JP2001155756A - Vapor-reforming reactor for fuel cell - Google Patents

Vapor-reforming reactor for fuel cell

Info

Publication number
JP2001155756A
JP2001155756A JP34147299A JP34147299A JP2001155756A JP 2001155756 A JP2001155756 A JP 2001155756A JP 34147299 A JP34147299 A JP 34147299A JP 34147299 A JP34147299 A JP 34147299A JP 2001155756 A JP2001155756 A JP 2001155756A
Authority
JP
Japan
Prior art keywords
tube
gas
combustion
steam
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34147299A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujiki
広志 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP34147299A priority Critical patent/JP2001155756A/en
Publication of JP2001155756A publication Critical patent/JP2001155756A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To obtain a new and useful vapor-reforming reactor for a fuel cell that can reduce a starting time while making an apparatus compact as well as significantly reducing a radiant heat amount. SOLUTION: A vapor-reforming reactor comprises multiple cylinders constituted by multiple tubes arranged at a predetermined interval in the form of concentric. It is provided with a reforming gas channel tube, a reforming catalyst tube, a combustion catalyst tube combusting a fuel gas for supplying heat to the reforming catalyst, and a combustion exhausting gas channel tube in order from the innermost tube of the multiple of cylinders and also a hollow coil flowing water into the combustion exhausting gas channel tube, wherein it generates vapor by heat-exchanging the combustion exhausting gas with water flowing into the hollow coil and supplies the vapor along with a raw material gas to the reforming catalyst tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素ガスを水
蒸気により改質して水素を製造するための新規且つ有用
な燃料電池用水蒸気改質反応器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel and useful steam reforming reactor for a fuel cell for producing hydrogen by reforming a hydrocarbon gas with steam.

【0002】[0002]

【従来の技術】水素は不飽和結合への水素添加用、酸水
素炎用その他各種用途に供される基礎原料であり、燃料
電池用の燃料としても利用される。水素の工業的製造方
法としては各種の方法が知られているが、そのうち天然
ガスや都市ガス、あるいはLPガス等の炭化水素ガスの
変成法は通常水蒸気改質法により行われる。水蒸気改質
用の反応器には各種のタイプがあるが、多重円筒方式の
水蒸気改質反応器は装置をコンパクトにすることが可能
であるため燃料電池用として使用されるケースが多い。
2. Description of the Related Art Hydrogen is a basic raw material used for adding hydrogen to unsaturated bonds, for oxyhydrogen flames, and for various other uses, and is also used as a fuel for fuel cells. Various methods are known as industrial methods for producing hydrogen. Among them, a method of converting a hydrocarbon gas such as natural gas, city gas, or LP gas is usually performed by a steam reforming method. Although there are various types of steam reforming reactors, a multi-cylindrical steam reforming reactor is often used for a fuel cell because the apparatus can be made compact.

【0003】上記多重円筒方式の改質反応器は、主とし
て中心部の燃焼室とその外郭の改質触媒層から構成され
ており、燃焼室においてバーナ(ブンゼンバーナ等)で
燃料ガスの燃焼を行い、その輻射伝熱及び燃焼排ガスと
改質ガスとの対流伝熱により水蒸気改質反応に必要な熱
を供与する仕組みとなっている。図1はその一態様例を
縦断面図として示す図である。筒状容器中に内外三重管
が配置され、その内管内にはバーナからの燃焼ガス管が
臨ませてある。燃料ガスは、燃焼用の空気によりバーナ
で燃焼され、その発生熱が水蒸気による原料ガスの改質
用として利用された後、排出される。
[0003] The above-mentioned multi-cylindrical reforming reactor mainly comprises a central combustion chamber and a reforming catalyst layer at its outer periphery, and burns a fuel gas with a burner (such as a Bunsen burner) in the combustion chamber. The radiant heat transfer and the convective heat transfer between the combustion exhaust gas and the reformed gas provide the heat necessary for the steam reforming reaction. FIG. 1 is a view showing an example of the embodiment as a longitudinal sectional view. An inner / outer triple pipe is arranged in a cylindrical container, and a combustion gas pipe from a burner faces the inner pipe. The fuel gas is burned by a burner with air for combustion, and the generated heat is used for reforming the raw material gas with steam and then discharged.

【0004】一方、原料ガスである炭化水素ガスは水蒸
気とともに改質触媒層に通され、接触反応(改質反応)
により水素を主成分とするガスに改質される。接触反応
は下記式(1)で示される。この反応は吸熱反応であ
り、水素を生成させるには加熱が必要である。触媒とし
てはアルミナなどの担体にNi、Ruなど適当な金属を
担持した触媒が使用される。図1中二系統の矢印は、そ
れぞれ燃焼ガス及び炭化水素ガス(改質ガスとなる)の
流れを示している。排出される燃焼排ガスは、改質器自
体の構造、規模、操作条件等の如何にもよるが、例えば
400〜700℃という高温で排出される。
On the other hand, a hydrocarbon gas, which is a raw material gas, is passed through a reforming catalyst layer together with water vapor to form a catalytic reaction (reforming reaction).
Is reformed into a gas containing hydrogen as a main component. The catalytic reaction is represented by the following formula (1). This reaction is an endothermic reaction, and requires heating to generate hydrogen. As the catalyst, a catalyst in which a suitable metal such as Ni or Ru is supported on a carrier such as alumina is used. In FIG. 1, two arrows indicate flows of a combustion gas and a hydrocarbon gas (reformed gas), respectively. The discharged combustion exhaust gas is discharged at a high temperature of, for example, 400 to 700 ° C., depending on the structure, scale, operating conditions, and the like of the reformer itself.

【0005】[0005]

【化 1】 [Formula 1]

【0006】上記のように、改質反応には水蒸気が必要
であるが、水蒸気は、改質反応器の外部において、燃焼
式ボイラにより、あるいは燃焼排ガスやプロセスガスと
の熱交換により発生させるのが一般的である。図2はそ
の概略を示す図である。原料ガスがメルカプタンその他
の形で硫黄(S)分を含む都市ガス等の場合には、原料
ガスは脱硫器へ導入される。ここでその原料ガス中に含
まれる硫黄分を除去した後、外部に別途付設された水蒸
気発生器からの水蒸気を添加、混合して、例えば上記の
ような改質器へ導入されて水素を主成分とするガスへ改
質される。なお、原料ガスが硫黄分を含まないか、既に
除去されている場合には脱硫器は必要としない。改質ガ
スには水素の他に10%程度のCOが含まれているの
で、改質ガスはCO変成器に送られてCOが1%程度に
低減され、さらに固体高分子型燃料電池(PEFC)の
燃料として使用する場合は、CO選択酸化器で100p
pm程度以下にまで低減される。
[0006] As described above, steam is required for the reforming reaction. Steam is generated outside the reforming reactor by a combustion boiler or by heat exchange with combustion exhaust gas or process gas. Is common. FIG. 2 is a diagram showing the outline. When the raw material gas is a city gas containing sulfur (S) in the form of mercaptan or other forms, the raw material gas is introduced into the desulfurizer. Here, after removing the sulfur contained in the raw material gas, steam from a steam generator separately provided outside is added and mixed, and then, for example, introduced into the reformer as described above to mainly remove hydrogen. It is reformed into a component gas. Note that a desulfurizer is not required when the raw material gas does not contain sulfur or has already been removed. Since the reformed gas contains about 10% of CO in addition to hydrogen, the reformed gas is sent to a CO converter to reduce the CO to about 1%, and further the polymer electrolyte fuel cell (PEFC) )), Use 100p with CO selective oxidizer
pm or less.

【0007】ところが、上記のように水蒸気発生のため
の熱交換器を外部に設置すると、単に機器が増えるのみ
でなく、その前後の配管レイアウトが必要であり、この
ため装置コンパクト化の弊害となる。また燃料電池のう
ち、特にPEFCは、作動温度が80〜100℃程度と
いう低温で、家庭用等の小規模発電に用いられるため、
頻繁な起動及び停止が必要であり、その起動、停止の繰
り返し毎に水蒸気を発生させる必要があるなど面倒な操
作が必要となる。
However, when the heat exchanger for generating water vapor is installed outside as described above, not only the number of equipments increases but also the piping layout before and after the heat exchangers is required, which is a bad effect of downsizing the apparatus. . Among fuel cells, PEFCs are particularly used at low temperatures of about 80 to 100 ° C. and are used for small-scale power generation such as for home use.
Frequent start and stop are required, and a cumbersome operation is required such as generation of water vapor every time the start and stop are repeated.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来におけ
る上記諸問題点に鑑みなされたものであり、水蒸気改質
反応器と水蒸気発生器を一体化することにより、装置を
コンパクト化するとともに、放熱量を格段に低減し得る
ようにし、また起動時間を大幅に短縮できるなど優れた
効果、利点を有する新規且つ有用な燃料電池用水蒸気改
質反応器を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and has a compact apparatus by integrating a steam reforming reactor and a steam generator. It is an object of the present invention to provide a new and useful steam reforming reactor for a fuel cell having excellent effects and advantages such as a remarkable reduction in the amount of heat release and a significant reduction in a start-up time.

