JPS58223771A - Detection system for underground buried body - Google Patents

Detection system for underground buried body

Info

Publication number
JPS58223771A
JPS58223771A JP57107365A JP10736582A JPS58223771A JP S58223771 A JPS58223771 A JP S58223771A JP 57107365 A JP57107365 A JP 57107365A JP 10736582 A JP10736582 A JP 10736582A JP S58223771 A JPS58223771 A JP S58223771A
Authority
JP
Japan
Prior art keywords
underground
detection method
object detection
underground object
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57107365A
Other languages
Japanese (ja)
Other versions
JPH0213756B2 (en
Inventor
Kazuo Watabe
一雄 渡部
Shigeru Fukushima
茂 福島
Tetsujiro Izumi
泉 哲次郎
Yoshinobu Iwashita
岩下 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Meisei Electric Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Meisei Electric Co Ltd
Priority to JP57107365A priority Critical patent/JPS58223771A/en
Publication of JPS58223771A publication Critical patent/JPS58223771A/en
Publication of JPH0213756B2 publication Critical patent/JPH0213756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To eliminate a ground surface reflected wave completely by calculating the sum of and difference between two reflected waves as vector quantities. CONSTITUTION:A CW radio wave from a transmitter 2 is transmitted from an antenna 11, reflected by the ground surface 5, and received by antennas 12 and 13. Those received waves are supplied to an adding and subtracting circuit 7 functioning as an adding circuit for vectors and the sum signal (a) and difference signal (b) of those reflected waves are sent to a receiver 3. The receiver 3 includes a detector and amplifier 33 and a signal processor 3 to perform processing corresponding to the sum signal (a) and difference signal (b), and the difference signal (b) due to a buried body 6 has a high voltage to output a 1kHz monitor tone, detecting the body.

Description

【発明の詳細な説明】 本発明は、電波を使用して、地中埋設物が金属、非金属
かの別を問わず、これを探知する地中埋設物探知器の探
知方式に関するものである。
[Detailed Description of the Invention] The present invention relates to a detection method for an underground object detector that uses radio waves to detect underground objects, regardless of whether they are metal or non-metallic. .

電波を使用して、金属および非金属の埋設物を探知する
方法は公知である。
Methods of detecting buried metal and non-metallic objects using radio waves are known.

この柳の探知器に共通した問題は、探知信号としての地
中埋設物からの反射波に、それより強いレベルの妨害信
号としての地表面反射波が混入してくることである。
A common problem with Yanagi's detectors is that the reflected waves from underground objects, which serve as detection signals, are mixed with reflected waves from the ground surface, which serve as interference signals at a stronger level.

従来の探知器のうち、パルスレーダー装置に類する方式
を使用したものにおいては、送信に同期して受信機をO
N10 F Fさせるとか受信機の利得を時間と共に変
化させるとかの方法で、地表面反射波を除去する試みを
行なっているが、0N10 F’ Fスイッチの素子の
過渡現象あるいはAGC(自動利得制御1)回路の応答
速度に問題があり十分な成果を上げていな°い。
Among conventional detectors, those using a method similar to pulse radar equipment turn off the receiver in synchronization with the transmission.
Attempts have been made to remove the ground surface reflected waves by changing the gain of the receiver over time, but transient phenomena in the 0N10 F' F switch elements or AGC (automatic gain control ) There is a problem with the response speed of the circuit, and sufficient results have not been achieved.

他方、CW(連続波)方式によるものでは、第1図に示
すものが一般的である。地面5に平行にある高さhでア
ンテナ1を動かし、反射電波の変化量を測定し、探知す
る方法である、アンテナ1は地面に相対して3本あり、
中央のアンテナ1.が送信アンテナ、他の2つのアンテ
ナl。
On the other hand, as for the CW (continuous wave) system, the one shown in FIG. 1 is common. This is a method of moving the antenna 1 at a height h parallel to the ground 5 and measuring and detecting the amount of change in reflected radio waves.There are three antennas 1 facing the ground.
Central antenna 1. is the transmitting antenna, and the other two antennas l.

と1sが受信アンテナで、1mに対し1.と1jは対称
の位置に配置されている。
and 1s is the receiving antenna, and 1. and 1j are arranged at symmetrical positions.

第1図における動作は次の通りである。The operation in FIG. 1 is as follows.

