JPS5822701A - Tire reinforcing texture - Google Patents

Tire reinforcing texture

Info

Publication number
JPS5822701A
JPS5822701A JP56121480A JP12148081A JPS5822701A JP S5822701 A JPS5822701 A JP S5822701A JP 56121480 A JP56121480 A JP 56121480A JP 12148081 A JP12148081 A JP 12148081A JP S5822701 A JPS5822701 A JP S5822701A
Authority
JP
Japan
Prior art keywords
weft
filament
elongation
core yarn
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56121480A
Other languages
Japanese (ja)
Other versions
JPH0359174B2 (en
Inventor
Futoshi Sasamoto
太 笹本
Kenichiro Oka
岡 研一郎
Masanori Mineo
嶺尾 昌紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP56121480A priority Critical patent/JPS5822701A/en
Publication of JPS5822701A publication Critical patent/JPS5822701A/en
Publication of JPH0359174B2 publication Critical patent/JPH0359174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0042Reinforcements made of synthetic materials

Abstract

PURPOSE:To eliminate breaking of a weft of a radial tire reinforcing texture in the manufacture thereof, by a method wherein the weft is made of a core yarn obtained by covering a polyester multifilament having a predetermined values of crystallinity, intrinsic viscosity, density, hot-air shrinkage and tensile elongation at break, with unfusible short fiber. CONSTITUTION:The weft of the tire reinforcing texture is constituted by the core yarn which is obtained by covering the polyester multifilament of a predetermined characteristics with the unfusible short fiber such as cotton. In this instance, the predetermined characteristics of the polyester multifilament are as follows; a difference DELTAnu between the maximum and minimum of the half value width of Raman spector of 1,730cm<-1> which is scattered by radiation of laser beams to respective points in the radial direction of the transversal cross surface of the filament is less than 3cm<-1> and the difference DELTAnu is less than 3cm<-1> even within the component filament; the intrinsic viscosity eta, density rho, hot-air shrinkage DELTAsd and tensile elongation at breaks satisfy predetermined values. With this construction of the weft, the elongation value of more than 60-70% can be retained even at a temperature near 250 deg.C. Thus, the weft of this construction can follow a large deformation caused in the tire manufacture and is difficult to be broken.

Description

【発明の詳細な説明】 本発明はタイヤ補強用織物に関し、特に改良されたラジ
アルタイヤ捕強用織物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to tire reinforcing fabrics, and more particularly to improved radial tire reinforcing fabrics.

従来、タイヤの製造においては、緯糸として綿糸を用い
たタイヤ補強用織物をゴムと共に加熱成形する方法が広
く採用されていた。
Conventionally, in the manufacture of tires, a method has been widely adopted in which a tire reinforcing fabric using cotton yarn as the weft is heat-formed together with rubber.

しかし緯糸として綿糸を用いた従来のタイヤ補強用織物
では、綿糸の伸度が低い故にタイヤの成形工程でめ変形
力によって緯糸(綿糸)が切断し、タイヤ中のコードの
分布の不均一を招き、タイヤに局部的な弱点を生み出す
とい−う問題点を有している。特にかかる問題点は、成
形時により大きな変形を受け、しかもより高性能が要求
されるラジアルタイヤ製造時においては、より顕著に現
われるものである。
However, in conventional tire reinforcing fabrics that use cotton threads as weft threads, the weft threads (cotton threads) are cut due to the deformation force during the tire forming process due to the low elongation of the cotton threads, resulting in uneven distribution of cords in the tire. This has the problem of creating localized weak points in the tire. In particular, such problems become more noticeable when manufacturing radial tires, which undergo greater deformation during molding and require higher performance.

かかる観点から、近年、タイヤ成形時における高温下(
250℃付近)においても大きな変形に追随し、ゴム中
でのタイヤコードの分布を均一に保つ緯糸を用いること
を特徴としたタイヤ補強用−物を低コストで供給するこ
とが重要視され、いくつかの提案がなされたが、主なも
のは以下の3点に集約される。
From this point of view, in recent years, high temperature conditions (
It has become important to supply tire reinforcing products at a low cost, which are characterized by the use of weft yarns that follow large deformations even at temperatures around 250°C and maintain uniform distribution of tire cords in the rubber. Several proposals have been made, but the main ones can be summarized into the following three points.

(1)  芯糸として高残留伸度をもつポリエステル未
延伸糸または部分配合糸(poy )を用い、周囲を綿
などの短繊維で被覆したコアヤーンを緯糸として用いる
例。
(1) An example in which undrawn polyester yarn or partially blended yarn (poy) with high residual elongation is used as the core yarn, and a core yarn whose periphery is covered with staple fibers such as cotton is used as the weft.

(2)芯糸として、ポリエステル未延伸糸または250
0〜5500 m7分の高速引き取り糸に熱処8 理なほどこして、複屈折30〜130X10.乾熱収縮
率(150℃)±2%以下としたものを用いる例(特開
昭52−70167)。
(2) As the core thread, undrawn polyester thread or 250
0 to 5500 m 7 minutes of high speed drawn yarn is heat treated for 8 minutes to give a birefringence of 30 to 130 x 10. An example using a dry heat shrinkage rate (150° C.) of ±2% or less (Japanese Patent Application Laid-open No. 70167/1983).