【0009】[0009]

【課題を解決するための手段】本発明は(1)同心状に
間隔を置いて配置された多重管で構成された多重円筒か
らなり、該多重円筒の最内筒から順次、改質ガス流路
筒、改質触媒筒、燃料ガスを燃焼させて該改質触媒筒に
熱を給与する燃焼触媒筒及び燃焼排ガス流路筒を設ける
とともに、該燃焼排ガス流路筒内に水を流通させる中空
コイルを配置し、燃焼排ガスと中空コイル内を流れる水
を熱交換させることにより水蒸気を発生させ、該水蒸気
を原料ガスとともに改質触媒筒に供給するようにしてな
ることを特徴とする燃料電池用水蒸気改質反応器を提供
する。
According to the present invention, there is provided (1) a multi-cylinder composed of multi-tubes arranged concentrically at intervals, and the reformed gas flow is sequentially performed from the innermost cylinder of the multi-cylinder. A path tube, a reforming catalyst tube, a combustion catalyst tube for burning fuel gas to supply heat to the reforming catalyst tube, and a combustion exhaust gas passage tube, and a hollow for flowing water through the combustion exhaust gas passage tube. A fuel cell, wherein a coil is disposed, and heat exchange is performed between combustion exhaust gas and water flowing in the hollow coil to generate steam, and the steam is supplied to a reforming catalyst cylinder together with a raw material gas. A steam reforming reactor is provided.

【0010】本発明は(2)同心状に間隔を置いて配置
された多重管で構成された多重円筒からなり、該多重円
筒の最内筒から順次、改質ガス流路筒、改質触媒筒、燃
料ガスを燃焼させて該改質触媒筒に熱を給与する燃焼触
媒筒、該燃焼触媒筒の外周面から空気を分散導入する空
気供給筒及び燃焼排ガス流路筒を設けるとともに、該燃
焼排ガス流路筒内に水を流通させる中空コイルを配置
し、燃焼排ガスと中空コイル内を流れる水を熱交換させ
ることにより水蒸気を発生させ、該水蒸気を原料ガスと
ともに改質触媒筒に供給するようにしてなることを特徴
とする燃料電池用水蒸気改質反応器を提供する。
The present invention (2) comprises a multi-cylinder composed of multi-tubes arranged concentrically at intervals, and sequentially from the innermost cylinder of the multi-cylinder, a reformed gas flow path cylinder and a reforming catalyst. A cylinder, a combustion catalyst cylinder for burning fuel gas to supply heat to the reforming catalyst cylinder, an air supply cylinder for distributing and introducing air from an outer peripheral surface of the combustion catalyst cylinder, and a combustion exhaust gas passage cylinder. A hollow coil for circulating water is arranged in the exhaust gas channel tube, and steam is generated by exchanging heat between the combustion exhaust gas and water flowing in the hollow coil, and the steam is supplied to the reforming catalyst tube together with the raw material gas. A steam reforming reactor for a fuel cell is provided.

【0011】本発明(3)同心状に間隔を置いて配置さ
れた多重管で構成された多重円筒からなり、該多重円筒
の最内筒から順次、バーナ兼燃焼ガスの流通路筒、改質
ガス流路筒、改質触媒筒、燃料ガスを燃焼させて該改質
触媒筒に熱を給与する燃焼触媒筒及び燃焼排ガス流路筒
を設けるとともに、該燃焼排ガス流路内に水を流通させ
る中空コイルを配置し、燃焼排ガスとコイル内を流れる
水を熱交換させることにより水蒸気を発生させ、該水蒸
気を原料ガスとともに改質触媒筒に供給するようにして
なることを特徴とする燃料電池用水蒸気改質反応器を提
供する。
The present invention (3) comprises a multi-cylinder composed of multi-tubes concentrically spaced apart from each other, and a burner / combustion gas flow passage cylinder, a reformer, and a reformer are sequentially arranged from the innermost cylinder of the multi-cylinder. A gas passage tube, a reforming catalyst tube, a combustion catalyst tube for burning fuel gas to supply heat to the reforming catalyst tube, and a combustion exhaust gas passage tube are provided, and water is circulated in the combustion exhaust gas passage. A fuel cell characterized in that a hollow coil is arranged, steam is generated by heat exchange between combustion exhaust gas and water flowing in the coil, and the steam is supplied to a reforming catalyst cylinder together with a raw material gas. A steam reforming reactor is provided.

【0012】本発明(4)同心状に間隔を置いて配置さ
れた多重管で構成された多重円筒からなり、該多重円筒
の最内筒から順次、バーナ兼燃焼ガスの流通路筒、改質
ガス流路筒、改質触媒筒、燃料ガスを燃焼させて該改質
触媒筒に熱を給与する燃焼触媒筒、該燃焼触媒筒の外周
面から空気を分散導入する空気供給筒及び燃焼排ガス流
路筒を設けるとともに、該燃焼排ガス流路筒内に水を流
通させる中空コイルを配置し、燃焼排ガスとコイル内を
流れる水を熱交換させることにより水蒸気を発生させ、
該水蒸気を原料ガスとともに改質触媒筒に供給するよう
にしてなることを特徴とする燃料電池用水蒸気改質反応
器を提供する。
The present invention (4) comprises a multi-cylinder composed of multi-tubes arranged concentrically at intervals, and sequentially from the innermost cylinder of the multi-cylinder, a burner / combustion gas flow passage cylinder, and a reformer. A gas passage tube, a reforming catalyst tube, a combustion catalyst tube that burns fuel gas to supply heat to the reforming catalyst tube, an air supply tube that distributes and introduces air from the outer peripheral surface of the combustion catalyst tube, and a combustion exhaust gas flow Along with providing a path cylinder, a hollow coil for circulating water is disposed in the flue gas flow path cylinder, and steam is generated by exchanging heat between the flue gas and water flowing in the coil,
A steam reforming reactor for a fuel cell, wherein the steam is supplied to a reforming catalyst cylinder together with a raw material gas.

【0013】[0013]

【発明の実施の形態】本発明(1)〜(2)では、同心
状に間隔を置いて配置された多重管で構成された多重円
筒からなり、該多重円筒の最内筒から順次、改質ガス流
路筒、改質触媒筒、燃料ガスを燃焼させて該改質触媒筒
に熱を給与する燃焼(酸化)触媒筒及び最外筒として燃
焼排ガス流路筒を設ける。本発明(3)〜(4)では、
上記構成に加え、最内筒として改質ガス流路筒の内側に
バーナ兼燃焼ガスの流通路筒を設ける。そして該燃焼排
ガス流路筒内の燃焼排ガス流路に中空コイルを配置し、
該中空コイル中に水を流通させる。該燃焼排ガス流路で
生成する燃焼排ガスと中空コイル内を流れる水を熱交換
させることにより水蒸気を発生させ、発生水蒸気を原料
ガスとともに改質触媒筒に供給する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention (1) and (2), a multi-cylinder constituted by multi-tubes arranged concentrically at intervals is provided. A high-quality gas passage tube, a reforming catalyst tube, a combustion (oxidation) catalyst tube for burning fuel gas to supply heat to the reforming catalyst tube, and a combustion exhaust gas passage tube as the outermost tube are provided. In the present inventions (3) and (4),
In addition to the above configuration, a burner / combustion gas flow passage tube is provided inside the reformed gas passage tube as the innermost tube. And arrange a hollow coil in the flue gas flow path in the flue gas flow path cylinder,
Water is passed through the hollow coil. Steam is generated by exchanging heat between the flue gas generated in the flue gas passage and the water flowing in the hollow coil, and the generated steam is supplied to the reforming catalyst cylinder together with the raw material gas.

【0014】本発明は、これらを基本構成とすることに
よって、水蒸気改質反応器をコンパクト化できるだけで
なく、該改質反応器から外部への放熱量を低減させるこ
とができ、水蒸気改質反応器全体としての熱効率を格段
に向上させることができる。この点、前記図1のような
従来の装置では、水蒸気発生のための熱交換器を外部に
設置するので、機器が増えるだけでなく、その前後の配
管レイアウトが必要であり、このため装置コンパクト化
の弊害となっていたが、本発明によれば上記基本構成に
より従来装置におけるこれらの諸問題を一挙に解決する
ことができる。
According to the present invention, by using these as basic structures, not only can the steam reforming reactor be made compact, but also the amount of heat released from the reforming reactor to the outside can be reduced. The thermal efficiency of the whole vessel can be remarkably improved. In this respect, in the conventional apparatus as shown in FIG. 1, since a heat exchanger for generating steam is installed outside, not only the number of equipments increases but also the piping layout before and after the heat exchanger is required. According to the present invention, these problems in the conventional apparatus can be solved at once with the above basic configuration.

