JPS58224163A - Wear-resistant sintered alloy and its manufacture - Google Patents

Wear-resistant sintered alloy and its manufacture

Info

Publication number
JPS58224163A
JPS58224163A JP10670282A JP10670282A JPS58224163A JP S58224163 A JPS58224163 A JP S58224163A JP 10670282 A JP10670282 A JP 10670282A JP 10670282 A JP10670282 A JP 10670282A JP S58224163 A JPS58224163 A JP S58224163A
Authority
JP
Japan
Prior art keywords
weight
alloy
melting point
low melting
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10670282A
Other languages
Japanese (ja)
Inventor
Michio Sato
道雄 佐藤
Tetsuo Fujiwara
藤原 鉄雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10670282A priority Critical patent/JPS58224163A/en
Publication of JPS58224163A publication Critical patent/JPS58224163A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered alloy with superior wear resistance by infiltrating a low m.p. metal or alloy into the pores in a porous sintered body made of steel contg. specified amounts of C, Si Mn, Ni, Cr, Mo, Ti and Al and having a nitride layer formed on the surface. CONSTITUTION:The composition of metallic powder is composed of, by weight, 0.2-0.4% C, 0.2-0.5% Si, 0.5-1% Mn, 3-4% Ni, 1-2% Cr, 1-2% Mo, 2.5- 3% Ti, 0.7-1.2% Al and the balance Fe. The powder is press-molded, and the molded body is sintered to obtain a porous sintered body. The sintered body is nitrided to form a nitride layer on the surface, and a low m.p. metal such as Pb, Sn or Cu or a low m.p. alloy thereof is infiltrated into the sintered body.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は耐摩耗性焼結合金とその製造方法に関し、更に
詳しくは、ロータリーコンプレッサ−のブレードに用い
て有効な耐摩耗性、耐焼付性、耐接触疲労性に優れた焼
結合金とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a wear-resistant sintered alloy and a method for manufacturing the same. This invention relates to a sintered alloy with excellent contact fatigue resistance and a method for producing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

例えばエアコンのロータリーコンプレッサーのブレード
は、通常鉄系の焼結合金で構成されていて、これはシャ
ツ)K装着されているローラの面と接触してシリンダ内
を冷媒ガスの吸込室と吐出室に2分割し、シャフトの回
転に伴ってシリンダの摺動面の間を往復運動する。その
とき、ブレードの摺動面には主に吐出圧と吸込圧の差圧
が反復して加わるために、ブレードの摺動面が摩耗し、
またシリンダの側の摺動面も摩耗する。
For example, the blades of an air conditioner's rotary compressor are usually made of iron-based sintered alloy, which comes into contact with the surface of the roller that is attached to the cylinder and flows into the refrigerant gas suction and discharge chambers. It is divided into two parts and moves back and forth between the sliding surfaces of the cylinder as the shaft rotates. At that time, the sliding surface of the blade is worn out mainly because the pressure difference between the discharge pressure and the suction pressure is repeatedly applied to the sliding surface of the blade.
The sliding surface on the cylinder side also wears out.

更には、シリンダ内で生ずる液圧縮によって、シリンダ
とブレードの間に供給される潤滑油が流出し、その結果
、ブレードとシリンダが相互乃    の摺動面で焼付
き現象を起生じ易すくなる。
Furthermore, due to the liquid compression that occurs within the cylinder, the lubricating oil supplied between the cylinder and the blade flows out, and as a result, the blade and cylinder tend to seize on their sliding surfaces.

ビ そのため、ブレードの摺動面に表面硬化処理を施してそ
の耐摩耗性を高めることが行なわれている。
Therefore, the sliding surface of the blade is subjected to surface hardening treatment to improve its wear resistance.

例えば、表面硬化処理のために従来から行なわれている
方法としては、焼結合金の外表面に浸炭若し、〈は浸炭
窒化層を形成する方法(特公昭50−4447号参照)
又は銅若しくは銅合金を含浸した焼結金属製品に加炭法
、炭窒化法を適用して表面硬化する方法(@公昭53−
23761号参照)がある。
For example, a conventional method for surface hardening treatment is to form a carburized or carbonitrided layer on the outer surface of a sintered alloy (see Japanese Patent Publication No. 4447/1983).
Or a method of surface hardening by applying carburization method or carbonitriding method to sintered metal products impregnated with copper or copper alloy (@ Kosho 53-
23761)).