(3)  極限粘度0,60〜0.68以上、複屈折1
7〜80X10 、伸度80〜200%のポリエステル
繊維を高引き取り速度(1800〜4000 m7分)
によって得、このポリエステル繊維を芯糸とし、周囲を
綿などの短繊維で被覆したコアヤーンを・緯糸として用
いる例(特開昭55−7433.特開昭55−6223
5など)。
(3) Intrinsic viscosity 0.60-0.68 or more, birefringence 1
7-80X10 polyester fiber with elongation of 80-200% at high take-up speed (1800-4000 m7 minutes)
An example of using this polyester fiber as a core yarn and covering the periphery with short fibers such as cotton as a weft yarn (JP-A-55-7433, JP-A-55-6223)
5 etc.).

しかしながら、(1)の例ではタイヤ成形時の高温下(
250℃付近)において芯糸の熱劣化が激しく、芯糸の
伸度低下を招き、緯糸がタイヤ成形時の変形に追随でき
ない欠点がある〇また(匂の例では、高温下(250℃
付近)での緯糸の残留伸度が不十分であるのに加えて、
芯糸であるポリエステル繊維の製造工程に熱処理工程が
加わるため、製造コストが高くなる。
However, in example (1), under high temperature during tire molding (
At around 250℃, the core yarn undergoes severe thermal deterioration, leading to a decrease in the elongation of the core yarn, and the weft cannot follow the deformation during tire forming.
In addition to insufficient residual elongation of the weft at
Since a heat treatment process is added to the manufacturing process of the polyester fiber that is the core yarn, the manufacturing cost increases.

(3)の例では、ポリエステル芯糸を単に高配向化した
のみでは高温′下での芯糸の熱安定性が不十分で、特に
(高温下で芯糸の長さ方向、または芯糸を構成する単糸
間で伸度のバラツキが生じ、かかる芯糸の局部的な弱点
がタイヤ成形時に露出し、緯糸の切断が起きる欠点があ
る。
In example (3), simply making the polyester core yarn highly oriented will not provide sufficient thermal stability of the core yarn at high temperatures. There is a disadvantage that variations in elongation occur among the constituent single yarns, and local weak points of such core yarns are exposed during tire molding, resulting in breakage of the weft yarns.

一般にタイヤ補強用織物、特にラジアルタイヤ補強用織
物は接着剤のディップ、ドライ、キュアの高温処理(2
50℃付近)を受けた後も、緯糸が少なくとも60〜7
0%以上の残留伸度を保持し、タイヤ成形時の大変形に
追随して、タイヤコード(経糸)をゴム中に均一に分散
させる特性を有していることが嘱望されているにもかか
わらず、上述の例のように従来技術では末だその要望が
十分に満足されていない状況にある。
In general, tire reinforcing fabrics, especially radial tire reinforcing fabrics, are subjected to adhesive dip, dry, and cure high-temperature treatments (2
50℃), the weft remains at least 60~7
Despite the fact that it is expected to maintain a residual elongation of 0% or more and have the characteristics of uniformly dispersing the tire cord (warp) in the rubber by following large deformations during tire molding. First, as in the above-mentioned example, the current state of the art does not fully satisfy this need.

そこで本発明者等は、上記問題点解決のため鋭意研究を
重ねた結果、250℃付近の高温下においてもタイヤ補
強用織物の緯糸として適した60〜70%以上の高伸度
を保持するポリエステルフィラメントを得るためには、
繊維の残留伸度を70%以上に保ちつつ繊維の結晶化を
進行させ、かつ繊維の半径方向、繊維軸方向およびフィ
ラメント間の結晶化度の分布を、ある一定分布以下に保
つことが有効であることを見出し、本発明に至ったもの
である。
Therefore, as a result of extensive research in order to solve the above problems, the present inventors have found that a polyester that maintains a high elongation of 60 to 70% or more is suitable as a weft for tire reinforcing fabrics even at high temperatures around 250°C. To obtain filament,
It is effective to advance the crystallization of the fibers while maintaining the residual elongation of the fibers at 70% or more, and to maintain the distribution of crystallinity in the radial direction of the fibers, in the fiber axial direction, and between filaments below a certain distribution. This discovery led to the present invention.

すなわち本発明は、レーザー光をフィラメント横断面の
半径方向の各点に照射し、各々の点で散乱される173
0cII+  のラマンスペクトルの半価中の最大と最
小の差Δνが3個 以下であり、かつマルチフィラメン
トを構成する別個のフィラメント間で△νが3ts 以
下であるポリエステルマルチフィラメント糸で、前記フ
ィラメントの固有粘度〔η〕、密度ρ、乾熱収縮率△S
dおよび切断伸度Sがそれぞれ 〔η〕≧0.70 ρ ≧1.348 (f/i) △Sd≦10(%) S ≧70(%) を満足するポリエステルマルチフィラメント糸の周囲に
、非熱溶融性の短繊維を被覆したコアヤーンを緯糸iし
て用いることを特徴としたタイヤ補強用織物である。
That is, in the present invention, laser light is irradiated to each point in the radial direction of the cross section of the filament, and 173
A polyester multifilament yarn in which the maximum and minimum difference Δν in the half value of the Raman spectrum of 0cII+ is 3 or less, and Δν is 3ts or less between separate filaments constituting the multifilament. Viscosity [η], density ρ, dry heat shrinkage rate △S
d and cutting elongation S satisfy the following, respectively: [η]≧0.70 ρ≧1.348 (f/i) ΔSd≦10(%) S ≧70(%) This tire reinforcing fabric is characterized by using a core yarn coated with heat-fusible short fibers as weft yarns.