【0015】すなわち、本発明によれば、燃焼触媒筒か
ら出る燃焼排ガスの熱は燃焼排ガス流路筒内で水蒸気発
生に利用されるので、燃焼排ガス流路筒から燃焼排ガス
をより低温で排出することができる。この点、前記図1
のような従来の装置から排出される燃焼排ガスは例えば
400〜700℃という高温で排出されるが、本発明の
反応器によれば、燃焼排ガスの熱が上記のように有効に
利用され、燃焼排ガス流路筒から例えば300〜350
℃というような低温で排出される。
That is, according to the present invention, since the heat of the flue gas emitted from the combustion catalyst tube is used for generating steam in the flue gas passage tube, the flue gas is discharged from the flue gas passage tube at a lower temperature. be able to. In this regard, FIG.
However, according to the reactor of the present invention, the heat of the combustion exhaust gas is effectively used as described above, and the combustion exhaust gas discharged from the conventional apparatus is discharged at a high temperature of, for example, 400 to 700 ° C. For example, from 300 to 350
It is discharged at a low temperature such as ° C.

【0016】また、本発明によれば、燃焼触媒筒が改質
触媒筒を囲んでいるので、燃焼触媒筒から改質触媒筒へ
の伝熱面積が大きくなり、燃焼触媒筒で発生した熱を効
率よく改質触媒筒へ伝えることができる。このため、燃
焼温度を低くすることができ、構成材料としてステンレ
ス鋼等が使用できるので、コスト面でも非常に有利であ
る。
Further, according to the present invention, since the combustion catalyst cylinder surrounds the reforming catalyst cylinder, the heat transfer area from the combustion catalyst cylinder to the reforming catalyst cylinder increases, and the heat generated in the combustion catalyst cylinder is reduced. It can be efficiently transmitted to the reforming catalyst tube. For this reason, the combustion temperature can be lowered, and stainless steel or the like can be used as a constituent material, which is very advantageous in terms of cost.

【0017】さらに、本発明によれば、改質触媒筒で生
成した改質ガスは改質触媒筒の内側の改質ガス流路筒に
入り、改質触媒筒と改質ガス流路筒を区画する管を通し
て改質触媒筒に熱を伝える。その際、改質ガス流路筒内
に、伝熱促進材として、アルミナ(Al23)ボール等
の耐熱性材料やスチールワイヤー等を充填することによ
り、その伝熱をさらに促進させることができる。これに
よって改質ガスの熱を有効に利用できるだけでなく、改
質ガス自体の温度が低下する。改質器を出た改質ガス
は、反応温度200〜250℃程度のCO変成器へ導入
されるので、改質ガスの温度が高いと、冷却器を設け
て、適切な温度まで低下させなければならないが、本改
質器を使用すれば冷却器は不要である。
Further, according to the present invention, the reformed gas generated in the reforming catalyst tube enters the reformed gas channel tube inside the reforming catalyst tube, and the reformed catalyst tube and the reformed gas channel tube are connected to each other. Heat is transmitted to the reforming catalyst tube through the dividing pipe. At that time, the heat transfer can be further promoted by filling a heat-resistant material such as an alumina (Al 2 O 3 ) ball, a steel wire, or the like as a heat transfer promoting material in the reformed gas channel tube. it can. This not only allows the heat of the reformed gas to be used effectively, but also lowers the temperature of the reformed gas itself. Since the reformed gas exiting the reformer is introduced into a CO converter having a reaction temperature of about 200 to 250 ° C., if the temperature of the reformed gas is high, a cooler must be provided to lower the temperature to an appropriate temperature. However, if this reformer is used, no cooler is required.

【0018】本発明に係る改質反応器は、燃料電池に連
結して用いられる。燃料電池には、イオン伝導体すなわ
ち電解質として用いられる物質の違いによりPEFC、
リン酸型(PAFC)、溶融炭酸塩型、固体電解質型等
各種あるが、本発明の水蒸気改質反応器はPEFCまた
はPAFCと連結して使用される。
The reforming reactor according to the present invention is used in connection with a fuel cell. PEFCs are used in fuel cells due to the difference in the ionic conductor, that is, the substance used as the electrolyte.
There are various types such as a phosphoric acid type (PAFC), a molten carbonate type, and a solid electrolyte type. The steam reforming reactor of the present invention is used in connection with PEFC or PAFC.

【0019】本発明に係る水蒸気改質反応器は、コンパ
クト化されており、起動時間を短縮できることから、特
にPEFC用の水素製造装置として好適に用いることが
できる。本水蒸気改質反応器で得られた改質ガスを燃料
電池に利用する場合、例えばCO変成器に送ってCOを
1%程度に低減させ、さらにCO選択酸化器で100p
pm程度以下にまで低減させた後、燃料電池の燃料極へ
供給される。
The steam reforming reactor according to the present invention can be suitably used as a hydrogen production apparatus especially for PEFC, because it is compact and the start-up time can be shortened. When the reformed gas obtained in the present steam reforming reactor is used for a fuel cell, for example, it is sent to a CO shift converter to reduce CO to about 1%, and further, a CO selective oxidizer is used for 100p.
After being reduced to about pm or less, it is supplied to the fuel electrode of the fuel cell.

【0020】改質触媒筒には原料ガスと中空コイルで発
生させた水蒸気が供給される。原料ガスとしてはメタノ
ールやエタノール等のアルコール類、メタン、エタン、
プロパン、ブタン等の炭化水素、あるいはそれら炭化水
素の混合ガス、例えば天然ガス、都市ガス、LPガス等
が使用される。改質触媒筒に充填する改質触媒としては
例えばアルミナなどの担体にNi、Ruなどの金属を担
持したNi系、Ru系等の適当な触媒が使用される。ま
た、燃焼触媒筒に充填する燃焼(酸化)触媒としては従
来知られた酸化触媒が使用され、例えば白金等の貴金属
触媒が使用される。この燃焼触媒を充填した燃焼(酸
化)触媒筒に燃料ガスと酸素(空気、酸素富化空気等)
を供給する。燃料ガスとしては都市ガスや天然ガス、あ
るいはLPガス、燃料電池の燃料極のオフガス等が使用
される。
The raw material gas and steam generated by the hollow coil are supplied to the reforming catalyst tube. Source gases include alcohols such as methanol and ethanol, methane, ethane,
Hydrocarbons such as propane and butane, or mixed gas of these hydrocarbons, for example, natural gas, city gas, LP gas and the like are used. As the reforming catalyst to be filled in the reforming catalyst cylinder, for example, an appropriate catalyst such as a Ni-based or Ru-based catalyst in which a metal such as Ni or Ru is supported on a carrier such as alumina is used. Further, as the combustion (oxidation) catalyst filled in the combustion catalyst tube, a conventionally known oxidation catalyst is used, and for example, a noble metal catalyst such as platinum is used. Fuel gas and oxygen (air, oxygen-enriched air, etc.) are stored in a combustion (oxidation) catalyst cylinder filled with this combustion catalyst.
Supply. As the fuel gas, city gas, natural gas, LP gas, off-gas of a fuel electrode of a fuel cell, or the like is used.

【0021】以下、図面を基に本発明の具体的態様例に
ついて説明するが、これら態様例は上下を逆にしても構
成できることはもちろんである。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, it is a matter of course that these embodiments can be configured upside down.

【0022】《態様例1》図3は本発明(1)の改質反
応器の態様例を縦断面図として示す図である。最内管1
から最外郭管4までの各管が間隔を置いて4重管として
構成される。4重管の上部及び下部は蓋がされ、各管及
び蓋はステンレス鋼等で構成できるので、コスト面でも
非常に有利である。最外郭管の外周面及び蓋の外面には
例えば断熱材を配置して熱の放散を防ぐようにすること
が望ましい。この点以下の態様でも同様である。最内管
1の内部は改質ガスを流通させるためのスペースすなわ
ち改質ガス流路筒であり、伝熱促進材として例えばアル
ミナ(Al23)ボールが充填されている。最内管1と
内管2の間に改質触媒が充填された改質触媒筒が構成さ
れ、該改質触媒筒にその上方から原料ガスと水蒸気の混
合ガスが通される。改質触媒筒における該混合ガスの入
口側には上記と同様の伝熱促進材を充填してもよく、こ
の点以下の態様例でも同様である。内管2と内管3の間
に燃焼触媒が充填された燃焼触媒筒が構成され、この燃
焼触媒筒の下方から燃料ガスと空気が通される。
<< Embodiment 1 >> FIG. 3 is a longitudinal sectional view showing an embodiment of the reforming reactor of the present invention (1). Innermost tube 1
To the outermost tube 4 are formed as quadruples at intervals. Since the upper and lower parts of the quadruple pipe are covered, and each pipe and lid can be made of stainless steel or the like, it is very advantageous in terms of cost. For example, it is desirable to dispose a heat insulating material on the outer peripheral surface of the outermost tube and the outer surface of the lid to prevent heat dissipation. The same applies to the following aspects. The inside of the innermost tube 1 is a space for allowing the reformed gas to flow, that is, a reformed gas channel tube, and is filled with, for example, alumina (Al 2 O 3 ) balls as a heat transfer promoting material. A reforming catalyst tube filled with a reforming catalyst is formed between the innermost tube 1 and the inner tube 2, and a mixed gas of a raw material gas and steam flows through the reforming catalyst tube from above. The same heat transfer promoting material as described above may be filled on the inlet side of the mixed gas in the reforming catalyst cylinder, and the same applies to embodiments below this point. A combustion catalyst tube filled with a combustion catalyst is formed between the inner tube 2 and the inner tube 3, and fuel gas and air are passed from below the combustion catalyst tube.

