する本発明方法及び反応管は、比
較的小規枠で、反応の速やかな開始及び停止、或いは生
成ガス量の速やかなWRP等妙:vypされるJにおい
てけ、極めて有効なものでり、る。
The method and reaction tube of the present invention, which have the above-mentioned advantages, are extremely effective in starting and stopping the reaction quickly in a relatively small scale, or in WRP where the amount of gas produced is quick. It's a thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のスチームリホーミング装置の一例であ
り、第2図及び第3図は、本発明のスチームリホー之ン
グ用反応管の概念図であり、第4図は、本発明に4Iわ
るスチームリホーミング装置の概念図であり、第5図は
、本発明を使用したt料電池発1システムのグロ七スフ
0−シーシである。 1・・・触媒光填屓応管、2・・・バーナー、3・・・
内管、4・−外管、5・・・リネー虚ング用触媒充填部
、6゜7・・・燃料蛤焼用触媒充填部、8・・・リホー
ミング用原料、9・・・燃焼用燃料ガス、10・・・二
重管構造リホーミング用反応管、11・・・断熱材、1
2・・・リホーマ上部空間、13・−原料ガス導入口、
14・−・燃料ガス導入口、15・・・リホー之ング生
威ガス導出口、16・・・燃焼ガス排出口、17.22
.25.26.28〜1.35・・・熱交換器、18.
19・・・パルプ、2゜・・・リホーマ、21,23,
27・・・ポンプ、24・・・転化反応装置、31・・
・コンデンサー、32・・・燃料電池アノード、33・
・・燃料電池カンード、34・・・燃料電池本体。 第2図 第3図
FIG. 1 is an example of a conventional steam reforming device, FIGS. 2 and 3 are conceptual diagrams of a reaction tube for steam reforming of the present invention, and FIG. 4 is a schematic diagram of a steam reforming reaction tube according to the present invention. FIG. 5 is a conceptual diagram of a steam rehoming device, and FIG. 5 is a schematic diagram of a T-cell battery generation system using the present invention. 1... Catalyst light loading reaction tube, 2... Burner, 3...
Inner pipe, 4 - Outer pipe, 5... Catalyst filling part for linen hollowing, 6゜7... Catalyst filling part for fuel clam grilling, 8... Raw material for reforming, 9... For combustion Fuel gas, 10...Double pipe structure reforming reaction tube, 11...Insulating material, 1
2...Reformer upper space, 13.-raw material gas inlet,
14...Fuel gas inlet, 15...Rehauling raw gas outlet, 16...Combustion gas outlet, 17.22
.. 25.26.28-1.35...heat exchanger, 18.
19...Pulp, 2゜...Reformer, 21,23,
27... Pump, 24... Conversion reactor, 31...
・Capacitor, 32...Fuel cell anode, 33・
...Fuel cell canard, 34...Fuel cell main body. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、 内管及び外管の−ずれか一方の管内に、スチーム
9ホーミンダ用触媒を充填し、他方の管内に燃料ガス燃
焼用触媒を充填した二重管構造を肴するスチームリホー
ミング用反応管の、燃料ガス燃焼用触媒充填部に予熱し
た燃料fス及び空気を導入する一方、スチーム9ホーミ
ンダ用触媒兜槙部に炭化水素及び水蒸気を導入して、炭
化水素の改質を行なうことを特徴とするスチームリホー
ミング法02 燃料ガス燃焼用触媒が、モノリス構造を
有するものである特許請求の範囲第1項記載のスチーム
リホーミング法。 λ 燃料fX@焼用蝕媒が、貴金属を含有する触媒(支
)、次−で貴金属を含有しな一触媒(2)の順でそれぞ
れ充填されたものである特許請求の範囲第1項記載りス
チームリホーミング法。 4、  二11Fの、内側の管内にスチームリホーセン
グ用触媒を充填し、外側の管内に燃料ガス燃焼用触媒を
充填したスチームリホーミング用反応管を使〜する特許
請求の範囲第1項記載のスチームリホーミング法。 5、二重管の、内側の管内に燃料ガス燃焼用触媒を充填
し、外側の管内にスチームリホーセング用触媒を充填し
たスチームリホーミング用反応管を使用する特許請求の
範囲第1項記載のスチームリホーミング法。 6、 スチームリホーミング用反応管が、断熱されてな
るものを使用する特許請求の範囲第1項記載のスチーム
リホーミング法。 7、 内管及び外管から成る二重管構造を有し、該内管
及び外管のいずれか一方の管内にスチーム9ホーミンダ
用触媒、他方の管内に燃料ガス燃焼用触媒を充填してな
ることを特徴とするスチームリホーミング用反応管。 a、燃@fx燃蜂用触媒が、モノリス構造を有するもの
である特許請求の範囲第7項記載のスチームリホーミン
グ用反応管。 9、愛料ガス燃焼用触媒か、貴金属を含有する触媒(2
)、次いで貴金属を含有しない触媒@)の層で、それぞ
れ充填さ・れなものである特許請求の範囲第7項記載の
スチームリホーミング用反応管。 10、二重管の、内側の管内にスチームリホーミング装
置媒を充填し、外側の管内に燃料ガス燃焼用触媒を充填
したものである特許請求のam第7項記載のスチームリ
ホーミング用反応管。 11、二重管の、内側の管内に燃料ガス燃焼用触媒を充
填し、外側の管内にスチームリホーミング装置媒を充填
したものである特許請求の範WMII7項記軟のスチー
