JPS5825590A - Generating control method in hydraulic power plant - Google Patents

Generating control method in hydraulic power plant

Info

Publication number
JPS5825590A
JPS5825590A JP56122952A JP12295281A JPS5825590A JP S5825590 A JPS5825590 A JP S5825590A JP 56122952 A JP56122952 A JP 56122952A JP 12295281 A JP12295281 A JP 12295281A JP S5825590 A JPS5825590 A JP S5825590A
Authority
JP
Japan
Prior art keywords
water
load
level
river
watercourse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56122952A
Other languages
Japanese (ja)
Other versions
JPS637264B2 (en
Inventor
Tsugio Yoshikawa
吉川 次雄
Katsumi Senoo
妹尾 克已
Katsumi Sakaguchi
坂口 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56122952A priority Critical patent/JPS5825590A/en
Publication of JPS5825590A publication Critical patent/JPS5825590A/en
Publication of JPS637264B2 publication Critical patent/JPS637264B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/14Regulating, i.e. acting automatically by or of water level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To make generating operation maintainable so smoothly even if a watercourse quantity is below a turbine runner's rated flow, by detecting the decrease of the watercourse quantity through a lowering of a tank level, while automatically releasing a fixed quantity of load being preset in linkage with this tank level in order. CONSTITUTION:A lowering of a water level in an upper tank 2 stemming from a decrease of the quantity of watercourse Q is detected by a level detecting device 11 (M point) and a fixed quantity of a load X1 is released by a load control panel 10. With this, a governor immediately contacts the opening of a turbine guide vane, regulating the inflow rate and performing generating operation corresponding to the load, and the level of the upper tank 2 rises whereby a constant head H can be maintained. In addition, when it becomes such generating capacity as below the load of (P-X1) as the quantity of watercourse decreases, the fixed quantity of the load X1 is immediately released by way of the above phenomena and motions alike and the level of the upper tank 2 is restored to the former constant head H again. Upon repetitions of these processes, generating operation corresponding to the decrease of the quantity of watercourse can be maintained.

Description

【発明の詳細な説明】 本発明は水力発電所の発電制御方法に係り、特に、流れ
込み式の小型容量の水力発電所において、河川水量が水
車ランチの定格水量以下となった場合の発電制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation control method for a hydroelectric power plant, and in particular, a power generation control method for a run-of-river type small-capacity hydroelectric power plant when the river water volume is less than the rated water flow of a water turbine launch. Regarding.

小流量の河川を利用した大容量のダムを持たない水力発
電所における発電機単機定格容量は、その河川の最小水
量以下に決定されていることが多い。しかしながら予想
外に河川水量が減少した場合に、この現象を知らずにい
ると、水車用調速機は負荷に応じて水量を要求する機能
を備えているため、河川水量以上の水量を要求してしま
うという矛盾が起こり得る。すなわち、第1図において
、河川水量が水車ランチの定格水量B(この場合の発電
量Aが発電機単機定格発電量となる。なお、二点鎖線は
河川水量が持つ発電能力を示す。)以上の状態にあれば
理想的な発電が継続できるが、河川水量がB以下(例え
ばC)となった場合に、水車が持っている発電能力の限
界は実線で示す発電量曲線との交点Eであるが、この時
、発電限界以上のDの負荷が接続されていたとすると、
水車が要求する水量はFであるため、水車用調速機は負
荷りに応じてガイドベーンを開き水量Fを受は入れよう
とする。しかしながら河川水tliC(<F)であるた
め導水路内の水は急激に減少し回転速度の低下、コイル
の温度上昇が生じ最終的には発電不能となる。この様な
不具合を解消する手段として従来は、河川水量の減少を
検出して水車自身への流入水量を自動的に制限する機能
を水車用調速機に付加し、発電量を制限することにより
円滑な運転を継続していた。またこの発電量の減少に対
しては、他の発電所からの送電によりまかなう方法をと
っていた。
In hydroelectric power plants that utilize small-flow rivers and do not have large-capacity dams, the rated capacity of a single generator is often determined to be less than the minimum water flow of that river. However, if the river water volume decreases unexpectedly, if you are not aware of this phenomenon, the water turbine governor has a function that requests water volume according to the load, so if the river water volume decreases unexpectedly, it may not be possible to request a water volume greater than the river water volume. A contradiction may occur. That is, in Figure 1, the river water volume is equal to or greater than the rated water volume B of the water turbine launch (in this case, the power generation amount A is the rated power generation amount of a single generator. The two-dot chain line indicates the power generation capacity of the river water volume). Ideal power generation can be continued under the following conditions, but if the river water volume is below B (for example, C), the limit of the power generation capacity of the water turbine is at the intersection E with the power generation curve shown by the solid line. However, at this time, if a load of D that exceeds the power generation limit is connected,
Since the amount of water required by the water turbine is F, the water turbine governor opens the guide vanes according to the load to receive the amount of water F. However, since the river water is tliC (<F), the water in the water conduit rapidly decreases, causing a decrease in rotational speed and an increase in the temperature of the coil, eventually making it impossible to generate electricity. Conventionally, as a means to resolve such problems, a function was added to the water turbine governor to detect a decrease in the amount of river water and automatically limit the amount of water flowing into the turbine itself, thereby limiting the amount of power generated. As a result, smooth operation continued. In addition, this reduction in power generation was compensated for by transmission of electricity from other power plants.

