JPH0660958B2 - Water supply controller for nuclear power plant - Google Patents

Water supply controller for nuclear power plant

Info

Publication number
JPH0660958B2
JPH0660958B2 JP63004536A JP453688A JPH0660958B2 JP H0660958 B2 JPH0660958 B2 JP H0660958B2 JP 63004536 A JP63004536 A JP 63004536A JP 453688 A JP453688 A JP 453688A JP H0660958 B2 JPH0660958 B2 JP H0660958B2
Authority
JP
Japan
Prior art keywords
water supply
conversion
reactor
water level
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63004536A
Other languages
Japanese (ja)
Other versions
JPH01180500A (en
Inventor
郭之 八木
昌英 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63004536A priority Critical patent/JPH0660958B2/en
Publication of JPH01180500A publication Critical patent/JPH01180500A/en
Publication of JPH0660958B2 publication Critical patent/JPH0660958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電プラントの給水制御装置に係り、
特に給水制御部の制御性能の向上に有効である給水制御
装置に関する。
TECHNICAL FIELD The present invention relates to a water supply control device for a nuclear power plant,
In particular, the present invention relates to a water supply control device that is effective in improving the control performance of the water supply control unit.

〔従来の技術〕[Conventional technology]

原子力発電プラントは、原子炉と、この原子炉で発生さ
せた蒸気が導入されて駆動するタービンおよび発電機
と、ここを出た蒸気を凝縮させる復水器と、この復水器
内の水を前記原子炉に返送して給水する給水ポンプを基
本構成要素とする。原子炉への給水ラインには、給水調
節弁が設けられている。この給水調節弁は、給水量制御
部から出力される開度要求信号により制御される。給水
量制御部は、例えば原子炉への給水流量と原子炉からタ
ービンへ導入される主蒸気流量の差であるミスマツチ量
を水位換算器よつて水位相当信号に換算し、この信号を
原子炉の水位計からの出力信号と加算器で加算し、その
結果値と原子炉水位設定値との差をP/I(比例積分演
算回路)に入力し、このP/Iから開度要求信号を前記
給水調節弁に出力する。ここで、水位換算器は、ゲイン
として一定の換算定数または換算関数が設定されてい
る。
A nuclear power plant consists of a reactor, a turbine and a generator driven by the steam generated in the reactor and driven by the reactor, a condenser for condensing the steam exiting the reactor, and the water in the condenser. The water supply pump that returns the water to the reactor and supplies water is the basic constituent element. A water supply control valve is provided on the water supply line to the reactor. The water supply control valve is controlled by an opening degree request signal output from the water supply amount control unit. The water supply amount control unit converts, for example, a mismatch amount, which is the difference between the water supply flow rate to the reactor and the main steam flow rate introduced from the reactor to the turbine, into a water level equivalent signal using a water level converter, and this signal The output signal from the water level meter is added by an adder, and the difference between the result value and the reactor water level set value is input to P / I (proportional integral calculation circuit), and the opening request signal is output from this P / I. Output to the water supply control valve. Here, in the water level converter, a constant conversion constant or conversion function is set as the gain.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術における給水制御装置は、水位換算器が定
格運転時に最適となるように一つのゲインを設定してい
たことから、過渡時や事故時のような負荷急変時には必
ずしも最適なゲインとなつておらず、制御性能が低下し
てしまうという問題があつた。
Since the water supply control device in the above-mentioned conventional technology has set one gain so that the water level converter is optimal during rated operation, it is not always the optimal gain during transient load or sudden load changes such as accidents. However, there is a problem that the control performance is deteriorated.