本発明のタイヤ補強用織物に用いる緯糸は、上述の如く
ポリエステルフィラメントを芯糸とスルコアヤーンであ
り、この芯糸はエチレンテレフタレート系ポリエステル
を主たる繰り返し単位とするものが良いが少量の添加物
および/または少量の第3成分を共重合したものでも良
い0 以下1本発明につき更に詳細に説明する。
As mentioned above, the weft used in the tire reinforcing fabric of the present invention is a polyester filament core yarn and sulcoa yarn, and the core yarn preferably has ethylene terephthalate polyester as the main repeating unit, but contains a small amount of additives and/or Alternatively, the present invention may be copolymerized with a small amount of a third component.The present invention will be explained in more detail below.

タイヤ補強用織物の緯糸として用いるコアヤーンの芯糸
としては、250℃付近の、高温下においても熱劣化が
少なく、高温にさらされる以前の伸度を出来る限り保ち
得る耐熱性の高いポリエステルフィラメントであること
が必要不可欠な条件であることは上述のとおりであるが
、このようにポリエステルフィラメントの耐熱性を向上
させるためには、フィラメントの内部の結晶化をある程
度進行させておく必要がある。結晶化が進行したポリエ
ステルフィラメントは、250℃付近の高温下に置かれ
ても、フィラメント内部の結晶の核の働きによって熱収
縮、熱劣化がおさえられ、伸度低下が小さくなる。
The core yarn of the core yarn used as the weft for tire reinforcing fabrics is a highly heat-resistant polyester filament that has little thermal deterioration even at high temperatures around 250°C and can maintain as much of its elongation as possible before exposure to high temperatures. As mentioned above, this is an essential condition, but in order to improve the heat resistance of the polyester filament in this way, it is necessary to advance the crystallization inside the filament to some extent. Even if a polyester filament that has undergone crystallization is placed at a high temperature of around 250° C., heat shrinkage and thermal deterioration are suppressed by the action of crystal nuclei inside the filament, and the decrease in elongation is reduced.

本発明者等の研究結果によれば、250℃付近の高温下
でも少なくとも60〜70%以上の伸度を保持するタイ
ヤ補強用織物の緯糸に用いるコアヤーンの芯糸に適する
ポリエステルフィラメントとしては、このフィラメント
の結晶化進行度の尺度ともいうべき密度ρ、乾熱収縮率
、9dがρ≧1.348f/cj 、△Sd≦10%で
ある必要があることがわかった。また、このポリエステ
ルフイラメンiの耐熱性はρ≧1.353f/d 。
According to the research results of the present inventors, this polyester filament is suitable for the core yarn of the core yarn used as the weft of tire reinforcing fabrics that maintains an elongation of at least 60 to 70% even at high temperatures around 250°C. It was found that the density ρ, which can be called a measure of the progress of crystallization of the filament, and the dry heat shrinkage rate, 9d, need to satisfy ρ≧1.348f/cj and △Sd≦10%. Moreover, the heat resistance of this polyester filament i is ρ≧1.353 f/d.

ΔSd≦7%のとき、より向上する。The improvement is further improved when ΔSd≦7%.

しかし、フィラメント内部のマクロな結晶化を進行させ
ても、フィラメント内部に局部的に結晶化の促進度に差
が存在すると、高温下で局所的な熱劣化が進行し、その
部分が弱点となってフィラメントの高温下での伸度が低
下してしまう。このため、フィラメントの半径方向およ
びフィラメントの長さ方向、またマルチフィラメントを
構成する別個のフィラメント間で結晶化度が均一である
必要がある。こ、のフィラメント内部の局所的な結晶化
度を知る唯一の方法が、フィラメント断面方向の知りた
い点にレーザー光線を照射したとき、各点から散乱され
る1730 cm  のラマンスペクトルの半価巾の値
である。これについては後述するが、1730 cps
  のラマンスペクトルの半価巾とフィラメントの結晶
化度が逆比例することを利用したものである。
However, even if macroscopic crystallization progresses inside the filament, if there are local differences in the degree of acceleration of crystallization inside the filament, local thermal deterioration will progress under high temperatures, and that area will become a weak point. Therefore, the elongation of the filament at high temperatures decreases. For this reason, the degree of crystallinity must be uniform in the radial direction of the filament, along the length of the filament, and between the separate filaments that make up the multifilament. The only way to know the local degree of crystallinity inside this filament is to irradiate a laser beam to a desired point in the cross-sectional direction of the filament, and then measure the half-width value of the Raman spectrum of 1730 cm scattered from each point. It is. This will be explained later, but 1730 cps
This method takes advantage of the fact that the half-value width of the Raman spectrum and the crystallinity of the filament are inversely proportional.

フィラメント各点で散乱された1730 ffi  の
ラ1 マンスペクトルの半価巾の差△νキIG は、ポリエス
テルフィラメントの密度差△ρで約0.0048f/c
dに相当する。フィラメント断面方向の知りたい点にレ
ーザー光を照射し、その各点から散乱される1730 
ffi  のラマンスペクトルの最大と最小の差△νが
3備 以下であるようにフィラメント半径方向の結晶化
度を均一にコントロールすることにより、高温下(25
0℃付近)でも局部的な熱劣化を生ぜず、高残留伸度を
保持できるのである。
The difference in half width of the Ra1 spectrum of 1730 ffi scattered at each point of the filament △νkiIG is approximately 0.0048 f/c due to the density difference △ρ of the polyester filament.
Corresponds to d. Laser light is irradiated to the desired point in the cross-sectional direction of the filament, and 1730 yen is scattered from each point.
By uniformly controlling the degree of crystallinity in the radial direction of the filament so that the difference △ν between the maximum and minimum Raman spectra of ffi is less than 3.
It is possible to maintain high residual elongation without causing local thermal deterioration even at temperatures close to 0°C.