このうち、ブレード表面に耐摩耗性の窒化層、すなわち
、審化物の硬質粒子の集合層を形成する場合、効果が充
分に発揮されるだめには、ブレードの表面、すなわちシ
リンダとの摺動面に分散する硬質粒子がブレードを構成
する焼結合金の基体に強固に保持されていて脱落しない
ととが必要である。
Among these, when forming a wear-resistant nitrided layer on the blade surface, that is, a layer of aggregated hard particles of abrasive material, in order for the effect to be fully exhibited, the surface of the blade, that is, the sliding surface with the cylinder, must be formed. It is necessary that the hard particles dispersed in the blade be firmly held by the sintered alloy base that constitutes the blade so that they do not fall off.

しかしながら、この場合、一般に硬質粒子はそれ自体脆
弱であり、基体との結合性も悪いので基体から脱落し易
すく、脱落し差場合にはか    1えってその脱落粒
子がブレードとシリンタ′の摺動面でアブレーション、
ラッピング作用を起して、ブレード及びシリンダの摩耗
を一層促進するという問題が発生する。
However, in this case, the hard particles are generally fragile themselves and have poor bonding properties with the base, so they easily fall off from the base. Ablation on the moving surface,
A problem arises in that a lapping effect occurs, further accelerating wear of the blade and cylinder.

〔発明の目的〕[Purpose of the invention]

本発明は、高面圧下で、潤滑条件の悪いところで使用し
ても、優れた耐摩耗性、耐焼付性、耐接触疲労性を備え
た新規な組成の焼結合金とその製造方法の桿供を目的と
する。
The present invention provides a sintered alloy with a novel composition that has excellent wear resistance, seizure resistance, and contact fatigue resistance even when used under high surface pressure and in poor lubrication conditions, and a method for producing the same. With the goal.

〔発明の概要〕[Summary of the invention]

本発明の耐摩耗性焼結合金は、表面が窒化層から成り、
炭素0.2〜0.4重i%、ケイ素0.2〜0.5重量
%、マンガン0.5〜1.0重量%、ニッケル3,0〜
4.0重量%、クロム1.0〜2,0重量%、モリブデ
ン0.2〜0.4重量%、チタン2.5〜3.0重量%
、アルミニウム0.7〜1.2重量%、残部が鉄である
多孔質焼結体と、該焼結体に溶浸された低融点金属若し
くは低融点合金のいずれか又は両方との複合体であるこ
とを特徴とし、その製造方法は、炭素0.2〜0.4重
量%、ケイ素0.2〜0.5重量%、マンガン0.5〜
1.0重量%、ニッケル30〜4.0重量%、クロム1
.0〜2.0重量、チ、モリブデン0.2〜0.4重量
%、チタン25〜3.0重量%、アルミニウム0.7〜
1.2型針チ、残部が鉄である組成の粉末を、加圧成形
して成形体とし;該成形体を焼結して多孔質の焼結体と
し;得られた焼結体を窒化処理して表面に窒化層を形成
し;ついで、該焼結体に1低融点金属又は低融点合金を
溶浸することを特徴とする。
The wear-resistant sintered alloy of the present invention has a nitride layer on its surface,
Carbon 0.2-0.4% by weight, Silicon 0.2-0.5% by weight, Manganese 0.5-1.0% by weight, Nickel 3.0-
4.0% by weight, chromium 1.0-2.0% by weight, molybdenum 0.2-0.4% by weight, titanium 2.5-3.0% by weight
, a composite of a porous sintered body containing 0.7 to 1.2% by weight of aluminum, the balance being iron, and either or both of a low melting point metal or a low melting point alloy infiltrated into the sintered body. The manufacturing method is characterized by the following: carbon 0.2-0.4% by weight, silicon 0.2-0.5% by weight, manganese 0.5-0.
1.0% by weight, nickel 30-4.0% by weight, chromium 1
.. 0 to 2.0 weight%, molybdenum 0.2 to 0.4 weight%, titanium 25 to 3.0 weight%, aluminum 0.7 to
1. A powder having a composition of a type 2 needle and the balance being iron is press-molded to form a compact; the compact is sintered to form a porous sintered body; the obtained sintered body is nitrided. It is characterized in that it is treated to form a nitrided layer on the surface; and then the sintered body is infiltrated with a low melting point metal or a low melting point alloy.