【0023】内管3と最外郭管4の間で燃焼排ガス流路
筒が構成され、この燃焼排ガス流路筒内に水を流通させ
る中空コイル5が配置されている。中空コイル5は例え
ば内管3の外面に螺旋状に巻き付けることにより配置さ
れる。図3中、6は燃料ガス導入管、7は空気導入管、
8は内管3に設けられた燃焼触媒筒と燃焼排ガス流路筒
との間の連通孔、9は燃焼排ガス導出管、10は水導入
管、11は水蒸気供給管、12は原料ガス導入管、13
は改質触媒筒と改質ガス流路筒と間の連通孔、14は改
質ガス導出管である。
A flue gas passage tube is formed between the inner tube 3 and the outermost tube 4, and a hollow coil 5 for circulating water is arranged in the flue gas passage tube. The hollow coil 5 is disposed by, for example, spirally winding the outer surface of the inner tube 3. In FIG. 3, 6 is a fuel gas introduction pipe, 7 is an air introduction pipe,
Reference numeral 8 denotes a communication hole between the combustion catalyst tube provided in the inner tube 3 and the flue gas passage tube, 9 denotes a flue gas outlet tube, 10 denotes a water inlet tube, 11 denotes a steam supply tube, and 12 denotes a raw material gas inlet tube. , 13
Is a communication hole between the reforming catalyst cylinder and the reformed gas flow path cylinder, and 14 is a reformed gas outlet pipe.

【0024】〈操作例〉操作に際しては、燃料ガス及び
空気を燃料ガス導入管6、空気導入管7を通して燃焼触
媒筒に導入する。燃料ガスとしては、操作(起動)当初
水素ガス(高純度である必要はない)を使用し、燃焼触
媒の温度を400〜450℃程度まで加熱した後、都市
ガス、LPガス等の炭化水素(HC)系の燃料ガスに切
り換えて燃焼させる。同時に、水導入管10から水すな
わち蒸留水やイオン交換水などが供給される。燃焼触媒
筒中で生成した燃焼ガスは、連通孔8を通して燃焼排ガ
ス流路筒内を流通し、ここでコイル5内を流れる水を加
熱して水蒸気を発生させた後、燃焼排ガス導出管9から
排出される。生成した水蒸気は水蒸気供給管11を介し
て原料ガスに供給され混合される。
<Operation Example> In operation, fuel gas and air are introduced into the combustion catalyst tube through the fuel gas introduction pipe 6 and the air introduction pipe 7. As a fuel gas, hydrogen gas (it is not necessary to have high purity) is used at the beginning of operation (starting), and after heating the temperature of the combustion catalyst to about 400 to 450 ° C., hydrocarbons such as city gas and LP gas ( The fuel is switched to HC) -based fuel gas and burned. At the same time, water, i.e., distilled water or ion-exchanged water, is supplied from the water introduction pipe 10. The combustion gas generated in the combustion catalyst cylinder flows through the combustion exhaust gas channel cylinder through the communication hole 8, where the water flowing in the coil 5 is heated to generate steam, and then discharged from the combustion exhaust gas outlet pipe 9. Is done. The generated steam is supplied to and mixed with the source gas through the steam supply pipe 11.

【0025】原料ガスは原料ガス導入管12に供給さ
れ、水蒸気供給管11からの水蒸気と混合され、改質触
媒筒に供給される。原料ガス、水蒸気及び改質触媒筒中
の改質触媒は、内管2を介し、燃焼触媒筒で発生した熱
により加熱される。燃焼触媒筒が内管2を介して改質触
媒筒を囲んでいるので、燃焼触媒筒で発生した熱を効率
よく改質触媒筒へ伝えることができる。この点は以下の
態様例でも同様である。原料ガスは、改質触媒筒中の改
質触媒による接触作用により水蒸気と反応して水素を主
成分とする改質ガスとなり、連通孔13を経て最内管1
内すなわち改質ガス流路筒を上昇し、改質ガス導出管1
4から取り出される。
The raw material gas is supplied to a raw material gas introduction pipe 12, mixed with steam from a steam supply pipe 11, and supplied to a reforming catalyst tube. The raw material gas, steam and the reforming catalyst in the reforming catalyst cylinder are heated by the heat generated in the combustion catalyst cylinder via the inner pipe 2. Since the combustion catalyst cylinder surrounds the reforming catalyst cylinder via the inner pipe 2, heat generated in the combustion catalyst cylinder can be efficiently transmitted to the reforming catalyst cylinder. This is the same in the following embodiments. The raw material gas reacts with steam by the contact action of the reforming catalyst in the reforming catalyst cylinder to become a reformed gas containing hydrogen as a main component.
Inside, that is, the reformed gas passage tube, and the reformed gas outlet pipe 1
4

【0026】《態様例2》図4は本発明(2)の改質反
応器の態様を縦断面図として示す図である。最内管21
から最外郭管25までの5重管として構成される。5重
管の上部及び下部は蓋がされ、各管及び蓋はステンレス
鋼等の材料で構成される。最内管21の内部は改質ガス
を流通させるためのスペースすなわち改質ガス流路筒で
あり、伝熱促進材として例えばアルミナ(Al23)ボ
ールが充填されている。最内管21と内管22の間に改
質触媒が充填された改質触媒筒が構成されている。該改
質触媒筒にはその上方から原料ガスと水蒸気の混合ガス
が通される。また内管22と内管23の間に燃焼触媒が
充填された燃焼触媒筒が構成され、その下部から燃料ガ
スと空気が通される。
<< Embodiment 2 >> FIG. 4 is a longitudinal sectional view showing an embodiment of the reforming reactor of the present invention (2). Innermost tube 21
To the outermost tube 25. The upper and lower parts of the quintuple pipe are covered, and each pipe and lid is made of a material such as stainless steel. The inside of the innermost tube 21 is a space for allowing the reformed gas to flow, that is, a reformed gas flow tube, and is filled with, for example, alumina (Al 2 O 3 ) balls as a heat transfer promoting material. A reforming catalyst tube filled with a reforming catalyst is formed between the innermost tube 21 and the inner tube 22. A mixed gas of a raw material gas and steam is passed through the reforming catalyst cylinder from above. Further, a combustion catalyst tube filled with a combustion catalyst is formed between the inner pipe 22 and the inner pipe 23, and a fuel gas and air are passed from a lower portion thereof.

【0027】内管23は多数の連通孔を有する管すなわ
ち多孔管として構成され、また内管23と内管24との
間に空気流通用のスペースが設けられる。本態様例はこ
の点で態様例1の装置(図3参照)をさらに改善したも
のである。これにより空気が多孔管の連通孔を通して燃
焼触媒筒の周囲から燃焼触媒筒内に均一に分散して供給
されるので、局部加熱が防止され、燃焼触媒層の温度分
布を均一化することができる。またこれにより、水蒸気
改質反応器の起動時間をさらに短縮することができる。
The inner tube 23 is formed as a tube having a large number of communicating holes, that is, a perforated tube, and a space for air circulation is provided between the inner tube 23 and the inner tube 24. In this respect, the present embodiment is a further improvement of the device of embodiment 1 (see FIG. 3). As a result, air is uniformly dispersed and supplied from the periphery of the combustion catalyst tube into the combustion catalyst tube through the communication hole of the perforated tube, so that local heating can be prevented and the temperature distribution of the combustion catalyst layer can be made uniform. . In addition, the start-up time of the steam reforming reactor can be further reduced.

【0028】内管24と最外郭管25の間で燃焼排ガス
流路筒が構成され、この燃焼排ガス流路筒内に水を流通
させる中空コイル26が配置されている。中空コイル2
6は例えば内筒24の外面に螺旋状に巻き付けることに
より配置される。図4中、27は燃料ガス導入管、28
は空気導入管、29は内管24に設けられた燃焼触媒筒
と燃焼排ガス流路筒との間の連通孔、30は燃焼排ガス
導出管、31は水導入管、32は水蒸気供給管、33は
原料ガス導入管、34は最内管21に設けられた改質触
媒筒と改質ガス流路との間の連通孔、35は改質ガス導
出管である。操作は態様例1の場合と同様にして実施さ
れる。
A flue gas passage tube is formed between the inner tube 24 and the outermost tube 25, and a hollow coil 26 for circulating water is arranged in the flue gas passage tube. Hollow coil 2
6 is disposed by, for example, spirally winding the outer surface of the inner cylinder 24. In FIG. 4, 27 is a fuel gas introduction pipe,
Is an air introduction pipe, 29 is a communication hole between the combustion catalyst tube and the combustion exhaust gas passage tube provided in the inner tube 24, 30 is a combustion exhaust gas outlet tube, 31 is a water introduction tube, 32 is a steam supply tube, 33 Is a source gas introduction pipe, 34 is a communication hole between the reforming catalyst tube provided in the innermost pipe 21 and the reformed gas flow path, and 35 is a reformed gas outlet pipe. The operation is performed in the same manner as in the first embodiment.