また、この結果はマルチフィラメントを構成する別個の
フィラメント間の△νを3個 以下になるようにフィラ
メント間での結晶化度の差をおさえることで、さらに向
上するものである。
Furthermore, this result can be further improved by suppressing the difference in crystallinity between the filaments so that Δν between the separate filaments constituting the multifilament is 3 or less.

また、250℃付近の高温下で緯糸が60〜70%以上
の伸度を保持するためには、その芯糸として使われるポ
リエステルフィラメントの破断伸度Sは、少なくとも7
0%、またはそれ以上でなければならない。これは25
0℃付近の高温下では、いかに耐熱性を向上しても、い
くらかの伸度低下は避けられないためである。
In addition, in order for the weft yarn to maintain an elongation of 60 to 70% or more under high temperatures around 250°C, the breaking elongation S of the polyester filament used as the core yarn must be at least 7.
Must be 0% or more. This is 25
This is because at high temperatures around 0° C., no matter how much the heat resistance is improved, some reduction in elongation cannot be avoided.

伸度95%以上のポリエステルフィラメントを芯糸とし
て使用した場合は、緯糸のコアヤーンの伸度を250℃
付近の高温下で60〜70%以上に保つ効果はさらに改
善される。−しかし、フィラメントの固有粘度〔η〕が
0.70未満のときは、密度が1.348t/i以上、
乾熱収縮率が10%以下、また上述のΔνが3α 以下
となるようにフィラメント内部の結晶化を均一に進行さ
せても、残留伸度が70%以上のポリエステルフィラメ
ントは得られず、250℃付近の高温下でのフィラメン
トの熱劣化が激しく、伸度低下が著るしい。
When polyester filament with an elongation of 95% or more is used as the core yarn, the elongation of the weft core yarn is 250℃.
The effect of keeping it above 60-70% under nearby high temperatures is further improved. - However, when the intrinsic viscosity [η] of the filament is less than 0.70, the density is 1.348 t/i or more,
Even if the crystallization inside the filament progresses uniformly so that the dry heat shrinkage rate is 10% or less and the above-mentioned Δν is 3α or less, a polyester filament with a residual elongation of 70% or more cannot be obtained. Thermal deterioration of the filament at nearby high temperatures is severe and the elongation decreases significantly.

本発明者等の研究によれば、〔η〕が0.70未満の場
合はいかなる方法を採用しても伸度7o%以上で、かつ
250℃付近の高温下での耐熱性に富み、伸度低下の少
ないポリエステルフィラメントを得ることはできず、〔
η〕が少なくとも0.70のポリエステルフィラメント
において、J: !!じめて250℃付近の高温下での
伸度を60〜70%以上に保つことができた。
According to the research conducted by the present inventors, when [η] is less than 0.70, no matter what method is used, the elongation is 70% or more, and the elongation is excellent at high temperatures around 250°C. It is not possible to obtain a polyester filament with little loss of strength,
η] of at least 0.70, J: ! ! For the first time, it was possible to maintain elongation at 60 to 70% or higher at high temperatures around 250°C.

上述のような耐熱性に富むポリエステルフィラメントは
、以下の方法により製造される。
The polyester filament having high heat resistance as described above is manufactured by the following method.

固有粘度〔η〕≧0.72のポリエステルチップを溶融
し1口金を通して吐出せしめ、フィラメント状にして巻
き取る。この際、紡糸温度は300〜310℃と通常よ
り高温化し、かつ口金孔を出た後からチムニ−による冷
却風を受けるまでの時間が0.18秒以上となるように
口金下のハウジングの距離を通常より長くし、かつチム
ニ−冷却風の温度、吹き出し方法をコントロールして走
行糸周囲の雰囲気湿度が第1図の曲線Aに示すような温
度曲線になるようにして、走行糸条を徐冷することか必
要である。第1図曲線Aのような雰囲気温度曲線を得る
ためには、チムニ−を3段以上の多段に分割し、それぞ
れ温度の異なる冷却風を吹き出すことが考えられるが、
本発明ではこの方法に限定されるものではない。
A polyester chip with an intrinsic viscosity [η]≧0.72 is melted and discharged through a nozzle, and wound into a filament. At this time, the spinning temperature is 300 to 310°C, which is higher than usual, and the distance between the housing under the nozzle and the housing under the nozzle is such that the time from exiting the nozzle to receiving cooling air from the chimney is 0.18 seconds or more. The running yarn is made to be longer than usual, and the temperature and blowing method of the chimney cooling air are controlled so that the atmospheric humidity around the running yarn becomes a temperature curve as shown in curve A in Figure 1. It is necessary to cool it down. In order to obtain an atmospheric temperature curve like curve A in Figure 1, it is conceivable to divide the chimney into three or more stages and blow out cooling air with different temperatures from each stage.
The present invention is not limited to this method.

このように糸条を徐冷しつつ巻取ることKより、フィラ
メント内部のミクロな結晶化が均一に進行し、上述の△
νが3cMI 以下におさえられるのである。
By winding the yarn while slowly cooling it, microcrystalization inside the filament progresses uniformly, resulting in the above-mentioned △
ν can be kept below 3 cMI.