本発明の目的は、給水制御系のゲインを常に最適な値に
設定することのできる原子力発電プラントの給水制御装
置を提供することにある。
An object of the present invention is to provide a water supply control device for a nuclear power plant that can always set the gain of the water supply control system to an optimum value.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、原子炉への給水量を制御する給水量制御部を
備え、この給水量制御部は原子炉内の水位変動に関する
物理量を他の物理量に換算する換算部を有し、この換算
を経て前記給水量が定まる原子力発電プラントの給水制
御装置において、前記換算部は前記原子炉から供給され
る主蒸気の流量と前記原子炉に供給される給水の流量と
のミスマッチ量を前記水位変動に関する物理量として水
位相当信号に換算し、前記給水量制御部は前記水位相当
信号と前記原子炉の水位信号とを加算する加算器と、こ
の加算器による加算値と前記原子炉の水位設定値との差
が入力されて前記給水量をこの給水量を制御する給水制
御弁の弁開度として出力する比例積分演算回路とを有
し、前記換算部は前記換算定数または換算関数を換算量
を異ならせて複数有し、原子力発電プラントの負荷急変
時の急変検出信号により他の換算定数または換算関数に
切換え可能に形成したものである。
The present invention comprises a water supply amount control unit for controlling the water supply amount to the nuclear reactor, and this water supply amount control unit has a conversion unit for converting a physical quantity relating to water level fluctuation in the reactor into another physical quantity, and performing this conversion. In the water supply control device of the nuclear power plant in which the water supply amount is determined through the conversion unit, the conversion unit relates the water level fluctuation to the mismatch amount between the flow rate of the main steam supplied from the reactor and the flow rate of the supply water supplied to the reactor. Converted to a water level equivalent signal as a physical quantity, the water supply amount control unit of an adder for adding the water level equivalent signal and the water level signal of the reactor, the addition value by this adder and the water level set value of the reactor And a proportional-integral calculation circuit that outputs the water supply amount as a valve opening of a water supply control valve that controls the water supply amount, and the conversion unit changes the conversion amount of the conversion constant or conversion function. More than one , In which switchably formed in other conversion constant or translation function at the sudden change detection signal at the time of sudden load change of the nuclear power plant.

すなわち、主蒸気の流量と給水の流量とのミスマッチ量
を水位相当信号に換算するための換算定数または換算関
数を複数個用意して、プラントの運転状態により切り替
えるものである。
That is, a plurality of conversion constants or conversion functions for converting the amount of mismatch between the main steam flow rate and the feed water flow rate into a water level equivalent signal are prepared and switched according to the operating state of the plant.

〔作用〕[Action]

プラントが定格運転にあるときは、それに対応する換算
定数または換算関数によって給水制御部が動作し、負荷
急変時には、この状態に対応する他の換算定数または換
算関数によって給水制御部が動作し、過渡時や事故時で
あっても制御性能の低下を招くことがない。
When the plant is in rated operation, the water supply control unit operates with the corresponding conversion constant or conversion function, and when the load changes suddenly, the water supply control unit operates with another conversion constant or conversion function corresponding to this state, causing a transient The control performance is not deteriorated even at times or accidents.

本発明によれば、負荷遮断後に主蒸気の流量と給水の流
量とのミスマッチ量から換算される水位相当信号を大き
くすることができる。すなわち、原子炉の水位そのもの
の変動より、主蒸気の流量と給水の流量とのミスマッチ
量の方に重きを置いた制御がなされる。このため、制御
系の応答特性の差は小さく、引き続いて他の事象が生じ
た場合の耐力も有している。
According to the present invention, it is possible to increase the water level equivalent signal converted from the amount of mismatch between the main steam flow rate and the feed water flow rate after the load is cut off. That is, control is performed with more emphasis on the amount of mismatch between the flow rate of the main steam and the flow rate of the feed water, rather than the fluctuation of the water level itself of the reactor. For this reason, the difference in the response characteristics of the control system is small, and it has a proof stress when another event occurs subsequently.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は、沸騰水型原子力発電プラントの給水制御装置
へ本発明を適用した例である。沸騰水型原子力発電プラ
ントは、原子炉1で発生した蒸気を主蒸気配管8を介し
てタービン3へ運び、発電機2を回わすことにより発電
を行うものである。このとき、原子炉1内の冷却水は蒸
気となつて炉外に運び出されることから、原子炉1内の
冷却水を確保するために、発電機2を回わしたのちの冷
却水を復水器4から復水ポンプ5,給水ポンプ6を介し
て原子炉1内に補給している。
FIG. 1 is an example in which the present invention is applied to a water supply control device of a boiling water nuclear power plant. The boiling water nuclear power plant carries steam generated in the nuclear reactor 1 to the turbine 3 through the main steam pipe 8 and rotates the generator 2 to generate electric power. At this time, the cooling water in the reactor 1 is carried out to the outside of the reactor in the form of steam, so in order to secure the cooling water in the reactor 1, the cooling water after turning the generator 2 is condensed. The reactor 4 is replenished into the reactor 1 through the condensate pump 5 and the water supply pump 6.