送信機2から発生したC W ′電波はアンテナ11か
ら送信され、地面5で反射して2つのアンテナ11.1
8で受信される。地中に埋設物6が無いと、受信された
電波は地表面反射波だけで、これらは1!と18でその
大きさ・位相が等しいから1、]   互いに逆極性の
検波器4..4.を通ると正・負の大きさの等しい電圧
となり、これが電圧加算器3、で加算されて打ち消され
、増幅・指示器3.の出力には現われてこない。
The C W ′ radio waves generated from the transmitter 2 are transmitted from the antenna 11, reflected by the ground 5, and transmitted to the two antennas 11.1.
Received at 8. If there is no underground object 6, the received radio waves are only ground surface reflected waves, and these are 1! Since the magnitude and phase are equal in and 18, 1,] detectors with mutually opposite polarities 4. .. 4. After passing through the voltage adder 3, voltages with equal positive and negative magnitudes are generated, which are added and canceled by the voltage adder 3. It does not appear in the output.

一方、埋設物6があれば、それが1.と18のアンテナ
の丁度中間にある場合を除いて、2つの反射波の大きさ
、位相に差が現われるから、電圧加悴器3.には誤差電
圧eが生じ、増幅・指示器3!には出力が現われ、検知
が可能となる。
On the other hand, if there is a buried object 6, it is 1. Since there will be a difference in the magnitude and phase of the two reflected waves, except in the case where the two antennas are located exactly in the middle of antennas 3 and 18, voltage conditioner 3. An error voltage e occurs in the amplification/indicator 3! An output appears and detection becomes possible.

しかし、実際には地面5の上には石や草があり、−地面
5そのものも凹凸や傾斜をもち、かつアンテナ1を地面
5に平行にして動かすなどは至難の業であるため、アン
テナ1.と13に受信される反射波はその大きさ、位相
が等しくなることが少く、十分に地面反射波を除去する
に到っていない。
However, in reality, there are stones and grass on the ground 5, and the ground 5 itself is uneven and sloped, and it is extremely difficult to move the antenna 1 parallel to the ground 5. .. The reflected waves received by and 13 are rarely equal in magnitude and phase, and the ground reflected waves are not sufficiently removed.

従来、これを改善するために、受信アンテナを送信アン
テナの周囲に4つ以上間して、各アンテナの受信レベル
を比較演算するとか、1個または2個の受信アンテナを
送信アンテナの周囲に回転させてアンテナ1回転の受信
レベルを比較演算するとかの方式が検討されているが、
装置・が複雑で大型でかつ高価であるという欠点をもつ
Conventionally, in order to improve this, four or more receiving antennas were placed around the transmitting antenna and the reception levels of each antenna were compared and calculated, or one or two receiving antennas were rotated around the transmitting antenna. A method is being considered in which the reception level of one rotation of the antenna is compared and calculated.
The disadvantage is that the device is complex, large, and expensive.

本発明は、これら従来技術の欠点をなくして簡単、小型
かつ安価な装置で、妨害波としての地表面反射波を効果
的に除去するべくなされたものである。
The present invention has been made to eliminate these drawbacks of the prior art and to effectively remove ground surface reflected waves as interference waves with a simple, compact, and inexpensive device.

本発明は、第1図に示した従来技術の方式が2つの反射
波の減算を、検波器4r、4tおよび電圧加算器31で
行っていること、従って位相の違いは何ら考慮されてい
ないことをつきとめ、第2図に示すように検波器4い4
1及び電圧加算器3Iに代えて、ベクトル量としての2
つの反射波を加減算する加減算回路7を用いたものであ
る。
The present invention is characterized in that the prior art method shown in FIG. 1 subtracts two reflected waves using the detectors 4r, 4t and the voltage adder 31, and therefore the difference in phase is not considered at all. Detector 4 and 4 as shown in Figure 2.
1 and the voltage adder 3I, 2 as a vector quantity
This uses an addition/subtraction circuit 7 that adds and subtracts two reflected waves.

この加減真回路7により、その差信号すは十分打ち消さ
れて、従来はアンテナ1の傾きとか地面5の傾斜または
凹凸などにその原因を帰せられていた地表面反射波の除
去の不完全さを大きく改善することができた。
This adjustment circuit 7 sufficiently cancels out the difference signal, thereby eliminating incomplete removal of ground surface reflected waves, which were conventionally caused by the inclination of the antenna 1 or the inclination or unevenness of the ground 5. I was able to make a big improvement.