しかしながら、上述の手段は負荷側を制限していないた
め、特に単独送電の場合、発電能力以上の負荷が接続さ
れていた時には前記のように、たちまち発電不能の状態
となり円滑な発電を継続できない欠点があった。
However, since the above-mentioned means do not limit the load side, especially in the case of independent power transmission, if a load exceeding the power generation capacity is connected, as mentioned above, power generation will immediately become impossible and smooth power generation cannot be continued. was there.

本発明の目的は、河川水量が水車ランナの定格水量以下
となった場合にも円滑な運転を継続できる発電制御方法
を提供するにある。
An object of the present invention is to provide a power generation control method that allows smooth operation to continue even when the amount of river water is less than the rated water amount of a water turbine runner.

このような目的を達成するために本発明は、河川水量が
水車ランナの定格水量以下となった場合に、発電能力以
上の負荷をかけないようにするため、河川水量の減少を
水槽水位の低下または他の手段で検出し、これと連動し
て、あらかじめ設定された一定量の負荷を自動的に順次
開放することにより、常に発−能力以下の負荷に制限し
、発電を円滑に継続できるようにしたものであり、以下
実施例により本発明を説明する。
To achieve this purpose, the present invention is designed to reduce the amount of water in the river by reducing the water level of the water tank in order to avoid applying a load that exceeds the power generation capacity when the amount of water in the river falls below the rated water amount of the turbine runner. Or, by detecting it by other means and automatically sequentially releasing a preset amount of load in conjunction with this, the load is always limited to less than the generation capacity and power generation can continue smoothly. The present invention will be explained below with reference to Examples.

第2図(a)〜(C)は本発明の一実施例の概念を示す
図であって、(a)図は発電系および負荷系を示す概略
図、(b)図は水槽を示す概略図、(C)図は負荷系を
示す概略図である。
FIGS. 2(a) to 2(C) are diagrams showing the concept of an embodiment of the present invention, in which FIG. 2(a) is a schematic diagram showing a power generation system and a load system, and FIG. 2(b) is a schematic diagram showing a water tank. Figures 1 and 2 (C) are schematic diagrams showing the load system.

河川から直接取水した水は導水路1へ導かれ、比較的小
容量の上部水槽2に入る。この水fM2から水車5が要
求する水量は水圧鉄管3、大口弁4を経て水車5に至り
、水車5に結合された発電機7を駆動して発電し、放水
路6へと排水される。
Water taken directly from a river is guided to a water conduit 1 and enters an upper water tank 2 having a relatively small capacity. The amount of water required by the water wheel 5 from this water fM2 reaches the water wheel 5 via the penstock 3 and the large mouth valve 4, drives the generator 7 connected to the water wheel 5 to generate electricity, and is drained into the spillway 6.

一方、水車5が要求する水量を越える部分はオーバーフ
ローとなり河川その他へ排水される。発電機7にて発電
された電力は送電線8により負荷設備9へ供給される。
On the other hand, the portion of the water exceeding the amount of water required by the water wheel 5 becomes an overflow and is drained into the river or elsewhere. Electric power generated by the generator 7 is supplied to load equipment 9 via a power transmission line 8.

送電線8と負荷設備9との間に本発明からなる負荷制御
盤10を設け、上部水槽2に設けた水位検出装置11か
らの信号により、あらかじめ区分された一定量の負荷(
x+  、 X2 。
A load control panel 10 according to the present invention is provided between the power transmission line 8 and the load equipment 9, and a predetermined amount of load (
x+, X2.

X3.x4 )を河川水量の減少に応じて順次開放でき
るものとする。
X3. x4) can be opened sequentially as the river water volume decreases.