本発明の焼結合金は、表面に窒化層が形成されていする
多孔質の焼結体と、該焼結体の空孔部分に溶浸された低
融点金属又は低融点合金との複合体である。
The sintered alloy of the present invention is a composite of a porous sintered body having a nitride layer formed on the surface and a low melting point metal or low melting point alloy infiltrated into the pores of the sintered body. be.

この焼結合金は次のようにして製造される。This sintered alloy is manufactured as follows.

まず、上記した成分組成の粉末を用意する。First, a powder having the above-described component composition is prepared.

使用する粉末は、各成分単独の粉末を所定割合いで混合
した混合粉又は各成分の任意な組合せによって調製した
合金粉のいずれであってもよいが、混合時の偏析、組織
むらを防ぐ意味からして、予め調製された各成分の所定
割合いの合金粉を用いることが、耐摩耗性の点からは好
ましい。
The powder used may be either a mixed powder made by mixing individual powders of each component at a predetermined ratio, or an alloy powder prepared by any combination of each component, but in order to prevent segregation and uneven structure during mixing, From the viewpoint of wear resistance, it is preferable to use an alloy powder containing predetermined proportions of each component prepared in advance.

各成分の組成の限定理由は以下のとおシである。炭素(
C)が龜2重量−未満の場合には、得らil、た焼結合
金の充分な硬さが得られず、また0、4重量%を超すと
その靭性が低下して脆くなる。ケイ素(St)が0.2
重f!#、チ未満の場合には、得られた焼結合金の焼も
どし軟化抵抗が減少し、0.5重量%を超えてもその効
果はそれ以上大きくならない。マンガン(Mn)は、焼
結合金の焼入れ性を著しく改善する成分で、ニッケル(
Ni)、クロム(Cr)、モリブデン(MO)との共存
下ではその効果は顕著であるが、o、5〜1.0重iチ
の範囲から外れると、効果は充分に発揮されない。
The reasons for limiting the composition of each component are as follows. carbon(
If C) is less than 2% by weight, the resulting sintered alloy will not have sufficient hardness, and if it exceeds 0.4% by weight, its toughness will decrease and it will become brittle. Silicon (St) is 0.2
Heavy f! When the content is less than # and 1, the tempering softening resistance of the obtained sintered alloy decreases, and even when it exceeds 0.5% by weight, the effect does not become any greater. Manganese (Mn) is a component that significantly improves the hardenability of sintered alloys.
The effect is remarkable in the coexistence with Ni), chromium (Cr), and molybdenum (MO), but the effect is not sufficiently exhibited when the content is outside the range of 5 to 1.0 weight i.

ニッケル(Ni )が3.0重量−未満の場合には、得
られた合金の芯部での靭性低下、焼入れ性の減少を招き
、また4、0MM1%を超えてもそれら特性の向上は認
められない。クロムCCr)は、窒化、4  層の形成
の厚みを大きくする成分で、1.0重量%未満の場合に
け、充分な硬さと厚みの窒化層を形成するのに多大の処
理時間を要し、また、2、 O、重量チを超えてもそれ
以上の効果は認められない。モリブデン(MO)は、窒
化処理時に発生する焼もとし脆性を軽減する機能を果す
成分であるが、0.2〜0.4重蒙]%の範囲から外れ
るとその機能は充分に発揮されない。チタン(Ti )
は、その量が多いほど窒化層の形成速度が大とたりまた
形成された窒化層の硬度は高くなるが、その効果は2.
5重量−以上から充分に表われる。
If the nickel (Ni) content is less than 3.0% by weight, the resulting alloy will have a decrease in toughness and hardenability in the core, and even if it exceeds 4.0MM1%, no improvement in these properties will be observed. I can't do it. Chromium (CCr) is a component that increases the thickness of the nitrided layer, and if it is less than 1.0% by weight, it takes a lot of processing time to form a nitrided layer with sufficient hardness and thickness. Moreover, even if the weight exceeds 2, O, no further effect is observed. Molybdenum (MO) is a component that functions to reduce the temper embrittlement that occurs during nitriding treatment, but if it is out of the range of 0.2 to 0.4% by weight, its function will not be fully exhibited. Titanium (Ti)
The larger the amount, the faster the formation rate of the nitride layer and the harder the formed nitride layer, but the effect is 2.
It is fully visible from 5 weight or more.