【0029】《態様例3》図5は本発明(3)の改質反
応器の態様例を縦断面図として示す図である。本例は、
燃料ガスの燃焼について、図3における燃焼触媒筒にお
ける燃焼に加えて、起動時用のバーナ(起動バーナ)を
併置した例である。最内管の内部にバーナ及び燃焼ガス
の流通路を設ける。最内管41から最外郭管45までの
5重管として構成される。5重管の上部及び下部は蓋が
され、各管及び蓋はステンレス鋼等の材料で構成され
る。最内管41の内部はバーナ兼燃焼ガスの流通路筒で
あり、これを囲んで内管42が配置される。最内管41
と内管42の間に改質ガスを流通させるためのスペース
すなわち改質ガス流路筒が構成され、伝熱促進材として
例えばアルミナ(Al23)ボールが充填される。内管
42と内管43の間に改質触媒が充填された改質触媒筒
が構成される。該改質触媒筒にはその上方から原料ガス
と水蒸気の混合ガスが通される。また内管43と内管4
4の間に燃焼触媒が充填された燃焼触媒筒が構成され、
その下方から燃料ガスと空気が通される。
<< Embodiment 3 >> FIG. 5 is a longitudinal sectional view showing an embodiment of the reforming reactor of the present invention (3). In this example,
In the combustion of the fuel gas, in addition to the combustion in the combustion catalyst tube in FIG. 3, a burner for start-up (start-up burner) is provided. A burner and a combustion gas flow path are provided inside the innermost pipe. It is configured as a quintuple pipe from the innermost pipe 41 to the outermost pipe 45. The upper and lower parts of the quintuple pipe are covered, and each pipe and lid is made of a material such as stainless steel. The inside of the innermost tube 41 is a burner / combustion gas flow passage tube, around which an inner tube 42 is arranged. Innermost tube 41
A space for flowing the reformed gas, that is, a reformed gas flow path cylinder is formed between the inner pipe 42 and the inner pipe 42, and is filled with, for example, alumina (Al 2 O 3 ) balls as a heat transfer promoting material. A reforming catalyst tube filled with a reforming catalyst is formed between the inner pipe 42 and the inner pipe 43. A mixed gas of a raw material gas and steam is passed through the reforming catalyst cylinder from above. Also, the inner pipe 43 and the inner pipe 4
4, a combustion catalyst tube filled with a combustion catalyst is formed,
Fuel gas and air are passed from below.

【0030】内管44と最外郭管45の間で燃焼排ガス
流路筒が構成され、この燃焼排ガス流路筒内に水を流通
させる中空コイル46が配置されている。中空コイル4
6は例えば内管44の外面に螺旋状に巻き付けることに
より配置される。図5中、47、47´は燃料ガス導入
管、48、48´は空気導入管、49は内管44に設け
られた燃焼触媒筒と燃焼排ガス流路筒との間の連通孔、
50は燃焼排ガス導出管、51は水導入管、52は水蒸
気供給管、53は原料ガス導入管、54は改質触媒筒と
改質ガス流路筒との間の連通孔、55は改質ガス導出管
である。
A flue gas passage tube is formed between the inner tube 44 and the outermost tube 45, and a hollow coil 46 for circulating water is arranged in the flue gas passage tube. Hollow coil 4
6 is disposed by, for example, spirally winding the outer surface of the inner tube 44. In FIG. 5, 47 and 47 ′ are fuel gas introduction tubes, 48 and 48 ′ are air introduction tubes, 49 is a communication hole provided between the combustion catalyst tube and the combustion exhaust gas passage tube provided in the inner tube 44,
50 is a flue gas discharge pipe, 51 is a water introduction pipe, 52 is a steam supply pipe, 53 is a raw material gas introduction pipe, 54 is a communication hole between the reforming catalyst cylinder and the reformed gas flow path cylinder, and 55 is a reforming pipe. It is a gas outlet pipe.

【0031】〈操作例〉操作に際しては、燃料ガス及び
空気を燃料ガス導入管47、空気導入管48を通して起
動バーナに導入する。起動バーナでは燃料ガスを燃焼さ
せ、その輻射伝熱により改質ガス筒及び改質触媒を加熱
するとともに、この燃焼ガスが内管41中を下方へ流通
した後、燃焼触媒筒に供給される。燃焼触媒筒では、燃
焼排ガスの顕熱により燃焼触媒の温度を400〜450
℃程度まで加熱した後、燃料ガス導入管47′、空気導
入管48′から燃料ガス(HC)及び空気を導入し、燃
焼触媒で燃焼を開始する。同時に燃料ガス導入管47、
空気導入管48からの燃料ガス及び空気の供給を停止す
る。これにより、水素ガスの供給が不可能な場合でも、
例えば電気ヒータを備えることなく、起動ができる。
<Operation Example> In operation, fuel gas and air are introduced into the starting burner through the fuel gas introduction pipe 47 and the air introduction pipe 48. In the starting burner, fuel gas is burned, the reformed gas cylinder and the reforming catalyst are heated by the radiant heat transfer, and this combustion gas is supplied to the combustion catalyst tube after flowing down through the inner pipe 41. In the combustion catalyst tube, the temperature of the combustion catalyst is set to 400 to 450 by the sensible heat of the combustion exhaust gas.
After heating to about ° C, fuel gas (HC) and air are introduced from the fuel gas introduction pipe 47 'and the air introduction pipe 48', and combustion is started by the combustion catalyst. At the same time, the fuel gas introduction pipe 47,
The supply of the fuel gas and the air from the air introduction pipe 48 is stopped. By this, even if supply of hydrogen gas is impossible,
For example, it can be started without an electric heater.

【0032】燃焼触媒筒の燃焼ガスは、連通孔49を経
て燃焼排ガス流路筒に流通させ、ここでコイル6内を流
れる水を加熱して水蒸気を発生させた後、燃焼排ガス導
出管50から排出される。水導入管51から水が供給さ
れ、コイル46内で加熱されて水蒸気となり、水蒸気供
給管52を介して原料ガスに供給、混合される。原料ガ
スは、原料ガス導入管53から導入され、水蒸気供給管
52からの水蒸気と混合されて改質触媒筒に供給され
る。原料ガスは、ここで燃焼触媒筒で生成した燃焼熱に
より加熱され、改質触媒の接触作用により水蒸気と反応
して水素を主成分とする改質ガスとなり、連通孔54を
通して改質ガス流路筒に入り、その中を上昇して改質ガ
ス導出管55から取り出される。
The combustion gas from the combustion catalyst tube is circulated through the communication hole 49 to the combustion exhaust gas passage tube, where water flowing in the coil 6 is heated to generate steam, and then the combustion exhaust gas is discharged from the combustion exhaust gas outlet pipe 50. Is discharged. Water is supplied from the water introduction pipe 51, heated in the coil 46 to be steam, and supplied to and mixed with the raw material gas through the steam supply pipe 52. The raw material gas is introduced from a raw material gas introduction pipe 53, mixed with steam from a steam supply pipe 52, and supplied to the reforming catalyst cylinder. The raw material gas is heated by the combustion heat generated in the combustion catalyst tube and reacts with steam by the contact action of the reforming catalyst to become a reformed gas containing hydrogen as a main component. It enters the cylinder, rises inside it, and is taken out from the reformed gas outlet pipe 55.

【0033】《態様例4》図6は本発明(4)の改質反
応器の態様例を縦断面図として示す図である。本例は、
燃料ガスの燃焼について、図5の例と同じく燃焼触媒筒
における燃焼に加えて、バーナによる燃焼を併用した例
である。最内管の内部にバーナ及び燃焼ガスの流通路を
設ける。最内管61から最外郭管66までの6重管とし
て構成される。6重管の上部及び下部は蓋がされ、各管
及び蓋はステンレス鋼等の材料で構成される。最内管6
1の内部はバーナ兼燃焼ガスの流通路筒であり、これを
囲んで内管62が配置される。最内管61と内管62の
間に改質ガスを流通させるためのスペースすなわち改質
ガス流路筒が構成され、伝熱促進材として例えばアルミ
ナ(Al23)ボールが充填される。
<< Embodiment 4 >> FIG. 6 is a longitudinal sectional view showing an embodiment of the reforming reactor of the present invention (4). In this example,
The combustion of the fuel gas is an example in which combustion by a burner is used in addition to the combustion in the combustion catalyst tube as in the example of FIG. A burner and a combustion gas flow path are provided inside the innermost pipe. It is configured as a six-layer pipe from the innermost pipe 61 to the outermost pipe 66. The upper and lower parts of the six tubes are covered, and each tube and the cover is made of a material such as stainless steel. Innermost tube 6
The inside of 1 is a burner / combustion gas flow passage tube around which an inner tube 62 is arranged. A space for flowing the reformed gas, that is, a reformed gas flow path tube is formed between the innermost tube 61 and the inner tube 62, and is filled with, for example, alumina (Al 2 O 3 ) balls as a heat transfer promoting material.