このとき、原子炉1内の水位は、原子炉の安全性を確保
し、プラントの運転を安定に継続するために、ある一定
の範囲に制御する必要がある。給水制御部100は、こ
の機能を担うために設けられており、給水ポンプ6の出
口側に設置されている給水調節弁9の開度を、その出力
信号によつて制御することにより、給水流量を制御し、
最終的に原子炉1の水位の制御を行つている。
At this time, the water level in the nuclear reactor 1 needs to be controlled within a certain range in order to ensure the safety of the nuclear reactor and to stably continue the operation of the plant. The water supply control unit 100 is provided to perform this function, and controls the opening degree of the water supply control valve 9 installed on the outlet side of the water supply pump 6 by the output signal thereof to supply the water supply flow rate. Control the
Finally, the water level of the reactor 1 is controlled.

給水調節弁9の開度要求信号21は、基本的に原子炉水
位計11により測定した実水位22と原子炉水位設定値
60との差23を加算器24で求め、その信号をP/I
20のゲインにより処理することにより算出するもので
ある。しかしながら、実際には原子炉水位をより安定に
制御するために、給水流量計10と主蒸気流量計12で
測定した給水流量と主蒸気流量のミスマツチ量32を、
換算部である水位換算計で水位に換算して、この換算後
の信号26を加算器25によつて前記実水位22に加え
ることにより、原子炉水位の変動を先行的に制御してい
る。
As for the opening degree request signal 21 of the water supply control valve 9, basically, a difference 23 between the actual water level 22 measured by the reactor water level gauge 11 and the reactor water level set value 60 is obtained by an adder 24, and the signal is P / I.
It is calculated by processing with a gain of 20. However, actually, in order to control the reactor water level more stably, the mismatch amount 32 of the feed water flow rate and the main steam flow rate measured by the feed water flow meter 10 and the main steam flow meter 12 is changed to
The fluctuation of the reactor water level is controlled in advance by converting the water level to a water level by a water level converter, which is a conversion unit, and adding the converted signal 26 to the actual water level 22 by an adder 25.

ミスマツチ量32を水位相当信号26に換算する方法
は、ある一定のゲインを水位換算機によりミスマツチ量
32に掛け合わせることにより行われる。
A method of converting the mismatch amount 32 into the water level equivalent signal 26 is performed by multiplying the mismatch amount 32 with a certain gain by a water level converter.

従来方式では、このゲインは1種類しか用意されておら
ず、最も一般的な運転状態である定格運転時に最適にな
るような換算定数が設定されていた。したがつて、負荷
急変時のゲインとしては必ずしも最適な値にはなつてお
らず、制御性能が低下してしまうというおそれがあつ
た。
In the conventional method, only one kind of this gain is prepared, and the conversion constant is set to be optimum at the rated operation, which is the most general operation condition. Therefore, the gain when the load suddenly changes is not necessarily the optimum value, and there is a fear that the control performance is deteriorated.

ここでは、負荷急変時としては負荷遮断の発生を想定
し、事故発生時にも最適なゲインを選択できる態様につ
いて説明する。
Here, a case will be described in which the occurrence of load shedding is assumed when the load changes suddenly, and an optimum gain can be selected even when an accident occurs.

負荷遮断が発生すると、タービン保護のために蒸気加減
弁101が速やかに閉じ、ほぼ同時にタービンバイパス
弁102が開くことにより、原子炉1からの蒸気は直接
復水器4に導かれる。また、制御棒104の一部である
選択制御棒(以下、SRIと略す)が原子炉1内に挿入
されることにより、原子炉出力は減少していく。
When the load is cut off, the steam control valve 101 is quickly closed to protect the turbine, and the turbine bypass valve 102 is opened almost at the same time, so that the steam from the reactor 1 is directly guided to the condenser 4. Further, the power output of the reactor decreases as a selection control rod (hereinafter abbreviated as SRI) that is a part of the control rod 104 is inserted into the reactor 1.