しかし、3.0重′Itチを超えるとフェライト組織と
なってしまい窒化層の機械的強度の低下をもたらす6最
後に、アルミニウム(A))は窒化層の硬度向上に寄与
する成分であり、それは0.7重量%以上で充分に発揮
される。しかし、1.2重−31チを超えると、Tlと
同様匠窒化層にフェライト組織が発達してその機械的強
度の低下、更には窒化層の厚みの減少をもたらす。鉄は
バランス成分である。
However, if it exceeds 3.0%, it becomes a ferritic structure, resulting in a decrease in the mechanical strength of the nitrided layer.6Finally, aluminum (A)) is a component that contributes to improving the hardness of the nitrided layer. It is fully exhibited at 0.7% by weight or more. However, if the thickness exceeds 1.2 times - 31 times, a ferrite structure develops in the nitrided layer, similar to Tl, resulting in a decrease in its mechanical strength and further a decrease in the thickness of the nitrided layer. Iron is a balance component.

用する粉末の粒径は格別限定されないが、後述する気孔
率及び機械的強度との関係からして5〜80μmの範囲
にあることが好ましい。
Although the particle size of the powder used is not particularly limited, it is preferably in the range of 5 to 80 μm in view of the relationship with the porosity and mechanical strength described below.

さて、以上のような組成の粉末を、所定の型の中に充填
したのち加圧成形して成形体とする。
Now, the powder having the composition as described above is filled into a predetermined mold and then pressure-molded to form a molded body.

このときの加圧条件は焼結体の気孔率との関係で重要で
あり、圧力が4〜7 ton/lyn”の範囲にあるこ
とが好オしい。圧力が4 ton/CWtより小さい場
合には得られた焼結体の気孔率は大きくなるが、逆にそ
の機械的強度が低下する。また7tOrVc:を超える
と機械的強度の向上は達成されるが、気孔率は小さくな
り後述する溶浸工程にとって不都合である。
The pressurizing conditions at this time are important in relation to the porosity of the sintered body, and it is preferable that the pressure be in the range of 4 to 7 ton/lyn.If the pressure is less than 4 ton/CWt, The porosity of the obtained sintered body increases, but its mechanical strength decreases.If it exceeds 7tOrVc, an improvement in mechanical strength is achieved, but the porosity decreases and the porosity decreases as described below. This is inconvenient for the soaking process.

得られた成形体は、そのまま、焼結される。The obtained molded body is sintered as it is.

このときの焼結条件は、成形条件と同様に気孔率、機械
的強度に影響を与え、例えば焼結温度は1100〜12
00 tl;の範囲にあることが好ましい。
The sintering conditions at this time affect the porosity and mechanical strength in the same way as the molding conditions; for example, the sintering temperature is 1100 to 12
It is preferably in the range of 00 tl;

1100C未満のときは気孔重大、強度小の焼結体とな
り、逆に120(1’を超えると気孔率小、強度大の焼
結体となってしまう、、また、焼結時の雰囲気は、焼結
体の酸化防止という点からして例えはアンモニア分解ガ
ス雰囲気であることが好ましい。焼結時間は格別限定さ
れないが、通常、30〜60分間である。
If the temperature is less than 1100C, the sintered body will have significant porosity and low strength, while if it exceeds 120 (1'), the sintered body will have low porosity and high strength.Also, the atmosphere during sintering is From the viewpoint of preventing oxidation of the sintered body, an ammonia decomposition gas atmosphere is preferable.The sintering time is not particularly limited, but is usually 30 to 60 minutes.