以下、第3図を中心として発明の詳細な説明する。第2
図における負荷設備9へは他i=らの電力の供給が行な
われない場合、河川水量鎮カニ減少し、発電能力が負荷
Pより低下すると、水車発電機はあたかも過負荷の状態
となる。このため、調速機が水車ガイドベーンを開き、
より多くの水量を要求することになり、上部水桶水位は
急、激にイ氏下する。この水位の低下を水位検出装置1
1で検出(M点)シ、負荷制御盤10により直ちに一定
量の負荷X1を開放する。すると、調速機は直ちに水車
ガイドベーンの開度を縮少し、流入水量を制限し負荷に
応じた発電を行なうことになり、上部水槽水位は再び上
昇し定水位H(各水位、HlM、Lは第2図(b)も参
照)を保持すること力!できる。さらに河川水量が減少
して(、p−x、  )の負荷以下の発電能力となった
場合、上記同様の現尿・動作を杆て、直ちに一定量の負
荷X2を開放し、上部水槽水位を再び定水位Hに保持す
る。75−<して、これら一連のくり返しにより、河川
水量の減少に見合った発電を継接することができる。
The invention will now be described in detail with reference to FIG. 3. Second
If the other electric power is not supplied to the load equipment 9 in the figure, the river water flow rate will decrease and the power generation capacity will be lower than the load P, and the water turbine generator will be in an overloaded state. For this reason, the governor opens the turbine guide vanes,
As more water is required, the water level in the upper water tank drops suddenly and dramatically. The water level detection device 1 detects this drop in water level.
1 (point M), the load control panel 10 immediately releases a certain amount of load X1. Then, the speed governor immediately reduces the opening degree of the turbine guide vane, limits the amount of inflow water, and generates electricity according to the load, and the upper water tank water level rises again to the constant water level H (each water level, HlM, L (see also Figure 2(b)). can. If the river water volume further decreases and the power generation capacity becomes less than the load (, p-x, ), the same current operation as above is stopped, and a certain amount of load Maintain the constant water level H again. By repeating this series of steps, it is possible to generate power commensurate with the decrease in the amount of river water.

次に、第4図のブロック組図、および第5図、第6図の
回路図により具体例を説明する。
Next, a specific example will be explained with reference to the block diagram in FIG. 4 and the circuit diagrams in FIGS. 5 and 6.

上部水槽の水位が、水位M以上(第21s(a)(b)
 )になると、水位検出スイッチ3.3 M L −m
 bの接点が閉路し、補助リレー33X(このリレーは
手動復帰構造と−pQている。)および、第1段部分負
荷回路解列用断路器FFB1が動作する。
The water level in the upper water tank is equal to or higher than water level M (Article 21s(a)(b)
), the water level detection switch 3.3 M L -m
The contact b is closed, and the auxiliary relay 33X (this relay has a manual return structure -pQ) and the first stage partial load circuit disconnector FFB1 are operated.

FFB、1が動作すると、第6図に示す如く、第1段部
分負荷回路が開路される。第1段部分負荷回路が開略さ
れると、その分だけ負荷が無くなるので、ガイドベーン
が締め込まれ、水車への流入水量が減少するため、再び
、上部水槽の水位が上昇し始め、適正水位H以下の水位
にて通常運転を行なうことができる。
When FFB,1 operates, the first stage partial load circuit is opened, as shown in FIG. When the first stage partial load circuit is opened, the load is removed by that amount, so the guide vane is tightened and the amount of water flowing into the turbine is reduced, so the water level in the upper water tank starts to rise again and becomes appropriate. Normal operation can be performed at a water level below water level H.

しかしながら、ここで、FFB1が動作してから一定時
間を経過してもなお、上水槽水位が水位M以下にある場
合は、退時継電器T2の接点が時間経過によって閉路す
るため、第2段部分負荷回路解列用断路器FFB2が動
作し、第6図に示す如く、第2段部分負荷回路が開略し
、水車への流入水量が更ば減少し上部水槽の水位が再び
上昇し、適正運転を行なう。
However, here, if the water tank water level is still below the water level M even after a certain period of time has passed since FFB1 is activated, the contacts of the retirement relay T2 will close over time, so the second stage The disconnector FFB2 for disconnecting the load circuit operates, and as shown in Figure 6, the second stage partial load circuit is opened, the amount of water flowing into the turbine further decreases, and the water level in the upper water tank rises again, ensuring proper operation. Do the following.

ここで、FFB2が動作してから更に一定時間経過して
も上部水槽水位が水位M以下にあると、前記と同様に、
退時継電器T3が動作し、以下同様にして、第3段以降
、任意の段数まで順次負荷回路を開路して行く、なお、
各限時継電器T2〜T4は設定時間経過前に水位が元に
復帰すれば、自動的に解除されるようになっている。
Here, if the upper water tank water level remains below the water level M even after a certain period of time has passed since FFB2 started operating, as above,
The retiring relay T3 operates, and the load circuits are sequentially opened in the same manner from the third stage onwards, up to an arbitrary number of stages.
Each of the time-limited relays T2 to T4 is automatically released if the water level returns to its original level before the set time elapses.