このときの原子炉水位の定性的な挙動を、第2図に示
す。負荷遮断が発生すると、蒸気加減弁101の閉動作
がタービンバイパス弁102の開動作より通常早く行わ
れることから、原子炉1の圧力は上昇し、これに伴い原
子炉1内の冷却水中に含まれるボイドが消失することに
より、原子炉水位は低下する方向に動く。またこのと
き、同時にSRIが挿入されることにより、燃料棒から
の発熱量は低下し、これに伴いボイドの発生量も減少す
ることになり、原子炉水位はさらに低下する。給水制御
部100は、原子炉水位を定められた範囲である水位低
設定点107以上かつ水位高設定点105以下に制御す
る働きを有することから、水位の低下(特刻t参照)
を検出すると同時に、給水調節弁9への開度要求信号2
1を増加させ、結果として、原子炉水位を回復させてい
く。
The qualitative behavior of the reactor water level at this time is shown in FIG. When the load is cut off, the closing operation of the steam control valve 101 is normally performed earlier than the opening operation of the turbine bypass valve 102, so that the pressure of the reactor 1 rises, and accordingly, the pressure in the reactor 1 is increased. The disappearance of the voids caused causes the reactor water level to move downward. Further, at this time, the SRI is inserted at the same time, so that the calorific value from the fuel rod is reduced, and accordingly, the generated amount of voids is also reduced, further lowering the reactor water level. Water supply control unit 100, since it has a function of controlling or low water level set point 107 is a range determined with the reactor water level and below the water level high set point 105, lowering of the water level (see Tokukoku t 1)
At the same time as detecting the opening degree request signal 2 to the water supply control valve 9
1 is increased, and as a result, the reactor water level is restored.

このとき、従来方式と同様に、定格運転時に最適となる
ようなゲインKが設定されている水位換算機30を使
用しつづけると、ゲインKが適切でないことにより、
水位は第2図に示したカーブ106のように、一旦回復
したのちさらに上昇を続け、水位高設定点105付近ま
で上昇していく。
At this time, similarly to the conventional method, if the water level converter 30 in which the gain K 1 that is optimum at the time of rated operation is set is continuously used, the gain K 1 is not appropriate,
As shown by the curve 106 shown in FIG. 2, the water level once recovers and then continues to rise until it rises to near the water level high set point 105.

本発明に係る実施例では、負荷遮断発生時にも水位を安
定に制御するために、負荷遮断の発生と同時に、負荷遮
断検出信号を受けるスイツチ41により水位換算機30
から水位換算機40に切り替え、負荷遮断時に最適とな
るようゲインKを使用するものである。ゲインK
ゲインKより大きな値、すなわち換算定数となつてお
り、給水流量と主蒸気流量のミスマツチ量32をより大
きな値として水位相当値に換算することから、水位回復
後の給水調節弁9の絞り込みが早く、第2図のカーブ1
08のごとく水位のオーバシユートを低く抑える(時刻
参照)という効果がある。
In the embodiment according to the present invention, in order to control the water level stably even when the load is cut off, the water level converter 30 is operated by the switch 41 which receives the load cutoff detection signal at the same time when the load is cut off.
To the water level converter 40, and the gain K 2 is used so as to be optimum when the load is cut off. The gain K 2 is a value larger than the gain K 1 , that is, a conversion constant, and the mismatch amount 32 of the feed water flow rate and the main steam flow rate is set to a larger value to be converted to a water level equivalent value. Narrowing down of 9 is fast, curve 1 in Fig. 2
As in 08, there is an effect of suppressing the water level overshoot (see time t 2 ).

次に第3図により、水位換算機30と40の切り替えタ
イミングについて説明する。
Next, the switching timing of the water level converters 30 and 40 will be described with reference to FIG.

水位換算機30と40の切り替えは、負荷遮断発生の検
出と共に行われることから、負荷遮断の発生を示す信号
であれば、どのような信号を用いても切り替えは可能で
ある。しかしながら、本実施例では、水位低下の要因の
一つであるSRI信号を用いた例について示す。
Since the switching between the water level converters 30 and 40 is performed at the same time as the detection of the load shedding, the switching can be performed by using any signal as long as it is a signal indicating the occurrence of the load shedding. However, in the present embodiment, an example using the SRI signal, which is one of the causes of water level drop, will be described.