このようにして得られた焼結体にとって気孔率は重要で
、本発明の場合には、5〜30%の範囲に設定されるこ
とが好ましい。5%未満の場合には、後述する溶浸処理
が円滑に進行せず、また30%を超えると機械的強度が
低下して例えばブレードとしての使用に耐え得ない。こ
の気孔率の腑整は、前述したとおり、成形条件、焼結条
件を適宜組合せて行なわれる。
The porosity is important for the sintered body thus obtained, and in the case of the present invention, it is preferably set in the range of 5 to 30%. If it is less than 5%, the infiltration treatment described below will not proceed smoothly, and if it exceeds 30%, the mechanical strength will decrease and it will not be possible to use it as a blade, for example. This adjustment of the porosity is carried out by appropriately combining the molding conditions and sintering conditions, as described above.

つぎに、焼結体の窒化処理が行なわれ、該焼結体の表面
部分を窒化層にする。窒化処理は、常用される気体法、
イオン法、液体法などいずれの方法でも行なうことがで
きるが、液体法の場合には、窒化処理に用いる各種の溶
融塩が焼結体の気孔内に浸透してしまいその除去が困難
になるので好t L、 <なく、通常、気体法、イオン
法が適用される。
Next, the sintered body is subjected to nitriding treatment to form a nitrided layer on the surface of the sintered body. Nitriding treatment is carried out by the commonly used gas method,
This can be done using either the ion method or the liquid method, but in the case of the liquid method, the various molten salts used for nitriding penetrate into the pores of the sintered body, making it difficult to remove them. Preferably, a gas method or an ion method is usually applied.

このように表面部分に窒化層が形成された焼結体は次に
低融点金属若しくは低融点合金を該焼結体の空孔部分に
溶浸して本発明の焼結合金になる。
The sintered body with the nitrided layer formed on the surface thereof is then infiltrated into the pores of the sintered body with a low melting point metal or a low melting point alloy to obtain the sintered alloy of the present invention.

用いる低融点金属としては、融点が低く軟質で、耐焼付
性に優れかつ浸透性の良好な本のであれば伺であっても
よいが、具体的には、鉛。
The low melting point metal to be used may be lead, as long as it has a low melting point, is soft, has excellent seizure resistance, and good permeability, but specifically lead.

銅、スズ、インジウムなどが好ましい。また、これら金
属を単体で用いてもよいが、更に、これら金属の任意の
組合せによる合金を用いることもできる。
Copper, tin, indium, etc. are preferred. Furthermore, although these metals may be used alone, alloys of any combination of these metals may also be used.

溶浸の方法としては、上記した金属若しくは合金の溶融
液に焼結体を浸漬する方法、密閉容器中に焼結体を収納
し、そこに溶融金属若しくは合金を加圧含浸する方法、
又は焼結体の表面に上記金属若しくは合金の板又は線を
載置し全体を金属若しくは合金の融点以上に加熱する方
法などをあげることができる。
Infiltration methods include a method of immersing the sintered body in a molten liquid of the metal or alloy described above, a method of storing the sintered body in a closed container and impregnating the molten metal or alloy therein under pressure,
Alternatively, a method may be used in which a plate or wire of the metal or alloy is placed on the surface of the sintered body and the entire body is heated to a temperature higher than the melting point of the metal or alloy.

〔発明の実施例〕[Embodiments of the invention]

1      00・35重fJ−チ・SiO,4重量
%・”°0°8重量% 、 Ni 3.5重量% 、 
Cr 1.4重量−I MO0,3重量% 、 Ti 
2.8重量@ 、hノ1.0MN% 、残部がFeであ
る組成の合金粉(平均粒径30μm)を型の巾に所定倍
充填し 5 ton/cm2の圧力で成形した。得られ
た成形体をアンモニア分解ガス中で11.0(I’、3
0分間焼結した。気孔率1−5チの焼結体が得られた。
100・35 weight fJ-chi・SiO, 4% by weight・”°0°8% by weight, Ni 3.5% by weight,
Cr 1.4wt-I MO0.3wt%, Ti
An alloy powder having a composition of 2.8 weight @ 1.0 MN%, the balance being Fe (average particle size 30 μm) was filled in the width of the mold to a predetermined ratio and molded at a pressure of 5 ton/cm 2 . The obtained molded body was heated to 11.0 (I', 3
Sintered for 0 minutes. A sintered body with a porosity of 1-5 was obtained.