また、上部水槽水位が、前述の水位M以下の任意の位置
に設定された水位り以下に達すると、水位検出スイッチ
33WL−1bの接点が閉路し、主機停止用保護リレー
86が動作することにより、主機を停止させる。なお、
FFB1〜FFB3j。
Furthermore, when the upper water tank water level reaches a water level set at an arbitrary position below the water level M mentioned above, the contact of the water level detection switch 33WL-1b is closed and the main engine stop protection relay 86 is activated. , stop the main engine. In addition,
FFB1 to FFB3j.

手動復帰となっている。Manual recovery is required.

一方、負荷に応じた必要流入水量が得られない場合は、
主機の回転速度が定格値以下となり、過励磁を防止すべ
く、低周波保h リレー37が動作し、前述の補助リレ
ー33X及びFFBIが動作する。
On the other hand, if the required amount of inflow water cannot be obtained according to the load,
The rotational speed of the main engine becomes below the rated value, and in order to prevent overexcitation, the low frequency h relay 37 operates, and the aforementioned auxiliary relay 33X and FFBI operate.

以上の嫌にして、河川水量の減少を水槽水位の定された
一定量の負荷を、順次自動的に開放することにより、河
川流量が水車ランチ定格水量以下となった時にも発電運
転を円滑かつ安全に継続することができる。。
In this way, by automatically releasing a certain amount of load based on the water tank water level in order to compensate for the decrease in river water volume, even when the river flow rate falls below the water turbine launch rated water volume, power generation operation can be carried out smoothly. It is safe to continue. .

なお、本発明は前記実施例に限定されない。すなわち、
上記実施例では、河川水量の減少検出手段として水槽水
位検出による方法を述べたが、河川水量を検出する手段
として直接水量を計測して、第1図に示す水量B以下の
発電能力の限界線との対応において、負荷側をこの限界
線以下に制御する方法もある。この方法によっても同様
の効果を得ることができる。
Note that the present invention is not limited to the above embodiments. That is,
In the above embodiment, a method using water tank water level detection was described as a means of detecting a decrease in river water volume, but as a means of detecting river water volume, direct measurement of water volume is also possible, and the power generation capacity limit line below water volume B shown in Fig. 1 is used. In response to this, there is also a method of controlling the load side below this limit line. Similar effects can be obtained by this method as well.

以上の様に、本発明によれば、河川水量が水車ランチの
定格水量以下となっても発電容量は小さくなるとはいう
ものの円滑な発電を期待できるため、予想される最小河
川水量以上の発電設備を設置することが可能となり、河
川水の大幅な電力エネルギー化が実現できる効果がある
As described above, according to the present invention, even if the river water volume falls below the rated water volume of the water turbine launch, smooth power generation can be expected, although the power generation capacity will be reduced. This has the effect of making it possible to significantly convert river water into electrical energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一定路差における河川水量とその河川水量を
利用して設置した水車・発電機の発電能力特性を説明し
たグラフである。第2図(a)は水力発電システムの全
体と本発明の位置付を示す概略図である。第2図(b)
、(C)は上記第2図(a)の部分拡大概略図である。 第3図は本発明の動作原理を示す線図である。第4図は
本発明のブロック線を示す。第5図及び第6図は本発明
の実施例を示す回路図である。 1・・・導水路、2・・・上部水槽、3・・・水圧鉄管
、4・・・入口弁、5・・・水車、6・・・放水路、7
・・・発電機、8・・・送電線、9・・・負荷設備、1
0・・・負荷制御盤、11・・・水位検出器、FFBI
〜4・・・部分負荷回路解列用断路器、T2.T3.T
4・・・タイマー(限時継電器)、86・・・主機停止
用保護リレー、37・・4低周波保護リレー、33x・
・・補助リレー、33ML−mb・・・水位検出スイッ
チ(部分負荷回路解列用)、33ML−4b・・・水位
検出スイッチ(主機停止用)。 代理人 弁理士 高橋明夫 ′:!J l 図 6 t6ノ 第3図 If15り
FIG. 1 is a graph illustrating the river water volume at a constant road difference and the power generation capacity characteristics of a water turbine/generator installed using the river water volume. FIG. 2(a) is a schematic diagram showing the entire hydroelectric power generation system and the positioning of the present invention. Figure 2(b)
, (C) is a partially enlarged schematic diagram of FIG. 2(a). FIG. 3 is a diagram illustrating the operating principle of the present invention. FIG. 4 shows the block lines of the present invention. 5 and 6 are circuit diagrams showing embodiments of the present invention. 1... Headrace channel, 2... Upper water tank, 3... Penstock, 4... Inlet valve, 5... Water turbine, 6... Discharge channel, 7
... Generator, 8... Power transmission line, 9... Load equipment, 1
0...Load control panel, 11...Water level detector, FFBI
~4... Disconnector for partial load circuit disconnection, T2. T3. T
4...Timer (time-limited relay), 86...Protection relay for main engine stop, 37...4 Low frequency protection relay, 33x...
...Auxiliary relay, 33ML-mb...Water level detection switch (for partial load circuit disconnection), 33ML-4b...Water level detection switch (for main engine stop). Agent Patent Attorney Akio Takahashi':! J l Figure 6 t6 Figure 3 If15ri