負荷遮断の検出は、発電機2の回転数の上昇または出力
の負荷のアンバランスを検出することにより行われる。
同図で、SRI信号38は、負荷遮断の検出とほぼ同時
に出力され、ノイズ等による誤動作を防止するために、
n秒間以上連続して出力され続けた場合のみ、負荷遮断
検出信号50として出力される。この負荷遮断検出信号
50は、水位換算機30から40へ切り替えたのち、そ
の状態を維持しつづけるために、自己保持信号37によ
り保持される。一方、水位が安定に制御され、給水流量
と主蒸気流量のミスマツチ量がある一定時間(m秒)以
上小さい値に抑えられていることを示す信号39が出力
された場合、あるいは運転員よりセツト要求信号33が
出力された場合には、リセツトされる。このことによ
り、水位変換機は40から再び定格運転時用の水位変換
機30に戻され、通常の制御を続ける。
The detection of the load cutoff is performed by detecting the increase of the rotation speed of the generator 2 or the imbalance of the output load.
In the figure, the SRI signal 38 is output almost simultaneously with the detection of the load shedding, and in order to prevent malfunction due to noise or the like,
The load cutoff detection signal 50 is output only when the output is continuously output for n seconds or more. The load cutoff detection signal 50 is held by the self-holding signal 37 in order to keep the state after switching from the water level converter 30 to 40. On the other hand, when the water level is stably controlled and the signal 39 indicating that the amount of mismatch between the feed water flow rate and the main steam flow rate is kept small for a certain time (msec) or more is output, or the operator sets it. When the request signal 33 is output, it is reset. As a result, the water level converter is returned from 40 to the water level converter 30 for the rated operation again, and the normal control is continued.

以上のとおり、従来1種類のゲインしか設定することが
できなかつた給水制御部100の換算部に対して、その
運転状態に合わせた最適なゲインの設定が可能であり、
原子炉への給水量の制御性能の大幅な向上を可能として
いる。
As described above, it is possible to set the optimum gain according to the operating state of the conversion unit of the water supply control unit 100, which has conventionally been able to set only one type of gain,
This makes it possible to significantly improve the control performance of the water supply to the nuclear reactor.

第4図は、本発明の他実施例の要部ブロツク図を示す。
第1図に示した実施例は、給水流量と主蒸気流量のミス
マツチ量32に対して常に一定の換算定数であればゲイ
ンK又はKを掛け合わせることにより、水位相当信
号26を算出するものであつたが、第4図に示した新た
な実施例は、関数発生器51または52内の関数FG1
およびFG2により、ミスマツチ量32およびその変化
率から水位相当信号26を算出するものである。本実施
例によれば、ミスマツチ量32およびその時間的な変化
から最適な水位相当信号26を算出するため、一定のゲ
インを信号32に掛け合わせる方法(第1図に示した実
施例)より制御性能の向上を図ることが可能である。し
かしながら、負荷遮断の発生時には、第1図に示した場
合と同様な方法で関数発生器51,52の切り替えを行
う必要があり、以下その方法について説明する。
FIG. 4 shows a block diagram of essential parts of another embodiment of the present invention.
In the embodiment shown in FIG. 1, the water level equivalent signal 26 is calculated by multiplying the mismatch amount 32 of the feed water flow rate and the main steam flow rate by the gain K 1 or K 2 if it is a constant conversion constant. However, the new embodiment shown in FIG. 4 is the function FG1 in the function generator 51 or 52.
And FG2, the water level equivalent signal 26 is calculated from the mismatch amount 32 and its change rate. According to the present embodiment, in order to calculate the optimum water level equivalent signal 26 from the mismatch amount 32 and its change over time, the method is controlled by a method of multiplying the signal 32 by a constant gain (the embodiment shown in FIG. 1). It is possible to improve performance. However, when the load shedding occurs, it is necessary to switch the function generators 51 and 52 by the same method as that shown in FIG. 1, and that method will be described below.

関数発生器は、通常時用51と負荷遮断発生時用52の
2台を常時設置し、通常時は関数発生器51を働らかせ
ることにより、通常運転時に最適となるような水位相当
信号26を出力し、負荷遮断発生時には、負荷遮断発生
信号50の発生と同時に、スイツチ41により関数発生
器を負荷遮断時用52に切り替えることにより、負荷遮
断時に最適となるような水位相当信号26を出力するも
のである。
Two function generators, one for normal time 51 and one for load cutoff occurrence 52, are installed at all times, and by operating the function generator 51 during normal times, a water level equivalent signal 26 that is optimal during normal operation is provided. When a load cutoff occurs, the switch 41 switches the function generator to the load cutoff 52 at the same time as the load cutoff generation signal 50 is generated, and the optimum water level equivalent signal 26 is output during the load cutoff. To do.