そして、本発明では、単なるベクトルの減算回路に変更
したのでなく、ベクトルの加算回路を併せ持った加減算
回路7に変更している。
In the present invention, the addition/subtraction circuit 7 is not changed to a simple vector subtraction circuit, but also has a vector addition circuit.

これは第3図に示すように、本発明になる地中埋設物探
知器8を地面5に平行に動かして、探知を行う場合にお
いて、(イ)地中に埋設物6がある場合と(ロ)地面に
岩石9がある場合とでは、加減算回路7の差信号すだけ
では、埋設物6か石9かの判別がむづかしいという欠点
がある。
As shown in FIG. 3, when detecting by moving the underground object detector 8 according to the present invention parallel to the ground 5, (a) there is a buried object 6 underground and ( b) In the case where there is a rock 9 on the ground, there is a drawback that it is difficult to determine whether it is a buried object 6 or a rock 9 just by using the difference signal from the adder/subtractor circuit 7.

しかし和信号aを利用すれば、(イ)の場合は地表面反
射波と較べ埋設物6からの反射波は小さいから第3図(
イ)K示すように和信号aのレベルに変化がほとんど現
われないが、(ロ)の場合は石9による反射波が大きい
から和信号aのレベルは第3図(ロ)に示すように変動
を示すため、その判別が可能となるという効果が得られ
たからである。
However, if the sum signal a is used, in case (a), the reflected wave from the buried object 6 is smaller than the reflected wave from the ground surface, so as shown in Fig. 3 (
B) As shown in K, there is almost no change in the level of sum signal a, but in case of (b), the reflected wave from stone 9 is large, so the level of sum signal a fluctuates as shown in Figure 3 (b). This is because it has the effect of making it possible to distinguish between the two.

第3図の例では石の場合を示しているが、これが草や地
面の凹凸あるいはアンテナの傾き(地面の傾きと言い換
えてもよい)であっても同じで、このため加減算回路7
の和信号aは地中埋設物6を選択判別するのに極めて有
効である。
The example in Fig. 3 shows the case of a stone, but the same applies even if it is grass, unevenness on the ground, or the tilt of the antenna (which may also be referred to as the tilt of the ground). Therefore, the addition/subtraction circuit 7
The sum signal a is extremely effective for selecting and determining underground objects 6.

なお、第3図の例で、差信号すが埋設物6または石9の
真上でレベルの低下を示しているのは、受信アンテナ1
2と18の丁度中間にそれら異物が位置したため、それ
ら異物からの反射波も互いに打ち消されることになった
からである゛。
In the example shown in FIG. 3, it is the receiving antenna 1 that shows a drop in the level of the difference signal directly above the buried object 6 or stone 9.
This is because the foreign objects were located exactly between 2 and 18, so the reflected waves from these foreign objects also canceled each other out.

本発明は、この加減算回路7として1つの高周波信号を
2つに分岐する回路において、その2つの分岐信号が互
いに同相となる場合と互いに逆相となる場合の両方の使
い方ができるものに着目した。
The present invention focuses on a circuit that branches one high-frequency signal into two as the adder/subtractor circuit 7, which can be used both when the two branched signals are in phase with each other and when they are in opposite phase with each other. .

コノような回路として、ラットレース回路、位相反転形
ハイブリッドリング回路まだはマジック1回路などがあ
る。
Circuits like this include the rat race circuit, the phase inversion type hybrid ring circuit, and the magic 1 circuit.

第4図にラットレース回路の例を示して、その働きを説
明すると、(イ)は2つの分岐出力が互いに同相である
場合で、P、が入力端子、P、とP4が出力端子、Ps
は無効端子、(ロ)は2つの分岐出力が互いに逆相であ
る場合で、Psが入力端子、イP2とP・が出力端子、
Plが無効端子である。今これを反対に合成回路として
使用して(ハ)に示すようにP、とP4の端子にA/2
Zoの信号(振幅がV2、位相角が零の信号)を入力す
ると、”Iの端子には「A/2乙−90+ A/2乙〜
90−A乙−90」、Psの端子にはrM2△−90+
 A/2ムー270=OJが現われ、Plが加算回路の
出力端子、P3が減算回路の出力端子となって、ベクト
ルの加減算回路7としての機能を有していることがわか
る。
An example of a rat race circuit is shown in Fig. 4, and its operation will be explained. (A) is a case where the two branch outputs are in phase with each other, P is the input terminal, P and P4 are the output terminals, and Ps
is an invalid terminal, (b) is a case where the two branch outputs are in opposite phase to each other, Ps is an input terminal, a P2 and P are output terminals,
Pl is an invalid terminal. Now use this as a composite circuit in reverse and connect A/2 to the P and P4 terminals as shown in (c).
When the Zo signal (amplitude is V2, phase angle is 0 signal) is input, the "I" terminal receives "A/2 - 90 + A/2 -
90-A-90'', rM2△-90+ on the Ps terminal
It can be seen that A/2 mu 270=OJ appears, Pl becomes the output terminal of the addition circuit, P3 becomes the output terminal of the subtraction circuit, and has the function of the vector addition/subtraction circuit 7.