【0034】内管62と内管63の間に改質触媒が充填
された改質触媒筒が構成され、該改質触媒筒にはその上
方から原料ガスと水蒸気の混合ガスが通される。また内
管63と内管64の間に燃焼触媒が充填された燃焼触媒
筒が構成されている。この燃焼触媒筒にはその下方から
燃料ガスと空気が通される。内管64は多数の連通孔を
有する管すなわち多孔管として構成され、内管64と内
管65の間に空気流通用のスペース、すなわち空気供給
筒が設けられる。本態様例はこの点で態様例3の装置
(図5参照)をさらに改善したものである。これにより
空気が多孔管の連通孔を通して燃焼触媒筒の周囲から燃
焼触媒筒内に均一に分散して供給されるので、局部加熱
が防止され、燃焼触媒層の温度分布を均一化することが
できる。また、これにより、改質反応器の起動時間を短
縮することができる。
A reforming catalyst tube filled with a reforming catalyst is formed between the inner tube 62 and the inner tube 63, and a mixed gas of a raw material gas and steam flows from above the reforming catalyst tube. Further, a combustion catalyst tube filled with a combustion catalyst is formed between the inner pipe 63 and the inner pipe 64. Fuel gas and air are passed through the combustion catalyst tube from below. The inner tube 64 is configured as a tube having a large number of communication holes, that is, a perforated tube, and a space for air circulation, that is, an air supply cylinder is provided between the inner tube 64 and the inner tube 65. In this respect, the present embodiment is a further improvement of the device of embodiment 3 (see FIG. 5). As a result, air is uniformly dispersed and supplied from the periphery of the combustion catalyst tube into the combustion catalyst tube through the communication hole of the perforated tube, so that local heating can be prevented and the temperature distribution of the combustion catalyst layer can be made uniform. . In addition, this makes it possible to shorten the startup time of the reforming reactor.

【0035】内管65と最外郭管66との間で燃焼排ガ
ス流路筒が構成され、この燃焼排ガス流路筒内に水を流
通させる中空コイル67が配置される。中空コイル67
は例えば内筒65の外面に螺旋状に巻き付けることによ
り配置される。図6中、68、68´は燃料ガス導入
管、69、69´は空気導入管、70は内管65に設け
られた燃焼触媒筒と燃焼排ガス流路筒との間の連通孔、
71は燃焼排ガス導出管、72は水導入管、73は水蒸
気供給管、74は原料ガス導入管、75は改質触媒筒と
改質ガス流路との間の連通孔、76は改質ガス導出管で
ある。操作は態様例3の場合と同様にして実施される。
A flue gas passage tube is formed between the inner tube 65 and the outermost tube 66, and a hollow coil 67 for flowing water is arranged in the flue gas passage tube. Hollow coil 67
Is disposed, for example, by spirally winding the outer surface of the inner cylinder 65. 6, 68 and 68 'are fuel gas introduction pipes, 69 and 69' are air introduction pipes, 70 is a communication hole provided between the combustion catalyst tube and the combustion exhaust gas flow tube provided in the inner tube 65,
71 is a flue gas discharge pipe, 72 is a water introduction pipe, 73 is a steam supply pipe, 74 is a raw material gas introduction pipe, 75 is a communication hole between the reforming catalyst cylinder and the reformed gas flow path, and 76 is a reformed gas It is an outlet pipe. The operation is performed in the same manner as in the third embodiment.

【0036】[0036]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

【0037】《実施例1》図4の水蒸気改質反応器を使
用して原料ガスの水蒸気改質試験を実施した。改質反応
器の規模は、最外郭管の外直径=150mm、各管の高
さ=350mm、各管間の幅(すなわち各筒の幅)=1
0〜15mm、改質ガス流路筒内径=40mmとした。
最外郭管の外直径(=150mm)からこれらの幅を差
し引いたその余の幅は各管の厚みである。改質触媒筒に
は市販の改質触媒(アルミナにニッケルを担持させた触
媒)を充填し、燃焼触媒筒には市販の燃焼触媒(アルミ
ナに白金を担持させた触媒)を充填した。
Example 1 A steam reforming test of a raw material gas was performed using the steam reforming reactor shown in FIG. The scale of the reforming reactor is as follows: outer diameter of the outermost tube = 150 mm, height of each tube = 350 mm, width between each tube (that is, width of each tube) = 1.
0 to 15 mm, and the inner diameter of the reformed gas channel cylinder was 40 mm.
The remaining width obtained by subtracting these widths from the outer diameter of the outermost tube (= 150 mm) is the thickness of each tube. The reforming catalyst tube was filled with a commercially available reforming catalyst (a catalyst in which nickel was supported on alumina), and the combustion catalyst tube was filled with a commercially available combustion catalyst (a catalyst in which platinum was supported on alumina).

【0038】燃料ガス及び原料ガスとして共に都市ガス
(13A)を用い、スチーム(水蒸気)比を3.0とな
るようにした。燃料ガス流量=7.4mol/h、空気
流量=83.0mol/h、原料ガス流量=13.4m
ol/hである。この結果、0.01MPaG(0.1
kg/cm2G)の条件下、約150℃のスチームを安
定して生成できることが確認された。また反応温度67
0℃における生成改質ガス組成はH2=74.5%(容
量%、以下同じ)、CO=10.6%、CO2=11.
8%、CH4=3.1%であり、このとき、水素製造効
率は78.4%であった。またこのとき、燃焼排ガス導
出管すなわち燃焼排ガス出口での排ガス温度は321
℃、改質ガス導出管すなわち改質器出口の改質ガス温度
は334℃であった。
A city gas (13A) was used for both the fuel gas and the raw material gas, and the steam (steam) ratio was adjusted to 3.0. Fuel gas flow rate = 7.4 mol / h, air flow rate = 83.0 mol / h, source gas flow rate = 13.4 m
ol / h. As a result, 0.01 MPaG (0.1
It was confirmed that steam at about 150 ° C. could be generated stably under the conditions of kg / cm 2 G). Reaction temperature 67
The composition of the reformed gas produced at 0 ° C. was H 2 = 74.5% (volume%, the same applies hereinafter), CO = 10.6%, CO 2 = 11.0%.
8%, CH 4 = 3.1%, and at this time, the hydrogen production efficiency was 78.4%. At this time, the exhaust gas temperature at the flue gas outlet pipe, that is, the flue gas outlet is 321.
° C, the reformed gas outlet pipe, that is, the reformed gas temperature at the outlet of the reformer was 334 ° C.

【0039】《実施例2》図3及び図4に記載の各水蒸
気改質反応器を用い、実施例1と同様の操作で燃焼触媒
層の温度分布を計測した。燃焼触媒筒の最下部(6の部
位)から最上部(0の部位)までの等間隔6箇所の各部
位に温度センサーを配置し、各部位の温度を計測した。
図3の装置では、燃料ガスと空気は内管2と内管3間の
燃焼触媒筒の下部から供給される。一方、図4の装置で
は、燃料ガスは燃焼触媒筒の下部から供給され、空気は
燃焼触媒筒の周囲から多孔管23の連通孔を通して燃焼
触媒筒内に供給される。
Example 2 Using the respective steam reforming reactors shown in FIGS. 3 and 4, the temperature distribution of the combustion catalyst layer was measured in the same manner as in Example 1. Temperature sensors were arranged at six equally-spaced portions from the lowermost portion (portion 6) to the uppermost portion (portion 0) of the combustion catalyst tube, and the temperature of each portion was measured.
In the apparatus shown in FIG. 3, the fuel gas and the air are supplied from the lower part of the combustion catalyst tube between the inner pipe 2 and the inner pipe 3. On the other hand, in the apparatus shown in FIG. 4, the fuel gas is supplied from the lower portion of the combustion catalyst tube, and the air is supplied from the periphery of the combustion catalyst tube into the combustion catalyst tube through the communication hole of the perforated tube 23.