なお、上記いずれの実施例も換算部は2つの換算機から
なる場合を示したが、3つ以上の換算機で構成してもよ
いことはもちろんである。あるいは、換算機自体は1つ
とし、この換算機に複数のゲインを設定し、負荷急変信
号により判別プログラム等を利用して切り替え可能にし
ても同様の効果が得られる。
In each of the above-described embodiments, the case where the conversion unit is composed of two conversion units is shown, but it goes without saying that it may be composed of three or more conversion units. Alternatively, the same effect can be obtained even if the number of the converter itself is one, a plurality of gains are set in the converter, and the converter can be switched by using a discrimination program or the like by the sudden load change signal.

また、上記の説明では、物理量がミスマツチ量32と水
位相当信号26となる換算部に本発明を適用した例を示
したが、他の物理量の換算部であつてもよいことはもち
ろんである。
Further, in the above description, an example in which the present invention is applied to the conversion unit in which the physical quantity is the mismatch amount 32 and the water level equivalent signal 26 is shown, but it goes without saying that the conversion unit may be another physical quantity.

〔発明の効果〕〔The invention's effect〕

本発明の原子力発電プラントの給水制御装置によれば、
過渡時や事故時であっても制御性能の低下を招くことが
ない。また、制御系の応答特性の差は小さく、引き続い
て他の事象が生じた場合の耐力も有している。
According to the water supply control device of the nuclear power plant of the present invention,
Control performance does not deteriorate even during a transient or accident. In addition, the difference in the response characteristics of the control system is small, and it has the proof stress when another event occurs subsequently.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による給水制御装置の概略構
成を示したブロツク図、第2図は従来方式と本発明を適
用した給水制御装置による負荷遮断発生時のプラント応
答を定性的に説明した図、第3図は本発明の一実施例に
おける負荷遮断の発生を検出するインターロツクのブロ
ツク構成図、第4図は本発明の他実施例を示す要部ブロ
ツク図である。 1…原子炉、3…タービン、4…復水器、6…給水ポン
プ、10…給水流量計、11…原子炉水位計、12…主
蒸気流量計、100…給水制御部、30,40…水位換
算機(換算部)、51,52…関数発生機(換算部)。
FIG. 1 is a block diagram showing a schematic configuration of a water supply controller according to an embodiment of the present invention, and FIG. 2 is a qualitative view of a plant response when a load interruption occurs by the conventional system and the water supply controller to which the present invention is applied. 3 is a block diagram of an interlock for detecting the occurrence of load shedding in one embodiment of the present invention, and FIG. 4 is a block diagram of a main part of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Reactor, 3 ... Turbine, 4 ... Condenser, 6 ... Water supply pump, 10 ... Water supply flow meter, 11 ... Reactor water level meter, 12 ... Main steam flow meter, 100 ... Water supply control part, 30, 40 ... Water level converter (converter), 51, 52 ... Function generator (converter).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原子炉への給水量を制御する給水量制御部
を備え、この給水量制御部は原子炉内の水位変動に関す
る物理量を他の物理量に換算する換算部を有し、この換
算を経て前記給水量が定まる原子力発電プラントの給水
制御装置において、前記換算部は前記原子炉から供給さ
れる主蒸気の流量と前記原子炉に供給される給水の流量
とのミスマッチ量を前記水位変動に関する物理量として
水位相当信号に換算し、前記給水量制御部は前記水位相
当信号と前記原子炉の水位信号とを加算する加算器と、
この加算器による加算値と前記原子炉の水位設定値との
差が入力されて前記給水量をこの給水量を制御する給水
制御弁の弁開度として出力する比例積分演算回路とを有
し、前記換算部は前記換算定数または換算関数を換算量
を異ならせて複数有し、原子力発電プラントの負荷急変
時の急変検出信号により他の換算定数または換算関数に
切換え可能に形成したことを特徴とする原子力発電プラ
ントの給水制御装置。
1. A water supply amount control unit for controlling a water supply amount to a nuclear reactor, the water supply amount control unit having a conversion unit for converting a physical quantity relating to a water level fluctuation in a nuclear reactor to another physical quantity. In the water supply control device for a nuclear power plant in which the water supply amount is determined through the conversion unit, the conversion unit determines the mismatch amount between the flow rate of the main steam supplied from the reactor and the flow rate of the supply water supplied to the reactor. A water level equivalent signal as a physical quantity related to, the water supply amount control unit is an adder for adding the water level equivalent signal and the water level signal of the reactor,
And a proportional-plus-integral arithmetic circuit that inputs the difference between the addition value by the adder and the water level setting value of the reactor and outputs the water supply amount as the valve opening degree of the water supply control valve that controls the water supply amount, The conversion unit has a plurality of conversion constants or conversion functions with different conversion amounts, and is configured to be switchable to another conversion constant or conversion function by a sudden change detection signal during a sudden load change of a nuclear power plant. Water supply control device for nuclear power plant.
【請求項2】特許請求の範囲第1項において、前記換算
部は複数の換算機からなり、この換算器に複数の換算定
数または換算関数が設定されている原子力発電プラント
の給水制御装置。
2. The water supply control device for a nuclear power plant according to claim 1, wherein the conversion unit comprises a plurality of converters, and a plurality of conversion constants or conversion functions are set in the converter.
【請求項3】特許請求の範囲第1項において、前記換算
部は一つの換算機からなり、この換算機に複数の換算定
数または換算関数が設定されている原子力発電プラント
の給水制御装置。
3. The water supply control device for a nuclear power plant according to claim 1, wherein the conversion unit is composed of one converter, and a plurality of conversion constants or conversion functions are set in the converter.
【請求項4】特許請求の範囲第1項、第2項または第3
項において、前記換算定数または換算関数の切り替えは
負荷遮断の発生を示す信号で行なう原子力発電プラント
の給水制御装置。
4. Claims 1, 2 or 3
In the paragraph 1, the water supply control device of the nuclear power plant, wherein the conversion constant or the conversion function is switched by a signal indicating the occurrence of load shedding.
JP63004536A 1988-01-12 1988-01-12 Water supply controller for nuclear power plant Expired - Lifetime JPH0660958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004536A JPH0660958B2 (en) 1988-01-12 1988-01-12 Water supply controller for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004536A JPH0660958B2 (en) 1988-01-12 1988-01-12 Water supply controller for nuclear power plant