この焼結体を、アンモニアガス中で600 tZ’ 。This sintered body was heated to 600 tZ' in ammonia gas.

3時間窒化処理した。その表面には深さ0.2mの窒化
層が形成さハ5、その硬さはI(vlloOであった。
Nitriding treatment was performed for 3 hours. A nitride layer with a depth of 0.2 m was formed on its surface, and its hardness was I(vlloO).

ついで、とれをI X 10−”porrの真空中で、
Pb浴(温度500t:’ )中に浸漬して溶浸処理を
施した。
Then, the pieces were placed in a vacuum of I x 10-”porr.
Infiltration treatment was performed by immersing it in a Pb bath (temperature: 500 t:').

得られた焼結合金をアノ、スラー摩耗試験機にかけその
摩耗試験を行なった。試験条件は、相手相SK4、荷重
10kg、速度1.21気であった。摩耗M (my 
)と摩擦距離(Km )との関係を図(曲線A)に示し
た。なお、比較のために、溶浸処理を施さない場合の結
果(曲線B)も図に併記した。
The obtained sintered alloy was subjected to an abrasion test using a slurry abrasion tester. The test conditions were: opponent phase SK4, load 10 kg, and speed 1.21 Ki. Wear M (my
) and the friction distance (Km) is shown in the figure (curve A). For comparison, the results obtained without infiltration treatment (curve B) are also shown in the figure.

〔発明の効果〕〔Effect of the invention〕

結果から明らかなように、本発明の焼結合金1窒化層か
らの硬質粒子の脱落による摩耗もなく、高面圧下で潤滑
条件の悪いところでも耐摩耗性、耐焼付性及び耐接触疲
労性に優り、ている。
As is clear from the results, the sintered alloy 1 of the present invention does not suffer from wear due to shedding of hard particles from the nitrided layer, and has excellent wear resistance, seizure resistance, and contact fatigue resistance even under high surface pressure and poor lubrication conditions. It's better, it's better.

【図面の簡単な説明】[Brief explanation of drawings]

図は、焼結合金のアムスラー試験による摩耗量と摩擦距
離との関係曲線で、曲線Aは本発明の焼結合金、曲線B
は溶浸処理を施さない場合を表わす。 席澤青献 (km)−
The figure shows the relationship curve between wear amount and friction distance by Amsler test of sintered alloy. Curve A is the sintered alloy of the present invention, curve B
represents the case without infiltration treatment. Seishen Takazawa (km) -

Claims (1)