【0040】図7、図8は上記計測の結果を示す図であ
り、図7は図3の装置の場合、図8は図4の装置の場合
である。図7、図8中、矢印(←)は燃料ガスの供給方
向を示している。図7のとおり、図3の装置では、燃焼
触媒筒すなわち燃焼触媒層の温度は、最下部(図7中6
の部位)で900℃程度であり、以降上部に行くに従い
漸次低下し、最上部(図7中0の部位)では370℃程
度まで低下している。これに対して、図8のとおり、図
4の装置では、燃焼触媒筒すなわち燃焼触媒層の温度
は、図8中5の部位で640℃程度であり、以降上部に
行くに従い僅かに上昇し、図8中、3の部位以降僅かに
下降するが、最上部(図8中0の部位)でも560℃程
度を示し、図3の装置の場合に比べて、燃焼触媒層の温
度分布が全体として均一化していることが分かる。
FIGS. 7 and 8 show the results of the above measurement. FIG. 7 shows the case of the apparatus of FIG. 3, and FIG. 8 shows the case of the apparatus of FIG. 7 and 8, the arrow (←) indicates the fuel gas supply direction. As shown in FIG. 7, in the apparatus of FIG. 3, the temperature of the combustion catalyst tube, that is, the temperature of the combustion catalyst layer is lowermost (6 in FIG. 7).
) Is about 900 ° C., then gradually decreases toward the top, and drops to about 370 ° C. at the top (the part at 0 in FIG. 7). On the other hand, as shown in FIG. 8, in the apparatus of FIG. 4, the temperature of the combustion catalyst tube, that is, the temperature of the combustion catalyst layer is about 640 ° C. at the position 5 in FIG. In FIG. 8, the temperature slightly lowers after the portion 3, but the uppermost portion (the portion 0 in FIG. 8) also shows about 560 ° C., and the temperature distribution of the combustion catalyst layer as a whole is lower than that of the apparatus of FIG. It can be seen that it is uniform.

【0041】[0041]

【発明の効果】本発明によれば、燃料電池用水蒸気改質
反応器について、該改質反応器と水蒸気発生器を一体化
することにより、装置をコンパクト化するとともに、エ
ネルギーロスとなる放熱量を格段に低減させることがで
きる。また、燃焼触媒筒へ供給する空気を燃焼触媒筒の
周囲から供給するようにすることで改質触媒層の温度分
布が全体として均一化し、改質触媒の作用を均一化する
ことができ、これによって局部加熱を防止し、改質反応
器の起動時間を短縮することができる。また、燃焼触媒
筒に加え、バーナを併置することにより、改質反応器の
起動時間をさらに短縮することができる。
According to the present invention, the steam reforming reactor for a fuel cell can be made compact by integrating the reforming reactor and the steam generator, and the amount of heat radiation resulting in energy loss can be achieved. Can be significantly reduced. Further, by supplying the air to be supplied to the combustion catalyst tube from around the combustion catalyst tube, the temperature distribution of the reforming catalyst layer can be made uniform as a whole, and the action of the reforming catalyst can be made uniform. Thereby, local heating can be prevented, and the starting time of the reforming reactor can be shortened. Further, by arranging a burner in addition to the combustion catalyst tube, the start-up time of the reforming reactor can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の多重円筒方式改質反応器の態様例を縦断
面図として示す図。
FIG. 1 is a diagram showing an example of an embodiment of a conventional multi-cylindrical reforming reactor as a longitudinal sectional view.

【図2】水蒸気改質システムの一例を模式的に示す図。FIG. 2 is a diagram schematically showing an example of a steam reforming system.

【図3】本発明の態様例1を示す図(縦断面図)。FIG. 3 is a diagram showing a first embodiment of the present invention (longitudinal sectional view).

【図4】本発明の態様例2を示す図(縦断面図)。FIG. 4 is a view showing a second embodiment of the present invention (longitudinal sectional view).

【図5】本発明の態様例3を示す図(縦断面図)。FIG. 5 is a diagram showing a third embodiment of the present invention (longitudinal sectional view).

【図6】本発明の態様例4を示す図(縦断面図)。FIG. 6 is a diagram showing a fourth embodiment of the present invention (longitudinal sectional view).

【図7】実施例2の結果を示す図。FIG. 7 shows the results of Example 2.

【図8】実施例2の結果を示す図。FIG. 8 shows the results of Example 2.

【符号の説明】[Explanation of symbols]

1、21、41、61 最内管 4、25、45、66 最外郭管 5、26、46、67 中空コイル 6、27、47、47´、68、68´ 燃料ガス導入
管 7、28、48、48´、69、69´ 空気導入管 8、29、49、70 燃焼触媒筒と燃焼排ガス流路筒
との間の連通孔 9、30、50、71 燃焼排ガス導出管 10、31、51、72 水導入管 11、29、52、73 水蒸気供給管 12、33、47、74 原料ガス導入管 13、34、54、75 改質触媒筒と改質ガス流路と
の間の連通孔 14、35、55、76 改質ガス導出管
1, 21, 41, 61 Innermost tube 4, 25, 45, 66 Outermost tube 5, 26, 46, 67 Hollow coil 6, 27, 47, 47 ', 68, 68' Fuel gas introduction tube 7, 28, 48, 48 ', 69, 69' Air inlet tube 8, 29, 49, 70 Communicating hole 9, 30, 50, 71 between combustion catalyst tube and combustion exhaust gas passage tube Combustion exhaust gas outlet tube 10, 31, 51 , 72 Water introduction pipe 11, 29, 52, 73 Steam supply pipe 12, 33, 47, 74 Raw material gas introduction pipe 13, 34, 54, 75 Communication hole 14 between reforming catalyst cylinder and reformed gas flow path 14 , 35,55,76 Reformed gas outlet pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】同心状に間隔を置いて配置された多重管で
構成された多重円筒からなり、該多重円筒の最内筒から
順次、改質ガス流路筒、改質触媒筒、燃料ガスを燃焼さ
せて該改質触媒筒に熱を給与する燃焼触媒筒及び燃焼排
ガス流路筒を設けるとともに、該燃焼排ガス流路筒内に
水を流通させる中空コイルを配置し、燃焼排ガスと中空
コイル内を流れる水を熱交換させることにより水蒸気を
発生させ、該水蒸気を原料ガスとともに改質触媒筒に供
給するようにしてなることを特徴とする燃料電池用水蒸
気改質反応器。
1. A reformed gas flow path tube, a reforming catalyst tube, and a fuel gas, which are arranged in order from the innermost tube of the multi-cylinder, comprising a plurality of tubes arranged concentrically at intervals. A combustion catalyst tube and a combustion exhaust gas channel tube for burning heat and supplying heat to the reforming catalyst tube, and a hollow coil for circulating water in the combustion exhaust gas channel tube. A steam reforming reactor for a fuel cell, characterized in that steam is generated by heat-exchanging water flowing through the inside, and the steam is supplied to a reforming catalyst tube together with a raw material gas.
【請求項2】同心状に間隔を置いて配置された多重管で
構成された多重円筒からなり、該多重円筒の最内筒から
順次、改質ガス流路筒、改質触媒筒、燃料ガスを燃焼さ
せて該改質触媒筒に熱を給与する燃焼触媒筒、該燃焼触
媒筒の外周面から空気を分散導入する空気供給筒及び燃
焼排ガス流路筒を設けるとともに、該燃焼排ガス流路筒
内に水を流通させる中空コイルを配置し、燃焼排ガスと
中空コイル内を流れる水を熱交換させることにより水蒸
気を発生させ、該水蒸気を原料ガスとともに改質触媒筒
に供給するようにしてなることを特徴とする燃料電池用
水蒸気改質反応器。
2. A reformed gas passage tube, a reforming catalyst tube, and a fuel gas, which are arranged in order from the innermost tube of the multi-cylinder, the tube being constituted by a plurality of tubes arranged concentrically at intervals. A combustion catalyst tube that burns and supplies heat to the reforming catalyst tube, an air supply tube that distributes and introduces air from the outer peripheral surface of the combustion catalyst tube, and a combustion exhaust gas passage tube. A hollow coil for circulating water is arranged in the inside, steam is generated by exchanging heat between the combustion exhaust gas and water flowing in the hollow coil, and the steam is supplied to the reforming catalyst cylinder together with the raw material gas. A steam reforming reactor for a fuel cell, comprising:
【請求項3】同心状に間隔を置いて配置された多重管で
構成された多重円筒からなり、該多重円筒の最内筒から
順次、バーナ兼燃焼ガスの流通路筒、改質ガス流路筒、
改質触媒筒、燃料ガスを燃焼させて該改質触媒筒に熱を
給与する燃焼触媒筒及び燃焼排ガス流路筒を設けるとと
もに、該燃焼排ガス流路内に水を流通させる中空コイル
を配置し、燃焼排ガスとコイル内を流れる水を熱交換さ
せることにより水蒸気を発生させ、該水蒸気を原料ガス
とともに改質触媒筒に供給するようにしてなることを特
徴とする燃料電池用水蒸気改質反応器。
3. A burner / combustion gas flow passage tube, a reformed gas passage, and a burner / combustion gas flow passage, each tube comprising a multi-cylinder composed of multi-tubes concentrically spaced from each other. Tube,
A reforming catalyst tube, a combustion catalyst tube for burning fuel gas to supply heat to the reforming catalyst tube and a flue gas flow channel tube are provided, and a hollow coil for circulating water in the flue gas flow channel is provided. A steam reforming reactor for a fuel cell, wherein steam is generated by exchanging heat between combustion exhaust gas and water flowing in the coil, and the steam is supplied to a reforming catalyst tube together with a raw material gas. .
【請求項4】同心状に間隔を置いて配置された多重管で
構成された多重円筒からなり、該多重円筒の最内筒から
順次、バーナ兼燃焼ガスの流通路筒、改質ガス流路筒、
改質触媒筒、燃料ガスを燃焼させて該改質触媒筒に熱を
給与する燃焼触媒筒、該燃焼触媒筒の外周面から空気を
分散導入する空気供給筒及び燃焼排ガス流路筒を設ける
とともに、該燃焼排ガス流路筒内に水を流通させる中空
コイルを配置し、燃焼排ガスとコイル内を流れる水を熱
交換させることにより水蒸気を発生させ、該水蒸気を原
料ガスとともに改質触媒筒に供給するようにしてなるこ
とを特徴とする燃料電池用水蒸気改質反応器。
4. A burner / combustion gas flow passage tube, a reformed gas passage, and a burner / combustion gas flow passage tube in order from the innermost tube of the multi-cylinder tube. Tube,
A reforming catalyst tube, a combustion catalyst tube for burning fuel gas to supply heat to the reforming catalyst tube, an air supply tube for dispersing and introducing air from the outer peripheral surface of the combustion catalyst tube, and a combustion exhaust gas passage tube. A hollow coil for circulating water is arranged in the flue gas flow passage tube, and steam is generated by exchanging heat between the flue gas and water flowing in the coil, and the steam is supplied to the reforming catalyst tube together with the raw material gas. A steam reforming reactor for a fuel cell, characterized in that:
【請求項5】上記改質ガス流路筒内に伝熱促進材を充填
してなることを特徴とする請求項1〜4のいずれかに記
載の燃料電池用水蒸気改質反応器。
5. The steam reforming reactor for a fuel cell according to claim 1, wherein a heat transfer promoting material is filled in the reformed gas flow path cylinder.
【請求項6】上記燃料電池が固体高分子型燃料電池であ
る請求項1〜5のいずれかに記載の燃料電池用水蒸気改
質反応器。
6. The steam reforming reactor for a fuel cell according to claim 1, wherein said fuel cell is a polymer electrolyte fuel cell.
JP34147299A 1999-11-30 1999-11-30 Vapor-reforming reactor for fuel cell Pending JP2001155756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34147299A JP2001155756A (en) 1999-11-30 1999-11-30 Vapor-reforming reactor for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34147299A JP2001155756A (en) 1999-11-30 1999-11-30 Vapor-reforming reactor for fuel cell