Publications (2)

Publication Number Publication Date
JPH01180500A JPH01180500A (en) 1989-07-18
JPH0660958B2 true JPH0660958B2 (en) 1994-08-10

Family

ID=11586764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004536A Expired - Lifetime JPH0660958B2 (en) 1988-01-12 1988-01-12 Water supply controller for nuclear power plant

Country Status (1)

Country Link
JP (1) JPH0660958B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552991A (en) * 1991-08-26 1993-03-02 Hitachi Ltd Reactor feed water controller
JP4840263B2 (en) * 2007-06-18 2011-12-21 株式会社豊田自動織機 Power generation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243996B2 (en) * 1973-10-24 1977-11-04
JPS59116099A (en) * 1982-12-23 1984-07-04 株式会社東芝 Reactor water level control device
JPS61282705A (en) * 1985-06-06 1986-12-12 株式会社東芝 Feed water controller for nuclear reactor

Also Published As

Publication number Publication date
JPH01180500A (en) 1989-07-18

Similar Documents

Publication Publication Date Title
US3928972A (en) System and method for improved steam turbine operation
CA1101104A (en) System for multi-mode control of a boiler feedpump turbine
WO2014129467A1 (en) Valve control device for steam turbine and valve control method therefor
US4290850A (en) Method and apparatus for controlling feedwater flow to steam generating device
US4832898A (en) Variable delay reactor protection system
JPH0660958B2 (en) Water supply controller for nuclear power plant
JP2627524B2 (en) Water supply control device for nuclear power plant
JP2559377B2 (en) Controller for steam generation plant
JP3292612B2 (en) Operation control device for nuclear power plant
JPH076605B2 (en) Reactor feedwater flow controller
JP2613225B2 (en) Turbine protection device
JP2554704B2 (en) Turbine controller
JPH04134102A (en) Turbine controller
JP2564351B2 (en) Output control device for reactor plant
JPH0754084B2 (en) Turbine controller for steam generation plant
JPH0331962B2 (en)
JPH07293807A (en) Method for controlling water feeding in boiler of multi-shaft type combined facility and water feeding control device
JPS63285495A (en) Controlling apparatus of reactor
JPH01216005A (en) Turbine control device
JPS6149106A (en) Turbine control device of nuclear reactor
JPS637264B2 (en)
JPS63314302A (en) Turbine controller for nuclear power station
JPS6219565B2 (en)
JPH0681890B2 (en) Turbine controller
JPS6210405A (en) Turbine controller