本発明におけるJf取り速度は、固有粘度〔η〕により
異なるが一般的に〔η) o’、70〜1.0の範囲で
は2700〜4600m/分で引取る。引取り速度の下
限値はフィラメントの結晶化を進行させるのに必要最低
限の速度であり、これは〔η〕減少に伴って高紡速側に
移行する。また引取り速度の上限値は残留伸度70%を
保持するのに必要な引取り速度の限界値で、これは〔η
〕増加に伴って低速側に移行する。
The Jf removal speed in the present invention varies depending on the intrinsic viscosity [η], but generally when [η) o' is in the range of 70 to 1.0, the Jf removal speed is 2700 to 4600 m/min. The lower limit of the take-up speed is the minimum speed necessary to advance the crystallization of the filament, and this speed shifts to the high spinning speed side as [η] decreases. In addition, the upper limit of the take-off speed is the limit value of the take-off speed necessary to maintain the residual elongation of 70%, which is [η
] As the speed increases, the speed shifts to the lower speed side.

ところが、上述のようなポリエステルフィラメントをそ
のままタイヤ補強用織物の緯糸として用いた場合、緯糸
がタイヤ成形時の変形に追随シて伸長しても一緯糸とタ
イヤコード(経糸)との間の摩擦係数が低いため、タイ
ヤコードをゴム中に均一に保てなくなる。かがる欠点を
改善し、タイヤフード(経糸)のゴム中での乱れを抑制
するため、緯糸としてポリエステル芯糸に短繊維を巻き
つけたコアヤーンを使用し、緯糸が低伸長域では綿スパ
ン糸と同様にタイヤコード(経糸)の乱れを抑制するよ
うにする方法が広く知られている。本発明もこの方法を
採用する。ポリエステル芯糸に巻き付ける短−繊維とし
ては、綿、レーヨンなどの非熱溶融性の低伸度の短繊維
が利用される。芯糸に巻きつける短繊維の量としては、
芯糸の伸長の妨げとならぬ程度の量であれば良いが、特
にコアヤーンに対する短繊維の重量比が0.20〜0,
40付近のとき。
However, when the above-mentioned polyester filament is used as it is as the weft of a tire reinforcing fabric, even if the weft elongates to follow the deformation during tire molding, the coefficient of friction between the weft and the tire cord (warp) decreases. Since the tire cord is low, the tire cord cannot be kept uniformly in the rubber. In order to improve the darning defect and suppress the disturbance in the rubber of the tire hood (warp yarn), we use a core yarn made by wrapping short fibers around a polyester core yarn as the weft yarn, and use cotton spun yarn in the low elongation region of the weft yarn. Similarly, methods for suppressing tire cord (warp) disorder are widely known. The present invention also adopts this method. As the short fibers to be wound around the polyester core yarn, non-thermofusible short fibers of low elongation such as cotton and rayon are used. The amount of short fibers to be wrapped around the core yarn is as follows:
The amount may be as long as it does not interfere with the elongation of the core yarn, but in particular, the weight ratio of short fibers to core yarn is 0.20 to 0.
When it was around 40.

緯糸として高温下(250℃付近)でより良好な伸長性
能を有し、タイヤコード(経糸)をゴム中に均一に保持
する効果が向上する。
It has better elongation performance as a weft at high temperatures (near 250°C), and improves the effect of uniformly holding the tire cord (warp) in the rubber.

次に本発明で採用した諸物性の測定方法を示す。Next, methods for measuring various physical properties adopted in the present invention will be described.

密度ρ:四塩化炭素を重液、n−へブタンを軽液とした
密度勾配管により測定する。
Density ρ: Measured using a density gradient tube using carbon tetrachloride as a heavy liquid and n-hebutane as a light liquid.

乾熱収縮率△Sd:試料を周長1mの検尺機で10回巻
きのカセ状となし、0.1f/dの荷重下で原長t!を
測定し、しかるのちに150 ℃オーブン中で15分間
乾熱処理した後、再び0.11/dの荷重をがけ、処理
徒長4を測定し、下式により算出する。
Dry heat shrinkage rate △Sd: A sample is made into a 10-turn skein shape using a measuring machine with a circumference of 1 m, and the original length is t! under a load of 0.1 f/d. After dry heat treatment for 15 minutes in an oven at 150° C., a load of 0.11/d is applied again, the treated length 4 is measured, and calculated using the following formula.

ΔSd = ((/!、1−12 VtL ) X 1
00 (%)切断伸度S:東洋ボールドウィン社製テン
シロン引張り試験機(Model UTM−III )
を用いて試長200 mm、引張り速度100m/分、
チャート速度200m/分の条件で応力伸長曲線を得、
切断伸度を求める。
ΔSd = ((/!, 1-12 VtL) X 1
00 (%) Cutting elongation S: Toyo Baldwin Tensilon tensile tester (Model UTM-III)
using a test length of 200 mm and a tensile speed of 100 m/min.
A stress-elongation curve was obtained at a chart speed of 200 m/min.
Find the cutting elongation.

固有粘度〔η〕:試料0.19をO−クロル7エ/−ル
1Qcc 中に溶解し、測定する。
Intrinsic viscosity [η]: Dissolve 0.19 of the sample in 1 Qcc of O-chlor, 7 E/L, and measure.

レーザーラマンスペクトル半値巾 (1)  フィラメント半径方向の△ν測定方法測定装
置はイボンージョビン(Yvon −Jobin )社
製のMo1ecular MieroprobeOpt
ics La5er Examminer (通常MO
LE)を用いる。
Laser Raman spectrum half-width (1) △ν measurement method in filament radial direction The measuring device is Mo1ecular Mieroprobe Opt manufactured by Yvon-Jobin.
ics La5er Examiner (usually MO
LE) is used.

測定手順を以下に示す。The measurement procedure is shown below.