Publications (1)

Publication Number Publication Date
JP2001155756A true JP2001155756A (en) 2001-06-08

Family

ID=18346338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34147299A Pending JP2001155756A (en) 1999-11-30 1999-11-30 Vapor-reforming reactor for fuel cell

Country Status (1)

Country Link
JP (1) JP2001155756A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502938A (en) * 2002-06-13 2006-01-26 ヌヴェラ フューエル セルズ インコーポレイテッド Preferential oxidation reactor temperature control
KR100551036B1 (en) * 2004-06-30 2006-02-13 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having the same
KR100582634B1 (en) 2004-10-15 2006-05-23 지에스퓨얼셀 주식회사 A Complex heat exchanging method of reformmatted gas for fuel cell and It's heat exchanging device
KR100632967B1 (en) 2004-10-15 2006-10-11 지에스퓨얼셀 주식회사 A Heat exchanging device of preferential oxidation part for fuel cell system
KR100667953B1 (en) * 2005-07-29 2007-01-11 삼성에스디아이 주식회사 Reformer and fuel cell system with the same
JP2008266125A (en) * 2007-04-24 2008-11-06 Samsung Sdi Co Ltd Fuel reforming apparatus, method of driving the apparatus and fuel cell system
JP2009078969A (en) * 2002-02-18 2009-04-16 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
US7687042B2 (en) 2004-11-29 2010-03-30 Samsung Sdi Co., Ltd Reformer of fuel cell system
KR101015506B1 (en) 2008-12-02 2011-02-16 삼성전자주식회사 Fuel reformer burner of fuel cell system
KR101030042B1 (en) 2004-06-07 2011-04-20 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having thereof
US8017088B2 (en) 2005-09-27 2011-09-13 Samsung Sdi Co., Ltd. Fuel reformer
KR101107116B1 (en) 2004-08-30 2012-01-30 삼성에스디아이 주식회사 Fuel cell system and reformer used thereto
JP2013067551A (en) * 2011-08-26 2013-04-18 IFP Energies Nouvelles Heat exchanger type reactor
KR101342234B1 (en) 2012-04-18 2013-12-16 현대하이스코 주식회사 Heat exchanger for fuel cell with high efficient recovery of waste heat
JP2014146578A (en) * 2013-01-30 2014-08-14 Honda Motor Co Ltd Fuel cell module
CN105840277A (en) * 2016-05-11 2016-08-10 王东亮 H2-SCR system for reforming alcohol water steam into hydrogen
DE102007039594B4 (en) * 2006-10-03 2017-08-03 Avl List Gmbh Energy generation unit with at least one high-temperature fuel cell
KR101866500B1 (en) 2016-11-14 2018-07-04 한국에너지기술연구원 Hydrogen production rector including carbon monoxide removing unit
CN114026721A (en) * 2019-07-10 2022-02-08 日立造船株式会社 Fuel cell system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078969A (en) * 2002-02-18 2009-04-16 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
JP2006502938A (en) * 2002-06-13 2006-01-26 ヌヴェラ フューエル セルズ インコーポレイテッド Preferential oxidation reactor temperature control
KR101030042B1 (en) 2004-06-07 2011-04-20 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having thereof
KR100551036B1 (en) * 2004-06-30 2006-02-13 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having the same
KR101107116B1 (en) 2004-08-30 2012-01-30 삼성에스디아이 주식회사 Fuel cell system and reformer used thereto
KR100582634B1 (en) 2004-10-15 2006-05-23 지에스퓨얼셀 주식회사 A Complex heat exchanging method of reformmatted gas for fuel cell and It's heat exchanging device
KR100632967B1 (en) 2004-10-15 2006-10-11 지에스퓨얼셀 주식회사 A Heat exchanging device of preferential oxidation part for fuel cell system
US7687042B2 (en) 2004-11-29 2010-03-30 Samsung Sdi Co., Ltd Reformer of fuel cell system
KR100667953B1 (en) * 2005-07-29 2007-01-11 삼성에스디아이 주식회사 Reformer and fuel cell system with the same
US7682587B2 (en) 2005-07-29 2010-03-23 Samsung Sdi Co., Ltd. Fuel cell reformer
US8017088B2 (en) 2005-09-27 2011-09-13 Samsung Sdi Co., Ltd. Fuel reformer
DE102007039594B4 (en) * 2006-10-03 2017-08-03 Avl List Gmbh Energy generation unit with at least one high-temperature fuel cell
JP2008266125A (en) * 2007-04-24 2008-11-06 Samsung Sdi Co Ltd Fuel reforming apparatus, method of driving the apparatus and fuel cell system
US8003269B2 (en) 2007-04-24 2011-08-23 Samsung Sdi Co., Ltd. Fuel reforming apparatus and its method of driving and fuel cell system including the apparatus
KR101015506B1 (en) 2008-12-02 2011-02-16 삼성전자주식회사 Fuel reformer burner of fuel cell system
JP2013067551A (en) * 2011-08-26 2013-04-18 IFP Energies Nouvelles Heat exchanger type reactor
KR101342234B1 (en) 2012-04-18 2013-12-16 현대하이스코 주식회사 Heat exchanger for fuel cell with high efficient recovery of waste heat
JP2014146578A (en) * 2013-01-30 2014-08-14 Honda Motor Co Ltd Fuel cell module
CN105840277A (en) * 2016-05-11 2016-08-10 王东亮 H2-SCR system for reforming alcohol water steam into hydrogen
CN105840277B (en) * 2016-05-11 2018-06-19 王东亮 It is alcohol steam reformed into hydrogen H2SCR system
KR101866500B1 (en) 2016-11-14 2018-07-04 한국에너지기술연구원 Hydrogen production rector including carbon monoxide removing unit
CN114026721A (en) * 2019-07-10 2022-02-08 日立造船株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
US6932958B2 (en) Simplified three-stage fuel processor
JP4145785B2 (en) Cylindrical steam reformer
JP4056770B2 (en) Solid oxide fuel cell system
JP2001155756A (en) Vapor-reforming reactor for fuel cell
JP2003327405A (en) Fuel reforming apparatus and method of starting same
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JP2009096705A (en) Reforming apparatus for fuel cell
JP4937076B2 (en) Reaction vessel and reactor
JP2002208426A (en) Reforming device for fuel cell
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
JP2000169102A (en) Fuel reformer
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JP2006076850A (en) Apparatus and method for reforming, and fuel cell system
JP2003187849A (en) Solid polymer fuel cell power generator
WO2005077820A1 (en) Fuel reformer
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JP4904867B2 (en) Fuel processor
TW201145663A (en) Reforming unit and fuel cell system
JP5329944B2 (en) Steam reformer for fuel cell
JP2004075435A (en) Fuel reforming device
WO2005077822A1 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JPH0335241B2 (en)
JP2001151502A (en) Fuel reforming device
KR101250418B1 (en) fuel processor of fuel cell
JP2002326805A (en) Reformer and fuel cell system which is equipped with this