ムリホーミング用反応管。 迄 外周を、断熱材により断熱されてなる特許請求の範
囲第7項記載のスチームリホーミング用反応管。
[Claims] 1. A double-tube structure in which one of the inner and outer tubes is filled with a catalyst for steam 9 hominder, and the other tube is filled with a catalyst for fuel gas combustion. Preheated fuel gas and air are introduced into the fuel gas combustion catalyst filling section of the steam reforming reaction tube, while hydrocarbons and steam are introduced into the steam reforming catalyst head section to reform hydrocarbons. Steam reforming method 02 characterized in that the fuel gas combustion catalyst has a monolith structure. λ fuel fX@burning corrosive medium is filled in the following order: a catalyst (support) containing a noble metal, and then a catalyst (2) that does not contain a noble metal. Steam rehoming method. 4. Claim 1 describes the use of a steam reforming reaction tube of 211F in which the inner tube is filled with a steam reforming catalyst and the outer tube is filled with a fuel gas combustion catalyst. steam rehoming method. 5. Claim 1 describes the use of a steam reforming reaction tube in which the inner tube is filled with a fuel gas combustion catalyst and the outer tube is filled with a steam reforming catalyst. steam rehoming method. 6. The steam reforming method according to claim 1, wherein the steam reforming reaction tube is insulated. 7. It has a double tube structure consisting of an inner tube and an outer tube, and one of the inner tube and the outer tube is filled with a catalyst for steam 9 hominar, and the other tube is filled with a catalyst for fuel gas combustion. A reaction tube for steam reforming characterized by: The reaction tube for steam reforming according to claim 7, wherein the fuel@fx fuel bee catalyst has a monolith structure. 9. Catalyst for combustion of precious gas or catalyst containing precious metals (2
8. The reaction tube for steam reforming according to claim 7, wherein the reaction tube is filled with a layer of a catalyst containing no noble metal. 10. The steam reforming reaction tube according to claim 7, which is a double tube, with the inner tube filled with a steam reforming device medium and the outer tube filled with a fuel gas combustion catalyst. . 11. A soft steam reforming reaction tube according to claim WMII, item 7, which is a double tube, with the inner tube filled with a fuel gas combustion catalyst and the outer tube filled with a steam reforming device medium. . The reaction tube for steam reforming according to claim 7, the outer periphery of which is insulated with a heat insulating material.
JP11931481A 1981-07-31 1981-07-31 Steam reforming method and reaction tube for steam reforming Pending JPS5826002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11931481A JPS5826002A (en) 1981-07-31 1981-07-31 Steam reforming method and reaction tube for steam reforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11931481A JPS5826002A (en) 1981-07-31 1981-07-31 Steam reforming method and reaction tube for steam reforming