Claims (1)

【特許請求の範囲】[Claims] 1、河川水流れ込み式の水力発電所の発電制御方法にお
いて、河川水量の減少を水槽水位の低下または他の手段
で検出し、これと連動してあらかじめ設定された一定量
の複数の負荷を水槽水位に対応させて順次自動的に開放
し、河川流量が水車ランチ定格水量以下となった時にも
前記負荷を選択して発電を継続するようにしたことを特
徴とする水力発電所の発電制御方法。
1. In a power generation control method for a river run-of-river type hydroelectric power plant, a decrease in river water volume is detected by a drop in the water tank water level or by other means, and in conjunction with this, a preset amount of multiple loads is applied to the water tank. A power generation control method for a hydroelectric power plant, characterized in that the load is automatically opened sequentially in accordance with the water level, and the load is selected to continue power generation even when the river flow rate falls below the rated water flow of the turbine launch. .
JP56122952A 1981-08-07 1981-08-07 Generating control method in hydraulic power plant Granted JPS5825590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56122952A JPS5825590A (en) 1981-08-07 1981-08-07 Generating control method in hydraulic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56122952A JPS5825590A (en) 1981-08-07 1981-08-07 Generating control method in hydraulic power plant

Publications (2)

Publication Number Publication Date
JPS5825590A true JPS5825590A (en) 1983-02-15
JPS637264B2 JPS637264B2 (en) 1988-02-16

Family

ID=14848677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56122952A Granted JPS5825590A (en) 1981-08-07 1981-08-07 Generating control method in hydraulic power plant

Country Status (1)

Country Link
JP (1) JPS5825590A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225540A (en) * 1975-08-22 1977-02-25 Hitachi Ltd Two-wire-four-wire conversion circuit
JPS5347886A (en) * 1976-08-27 1978-04-28 Nasa Differential photoacoustic absorbance detecting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225540A (en) * 1975-08-22 1977-02-25 Hitachi Ltd Two-wire-four-wire conversion circuit
JPS5347886A (en) * 1976-08-27 1978-04-28 Nasa Differential photoacoustic absorbance detecting apparatus

Also Published As

Publication number Publication date
JPS637264B2 (en) 1988-02-16

Similar Documents

Publication Publication Date Title
US4430574A (en) Method for switching operation of water wheel or pump water wheel
JPS5825590A (en) Generating control method in hydraulic power plant
JPH0221558B2 (en)
CA3056974A1 (en) Improvements to hydraulic machines during grid disconnections
JP3404480B2 (en) Turbine control device
JP2839731B2 (en) Control method of hydroelectric power plant with discharge valve
JPS6273004A (en) Flow controller for feedwater of nuclear reactor
JPH09228942A (en) Control device for hydraulic power plant
JPH0660958B2 (en) Water supply controller for nuclear power plant
JPS59131707A (en) Control device of turbine by-pass valve
JPS62214202A (en) Load cutting-off device for power generation plant
JPS6275003A (en) Steam turbine speed control device
JP3669043B2 (en) Hydropower plant control equipment
JPS5822990A (en) Method of controlling nuclear power
JPS6138356B2 (en)
JPS5895992A (en) Controlling method for stop of synchronous generator
JPS6120685B2 (en)
JPS61295899A (en) Output controller with water level corrector
JPS6045706A (en) Turbine control device
JPH04236120A (en) Protective device for waterwheel generator
JPS59190697A (en) Recirculated flow rate control device
JPH0372886B2 (en)
JPH033617A (en) Reverse transmission preventive device for non-utility generation plant
JPS62281799A (en) Output power restriction system for hydraulic generator
JPS61282706A (en) Feed water controller for steam generating plant