■ フィラメントをパラフィンで包埋 し、約10μの厚さで繊維軸に垂直方向にスライスして
切片サンプルを作る。
■ Embed the filament in paraffin and slice it perpendicular to the fiber axis to a thickness of about 10μ to make section samples.

■ 切片サンプルの半径方向に数点、 一般には7〜8点の測定位置を定める。■ Several points in the radial direction of the section sample, Generally, 7 to 8 measurement positions are determined.

■ Arイオンレーザ−を切片サンプルに入射させ、測
定位置に焦点を合わせる。
■ Inject the Ar ion laser into the sample section and focus it on the measurement position.

■ 散乱されるラマン光をチャートに 記録すると、第2図のように1615m と17301
M  にラマンスペクトルが得られる。
■ When the scattered Raman light is recorded on a chart, it is 1615m and 17301m as shown in Figure 2.
A Raman spectrum is obtained at M.

■ 1730 ffi  のラマンスペクトルの半価巾
を読み取る。
■ Read the half width of the Raman spectrum of 1730 ffi.

■ 測定すべき各点で同様の操作を行 ない、各測定場所での半価巾を読み取る。■ Perform the same operation at each point to be measured. No, read the half value width at each measurement location.

■ 半価巾の最大値と最小値の差を △νとする。この1730 cm  のラマンスペクト
ルの半価巾はポリエステルの密度と逆比例の関係にあり
4、半価巾を知るこ−とにより。
■ Let △ν be the difference between the maximum and minimum half value widths. The half-width of this 1730 cm Raman spectrum is inversely proportional to the density of polyester4, so by knowing the half-width.

ポリエステルの局所部分の密度を知ることができる。It is possible to know the density of local parts of polyester.

(2)  マルチフィラメントを構成すル別個のフィラ
メント間の△ν測定方法 フィラメントの中心から測定点までの距離rasが、フ
ィラメント半径γに対してrm/γ=0.8 となるよ
うに測定点を定め、マルチフィラメントを構成する全て
のフィラメントについて(1)と同様の操作を行なって
フィラメント相互間の△νを求める。
(2) Method for measuring Δν between separate filaments constituting a multifilament The measurement points are set so that the distance ras from the center of the filament to the measurement point is rm/γ = 0.8 with respect to the filament radius γ. Δν between the filaments is determined by performing the same operation as in (1) for all the filaments constituting the multifilament.

以上述べたように、本発明により得られるタイヤ補強用
織物は、高温下においても緯糸が60〜70%以上の残
留伸度を有し、タイヤ成形時の変形に追随してタイヤコ
ード(経糸)をゴム中に均一に保持し、優れたタイヤ性
能を引き出すものであり、従来にない画期的な発明であ
る。
As described above, in the tire reinforcing fabric obtained by the present invention, the weft has a residual elongation of 60 to 70% or more even under high temperatures, and the tire cord (warp) This is a groundbreaking invention that has never existed before, as it uniformly holds it in the rubber and brings out excellent tire performance.

以下、実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

実施例1 重合条件を適宜選択して種々異なる固有粘度〔η〕を有
するポリエステルチップを製造し、このチップを紡糸温
度305℃で口金孔径0.50■φ、ホール数36の口
金を通して吐出し、前述の冷却条件で溶融紡糸し、種々
異なる引取り速度で巻取った。次にレーザー光をフィラ
メント横断面の半径方向に照射し、各々の点で散乱され
る1730 cm  のラマンスペクトルの半価中値の
最大と最小の差△νが3副 以下であり、かつマルチフ
ィラメントヲ構成する別個のフィラメント間の△νが3
個 以下であり、第1表に示すようにフィラメントの固
有粘度〔η〕、密度ρ、乾熱収縮率△Sd、切断伸度S
が異なったll0D −36Fのポリエステルマルチフ
ィラメントのサンプルを得た。
Example 1 Polyester chips having various intrinsic viscosities [η] were produced by appropriately selecting polymerization conditions, and the chips were discharged through a spinneret with a spinneret diameter of 0.50 φ and 36 holes at a spinning temperature of 305°C. It was melt spun under the cooling conditions described above and wound at various take-up speeds. Next, a laser beam is irradiated in the radial direction of the cross section of the filament, and the difference △ν between the maximum and minimum half-value of the Raman spectrum of 1730 cm scattered at each point is 3 or less, and the multifilament △ν between the separate filaments that make up wo is 3
As shown in Table 1, the filament's intrinsic viscosity [η], density ρ, dry heat shrinkage rate △Sd, cutting elongation S
Samples of polyester multifilament of 110D-36F with different values were obtained.

次いでこれらフィラメントを夫々芯糸とし、その周囲に
綿を巻き付けてコアヤーンを製造しく被覆率0.3)、
このコアヤーンを緯糸とし、通常のポリエステルタイヤ
コードを経糸としてタイヤ補強用織物を製造した。この
織物に接着剤を付与し、高温処理(253℃)した後、
織物性能、特に緯糸の伸長性能と経糸の分布状態を評価
し、芯糸の高温下(253℃)での接着剤処理後の伸長
性能と合わせて第1表に示した。
Next, each of these filaments was used as a core yarn, and cotton was wound around it to produce a core yarn (coverage ratio: 0.3).
A tire reinforcing fabric was manufactured using this core yarn as the weft and a regular polyester tire cord as the warp. After applying adhesive to this fabric and subjecting it to high temperature treatment (253°C),
The fabric performance, particularly the elongation performance of the weft yarns and the distribution state of the warp yarns, were evaluated and are shown in Table 1 together with the elongation performance of the core threads after being treated with an adhesive at high temperature (253° C.).