Publications (1)

Publication Number Publication Date
JPS5826002A true JPS5826002A (en) 1983-02-16

Family

ID=14758370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11931481A Pending JPS5826002A (en) 1981-07-31 1981-07-31 Steam reforming method and reaction tube for steam reforming

Country Status (1)

Country Link
JP (1) JPS5826002A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391515A (en) * 1986-10-02 1988-04-22 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectric angle gage
JPH01317101A (en) * 1988-06-14 1989-12-21 Mitsubishi Electric Corp Reforming apparatus
EP0643618A4 (en) * 1991-12-19 1994-09-29 Standard Oil Co Endothermic reaction apparatus.
US5565009A (en) * 1990-04-03 1996-10-15 The Standard Oil Company Endothermic reaction process
US5567398A (en) * 1990-04-03 1996-10-22 The Standard Oil Company Endothermic reaction apparatus and method
US5917182A (en) * 1995-02-07 1999-06-29 Canon Kabushiki Kaisha Rotation detector and controller for detecting rotation information using a grating interference system
US6096106A (en) * 1990-04-03 2000-08-01 The Standard Oil Company Endothermic reaction apparatus
US6153152A (en) * 1990-04-03 2000-11-28 The Standard Oil Company Endothermic reaction apparatus and method
JP2003522087A (en) * 1998-10-14 2003-07-22 アイダテック・エルエルシー Fuel processor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831172A (en) * 1971-08-12 1973-04-24
JPS5150908A (en) * 1974-10-31 1976-05-06 Suzuki Motor Co
JPS5690892A (en) * 1979-12-26 1981-07-23 Babcock Hitachi Kk Reformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831172A (en) * 1971-08-12 1973-04-24
JPS5150908A (en) * 1974-10-31 1976-05-06 Suzuki Motor Co
JPS5690892A (en) * 1979-12-26 1981-07-23 Babcock Hitachi Kk Reformer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391515A (en) * 1986-10-02 1988-04-22 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectric angle gage
JPH0464567B2 (en) * 1986-10-02 1992-10-15 Dokutoru Yohanesu Haidenhain Gmbh
JPH01317101A (en) * 1988-06-14 1989-12-21 Mitsubishi Electric Corp Reforming apparatus
US5565009A (en) * 1990-04-03 1996-10-15 The Standard Oil Company Endothermic reaction process
US5567398A (en) * 1990-04-03 1996-10-22 The Standard Oil Company Endothermic reaction apparatus and method
US6096106A (en) * 1990-04-03 2000-08-01 The Standard Oil Company Endothermic reaction apparatus
US6153152A (en) * 1990-04-03 2000-11-28 The Standard Oil Company Endothermic reaction apparatus and method
EP0643618A4 (en) * 1991-12-19 1994-09-29 Standard Oil Co Endothermic reaction apparatus.
US5917182A (en) * 1995-02-07 1999-06-29 Canon Kabushiki Kaisha Rotation detector and controller for detecting rotation information using a grating interference system
JP2003522087A (en) * 1998-10-14 2003-07-22 アイダテック・エルエルシー Fuel processor

Similar Documents

Publication Publication Date Title
EP0600621B1 (en) A combined reformer and shift reactor
US6299994B1 (en) Process for providing a pure hydrogen stream for use with fuel cells
US6190623B1 (en) Apparatus for providing a pure hydrogen stream for use with fuel cells
US6280864B1 (en) Control system for providing hydrogen for use with fuel cells
US6932958B2 (en) Simplified three-stage fuel processor
RU2411075C2 (en) Compact reforming reactor
RU2539561C2 (en) Gas-generator for fuel conversion to oxygen-depleted gas and/or to hydrogen-enriched gas, its application and method of fuel conversion to oxygen-depleted gas and/or to hydrogen-enriched gas (versions)
BRPI0810937B1 (en) HIGH AND THERMALLY INTEGRATED AND COMBINED STEAM REFORMER FOR THE PRODUCTION OF HYDROGEN FROM A FUEL SOURCE AND A STEAM REFORMER ASSEMBLY FOR USE IN A FUEL PROCESSING SYSTEM
CN115768718A (en) Process for the thermal decomposition of ammonia and reactor for carrying out said process
JP2015514654A (en) Catalytic combustion integrated heat reformer for hydrogen production
WO2003067698A1 (en) Solid oxide type fuel cell system
WO2002098790A1 (en) Cylindrical water vapor reforming unit
CA2862538A1 (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
JP2001155756A (en) Vapor-reforming reactor for fuel cell
JPS61247601A (en) Hydrocarbon fuel treating apparatus
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
CA2355007A1 (en) Apparatus for a fuel processing system
RU113729U1 (en) PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS
JPH0794322B2 (en) Methanol reformer
TWI626784B (en) Gas fuel reformer and the integrated system for power generation
JP4805735B2 (en) Indirect internal reforming type solid oxide fuel cell
JPH0335241B2 (en)
US8173082B1 (en) JP-8 fuel processor system
JPH01122902A (en) Fuel reformer for fuel cell
JP2009067645A (en) Hydrogen manufacturing device and fuel cell system using the same