【特許請求の範囲】 1、 表面が窒化層から成シ、炭素0.2〜0.4重量
%、ケイ素0.2〜0.5重量%、マンガン0、5〜1
.0重量−1= ツ)1 ル3.0〜4.0重量%、ク
ロム1.0〜2.0重量%、モリブデン0、2〜0.4
重量%、f II y 2.5〜3. Of量チ、アル
ミニウム0.7〜1.2重量%、残部が鉄である多孔質
焼結体と、該焼結体に溶浸された低融点金属若しくは低
融点合金のいずれが又は両方との複合体である仁とを特
徴とする耐摩耗性焼結合金。 2、該低融点金属が鉛、銅、スズ、インジウムのいずれ
かであり、該低融点合金が該低融点金属の任意の組合せ
による合金である特許請求の範囲第1項記載の耐摩耗性
焼結合金。 3、 炭素0.2〜0.4重量%、ケイ素0.2〜0.
5重量%、マンガン0.5〜1.0重量%、ニッケル3
.0〜4.0重量%、クロム1.0〜2.0重量%、モ
リブデン0.2〜0.4ffi−3t%、チタン2.5
〜3.0重量%、アルミニウム07〜1.2重iis、
残部が鉄である組成の粉末を、加圧成形して成形体とし
; 核酸形体を焼結して多孔質の焼結体とし;得られた焼結
体を窒化処理して表面に窒化層を形成し;ついで、 該焼結体に、低融点金属又は低融点合金を溶浸すること
を特徴とする耐摩耗性焼結合金の製造方法。 4、該低融点金属が鉛、銅、スズ、インジウムのいずれ
かであり、該低融点合金が該低融点金属の任意の組合せ
による合金である特許請求の範囲第3項記載の耐摩耗性
焼結合金の製造方法。
[Claims] 1. The surface is composed of a nitride layer, carbon 0.2-0.4% by weight, silicon 0.2-0.5% by weight, manganese 0.5-1
.. 0 weight - 1 = 1) 3.0 to 4.0 weight %, chromium 1.0 to 2.0 weight %, molybdenum 0, 2 to 0.4
Weight %, f II y 2.5-3. A porous sintered body having an amount of 0.7 to 1.2% by weight of aluminum, the balance being iron, and either or both of a low melting point metal or a low melting point alloy infiltrated into the sintered body. A wear-resistant sintered alloy characterized by a composite core. 2. The wear-resistant sintering material according to claim 1, wherein the low melting point metal is lead, copper, tin, or indium, and the low melting point alloy is an alloy of any combination of the low melting point metals. Combined gold. 3. Carbon 0.2-0.4% by weight, Silicon 0.2-0.
5% by weight, manganese 0.5-1.0% by weight, nickel 3
.. 0 to 4.0 wt%, chromium 1.0 to 2.0 wt%, molybdenum 0.2 to 0.4ffi-3t%, titanium 2.5
~3.0% by weight, aluminum 07~1.2wt IIS,
Powder with a composition in which the balance is iron is press-molded to form a molded body; the nucleic acid form is sintered to form a porous sintered body; the obtained sintered body is nitrided to form a nitrided layer on the surface. and then infiltrating the sintered body with a low melting point metal or a low melting point alloy. 4. The wear-resistant sintering material according to claim 3, wherein the low melting point metal is any one of lead, copper, tin, and indium, and the low melting point alloy is an alloy of any combination of the low melting point metals. Manufacturing method of bonded metal.
JP10670282A 1982-06-23 1982-06-23 Wear-resistant sintered alloy and its manufacture Pending JPS58224163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10670282A JPS58224163A (en) 1982-06-23 1982-06-23 Wear-resistant sintered alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10670282A JPS58224163A (en) 1982-06-23 1982-06-23 Wear-resistant sintered alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPS58224163A true JPS58224163A (en) 1983-12-26

Family

ID=14440329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10670282A Pending JPS58224163A (en) 1982-06-23 1982-06-23 Wear-resistant sintered alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS58224163A (en)

Similar Documents

Publication Publication Date Title
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
JP5992402B2 (en) Manufacturing method of nitrided sintered component
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
EP2778243A1 (en) Iron based sintered sliding member and method for producing the same
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
US4271239A (en) Sintered metal articles and process for their manufacture
JPS583901A (en) Manufacture of sliding member
JPH0610103A (en) Vane material excellent in wear resistance and sliding property
JP2001295915A (en) Sintered sprocket for silent chain and method of manufacturing the same
JPH01134093A (en) Roller for compressor
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP3340908B2 (en) Sintered sliding member and manufacturing method thereof
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
JPS58224163A (en) Wear-resistant sintered alloy and its manufacture
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP2001158934A (en) Method for producing wear resistant ferrous sintered alloy
JPH0551708A (en) Wear resistant material for compressor and compressor using the same
JPH10317002A (en) Powder with low coefficient of friction, its sintered compact, and production of sintered compact
JPS60159154A (en) Wear resistant sintered sliding material
JPS61291946A (en) Manufacture of wear resistance sintered alloy
JP2541238B2 (en) Method for producing iron-based sintered alloy with excellent wear resistance
JPS62133043A (en) Fe sintered material impregnated with cu
JPS62202044A (en) Manufacture of sintered alloy superior in high temperature wear resistance
JPS58221268A (en) Wear resistant sintered alloy
JPH0512401B2 (en)