(本頁以下余白) 第1表に示す如く、固有粘度〔η〕が0.70以上。(Margins below this page) As shown in Table 1, the intrinsic viscosity [η] is 0.70 or more.

密度ρが1.348以上、乾熱収縮率ΔSdが10%以
下、切断伸度Sが70%以上のA1〜7のポリエステル
フィラメントの場合、253℃の高温下で接着剤付与さ
れた後も65%以上の残留伸度を保持し、このフィラメ
ントを芯糸として綿被覆率0.3%で製造したコアヤー
ンを緯糸として使用したタイヤ補強用織物は良好な性能
を示した。
In the case of A1 to A7 polyester filaments with a density ρ of 1.348 or more, a dry heat shrinkage rate ΔSd of 10% or less, and a cutting elongation S of 70% or more, even after applying adhesive at a high temperature of 253 ° C. A tire reinforcing fabric using a core yarn produced with this filament as a core yarn and a cotton coverage of 0.3% as a weft exhibited good performance.

しかしフィラメントの固有粘度が0.70以下の煮8〜
9のポリエステルフィラメントは、253℃での接着剤
処理後の伸度低下が大きく、織物性能も満足できるレベ
ルには至らなかった。
However, when the intrinsic viscosity of the filament is 0.70 or less,
Polyester filament No. 9 had a large decrease in elongation after being treated with an adhesive at 253° C., and the textile performance did not reach a satisfactory level.

また、フィラメントの密度ρ、乾熱収縮率△Sdがそれ
ぞれ1.348以上、10%以下を満さない扁10〜1
2の場合も、やはり高瀉下(253℃)での接着剤処理
後の伸度の最小値が60%以下となり、織物性能も屋1
〜7の本発明のものに比べて劣っている。
In addition, the filament density ρ and dry heat shrinkage rate ΔSd are 10 to 1, which do not satisfy 1.348 or more and 10% or less, respectively.
In case 2, the minimum elongation after adhesive treatment at high temperature (253°C) is 60% or less, and the fabric performance is also poor.
-7 are inferior to those of the present invention.

芯糸の切断伸度が70%以下の屋13のフィラメントも
、253℃での接着剤処理後の伸度が60%以下となり
、織物性能も目標レベルを下廻った。
The filament of No. 13, in which the core yarn had an elongation at break of 70% or less, also had an elongation of 60% or less after being treated with an adhesive at 253° C., and the fabric performance was also below the target level.

実施例2 下記第2表に示した別々の紡糸、冷却条件の下で、フィ
ラメントの半径方向およびマルチフィラメントを構成す
る別個のフィラメント間の△νが異なり、かつ固有粘度
〔η) = 0.748 、密度ρ≧1.348.乾熱
収縮率△Sd≦10%、切断伸度S≧70%のポリエス
テルマルチフィラメントを得た。このフィラメントを芯
糸として周囲に綿を被覆したコアヤーンを緯糸とするタ
イヤ補強用織物を製造した。
Example 2 Under the separate spinning and cooling conditions shown in Table 2 below, the radial direction of the filaments and the Δν between the separate filaments constituting the multifilament were different, and the intrinsic viscosity [η) = 0.748 , density ρ≧1.348. A polyester multifilament having a dry heat shrinkage rate ΔSd≦10% and a cutting elongation S≧70% was obtained. A tire reinforcing fabric was manufactured using the filament as a core yarn and a core yarn whose periphery was coated with cotton as a weft yarn.

次いでこの織物について253℃の高温下での接着剤処
理後の織物性能を第2表に合わせて示した。
Next, the fabric performance of this fabric after being treated with an adhesive at a high temperature of 253° C. is shown in Table 2.

(本田以下余白) 第2表に示したように1本発明の紡糸、冷却条件下に製
造したポリエステルマルチフィラメント(A 1 )は
、レーザー光をフィラメント横断面の半径方向の各点に
照射し、各々の点で散乱サレる1730 cm  のラ
マンスペクトルの半価中の最大と最小の差△νが36n
 以下であり、かつマルチフィラメントを構成する別個
のフィラメント間の△νも3m 以下であって、織物性
能も良好であった。
(Blank below Honda) As shown in Table 2, the polyester multifilament (A 1 ) produced under the spinning and cooling conditions of the present invention was produced by irradiating each point in the radial direction of the cross section of the filament with laser light. The difference △ν between the maximum and minimum in half value of the Raman spectrum of 1730 cm scattered at each point is 36n.
In addition, the Δν between the separate filaments constituting the multifilament was also 3 m or less, and the fabric performance was also good.

しかし、従来の紡糸条件で得たサンプル(A2)は、上
述の△νがいずれも3− 以上となり、このポリエステ
ルマルチフィラメントを芯糸としたコアヤーンを緯糸と
して用いたタイヤ補強用織物の性能は本発明のものより
も劣り、特に局部的な熱劣化、伸度低下が大きく問題が
あった0
However, in the sample (A2) obtained under conventional spinning conditions, the above-mentioned Δν was all 3- or more, and the performance of the tire reinforcing fabric using this polyester multifilament core yarn as the weft yarn was It was inferior to the invention, and had major problems, especially localized thermal deterioration and decrease in elongation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いるフィラメントと従来のフィラメ
ントの紡糸時の雰囲気温度と口金下距離との関係を示す
図、第2図は本発明に用いるフィラメントのラマンスペ
クトルを示す図である0 代理人 弁理士  小 川 信 − 弁理士  野 口 賢 照 弁理士 斎下和彦 第2図 1800     1700     1600(帰一
FIG. 1 is a diagram showing the relationship between the ambient temperature and the distance below the spinneret during spinning of the filament used in the present invention and a conventional filament, and FIG. 2 is a diagram showing the Raman spectrum of the filament used in the present invention. Patent Attorney Makoto Ogawa − Patent Attorney Ken Noguchi Teru Patent Attorney Kazuhiko Saishita 1800 1700 1600 (Kiichiri

Claims (1)

【特許請求の範囲】 レーザー光をフィラメント横断面の半径方向の各点に照
射し、各々の点で散乱される1730ffiのラマンス
ペクトルの半値巾の最大と最小の差△νが351  以
下であり、かつマルチフィラメントを構成する別個のフ
ィラメント間の△νが3cfn以下であるポリエステル
マルチフィラメント糸で、前記フィラメントの固有粘度
〔η〕、密度ρ。 乾熱収縮率ΔSdおよび切断伸度Sがそれぞれ〔η〕 
≧ 0.70 ρ ≧1.348 (r/4) △Sd  ≦ 10(%) S  ≧ 70(%) を満足スるポリエステルマルチフィラメント糸の周囲に
、非熱溶融性の短繊維を被覆したコアヤーンを緯糸とし
て用いることを特徴とするタイヤ補強用織物。
[Scope of Claims] Laser light is irradiated to each point in the radial direction of the cross section of the filament, and the difference Δν between the maximum and minimum half width of the Raman spectrum of 1730ffi scattered at each point is 351 or less, and a polyester multifilament yarn in which Δν between separate filaments constituting the multifilament is 3 cfn or less, and the filament has an intrinsic viscosity [η] and a density ρ. The dry heat shrinkage rate ΔSd and the cutting elongation S are [η], respectively.
≧ 0.70 ρ ≧ 1.348 (r/4) △Sd ≦ 10 (%) S ≧ 70 (%) A core yarn in which non-thermofusible short fibers are coated around a polyester multifilament yarn that satisfies the following. A tire reinforcing fabric characterized by using as weft yarns.
JP56121480A 1981-08-04 1981-08-04 Tire reinforcing texture Granted JPS5822701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56121480A JPS5822701A (en) 1981-08-04 1981-08-04 Tire reinforcing texture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56121480A JPS5822701A (en) 1981-08-04 1981-08-04 Tire reinforcing texture

Publications (2)

Publication Number Publication Date
JPS5822701A true JPS5822701A (en) 1983-02-10
JPH0359174B2 JPH0359174B2 (en) 1991-09-09

Family

ID=14812191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56121480A Granted JPS5822701A (en) 1981-08-04 1981-08-04 Tire reinforcing texture

Country Status (1)

Country Link
JP (1) JPS5822701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192740A (en) * 1983-04-11 1984-11-01 東レ株式会社 Weft yarn for tire reinforcing fabric

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016446A (en) * 1973-06-08 1975-02-21
JPS557433A (en) * 1978-06-30 1980-01-19 Toyo Boseki Fabric for reinforcing rubber
JPS5562235A (en) * 1978-10-27 1980-05-10 Toyo Boseki Weft yarn for tire reinforcing fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016446A (en) * 1973-06-08 1975-02-21
JPS557433A (en) * 1978-06-30 1980-01-19 Toyo Boseki Fabric for reinforcing rubber
JPS5562235A (en) * 1978-10-27 1980-05-10 Toyo Boseki Weft yarn for tire reinforcing fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192740A (en) * 1983-04-11 1984-11-01 東レ株式会社 Weft yarn for tire reinforcing fabric

Also Published As

Publication number Publication date
JPH0359174B2 (en) 1991-09-09

Similar Documents

Publication Publication Date Title
US4024895A (en) Product reinforcing fabric and two-component weft yarn useful therein
US3969462A (en) Polyester yarn production
JPH0355566B2 (en)
GB2056362A (en) Self-crimping polyamide fibers
EP0061770B1 (en) Polyester fiber dyeable under normal pressure and process for the production thereof
US3858386A (en) Polyester yarn production
CN106192121B (en) High-intensitive high-dimensional stability polyester cord warp thread and its preparation method and application
JP5074239B2 (en) Method for producing high-strength polyethylene terephthalate fiber
JPS584089B2 (en) Polyester Senino Seizouhouhou
JP7096351B2 (en) Spinning pack for manufacturing high-strength raw yarn, raw yarn manufacturing equipment and raw yarn manufacturing method
CA2634795A1 (en) Polyester yarn and process for producing
KR860001142B1 (en) Polyester twist yarn to manufactureing process and device
JPS5822701A (en) Tire reinforcing texture
JPH0733610B2 (en) Manufacturing method of polyester tire cord
JPH01201517A (en) Dark dyed yarn containing polyester fiber
JP2004532356A (en) Methods for spinning and winding polyester filaments, polyester filaments obtained by the spinning method, stretch texture processing of the polyester filaments, and bulky polyester filaments obtained by stretch texture processing
JP2003213520A (en) Polyester monofilament and method for producing the same
JPS63159518A (en) Polyester fiber
EP0350025B1 (en) Fiber creel humidification
US4966017A (en) Fiber creel humidification
JPS59157318A (en) Simply obtaining of polyester at high speed
JPS60128166A (en) Method of producing polyamide fiber
JP2002327333A (en) Multifilament for weft of tire cord woven fabric and method for producing the same
KR20050003122A (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and radial in to out quenching method, and process for preparing the same
JPS5926517A (en) Preparation of nylon 66 yarn having high strength and high modulus