そして、ラットレース回路や位相反転形ハイブリッドリ
ング回路は、ストリップラインや同軸ケーブルなどによ
り、比較的容易にしかも小型・安価に製作できるという
利点があり、本装置の加減算回路7として著るしい効果
かえられた。
Rat race circuits and phase-reversing hybrid ring circuits have the advantage of being relatively easy to manufacture, compact and inexpensive, using strip lines, coaxial cables, etc.; It was done.

第2図は、本発明のCW方式の実施例である。FIG. 2 shows an embodiment of the CW system of the present invention.

受信機3は検波・増幅器3sおよび信号処理器3゜から
なる例を示している。CW方式はパルスレータ゛一方式
と異り、地表面近辺の地中埋設物6を探知対象とするも
のであるから、一般には検波・増幅器3jによる受信感
度で十分である。従   ゛つて、小型、安価に製作で
きる。検波・増幅器3sで検波・増幅された和信号aお
よび差信号すは信号処理器3.に入る。
The receiver 3 is shown as an example consisting of a detection/amplifier 3s and a signal processor 3°. Unlike the single-pulse-lator type, the CW system detects underground objects 6 near the ground surface, so generally the receiving sensitivity provided by the wave detector/amplifier 3j is sufficient. Therefore, it can be manufactured in a small size and at low cost. The sum signal a and the difference signal A detected and amplified by the detection/amplifier 3s are processed by the signal processor 3. to go into.

第5図に本発明に用いた信号処理器の一例を示す。V/
F’コンバータ11は、アンテナ1が地上高h10cr
nのときの和信号aの電圧でI KIIZになるよう調
整されている。このI Kl(Zの信号は電圧制御可変
アッテネータ12を通って音響変換器13に入りIKH
zのモニター音となって聴取される。差信号すは反転増
幅器1oを通って電圧制御可変アッテネータ12へ制御
電圧として入力されている。この信号処理器の動作は第
3図において地中に埋設物6がない場合、差信号すはそ
の電圧が低電圧となるが反転増幅器10で反転されて高
電圧のIOVとなり、可変アッテネータ12の減衰量を
最大の50dBにセットする。従ってV/Fコーバータ
11の出方は減衰を受けて音響変換器13に達せずI 
KH2のモニター音は聞かれない。次に地中に埋設物6
があると、第3図の(イ)に示すように差信号すが高電
圧になり、この電圧は反転増幅器1oで反転されて低電
圧となるから可変アッテネータ12の減衰量は低下し、
従ってv/ドコンバーターJ1の出力は音響変換器13
に伝えられI Kl[Zのモニター行として聴取され、
探知される。次に、第3図の(ロ)に示すように地面に
石があるとすると、差信号すには高電圧が現われるから
モニター音が聴取される点では(イ)埋設物の場合と同
じであるが、和信号aのレベルには変化が生じるためV
/Fコンバーター110周波数はIKlvからずれ、従
ってモニター音もI Kt−IZからずれて地中埋設物
6以外のものとして聴取することが可能である。
FIG. 5 shows an example of a signal processor used in the present invention. V/
In the F' converter 11, the antenna 1 has a height h10cr above the ground.
The voltage of the sum signal a when n is adjusted to be IKIIZ. This I Kl (Z signal passes through the voltage controlled variable attenuator 12 and enters the acoustic transducer 13.
It is heard as a monitor sound of Z. The difference signal S is input as a control voltage to the voltage-controlled variable attenuator 12 through the inverting amplifier 1o. The operation of this signal processor is as shown in FIG. 3 when there is no underground object 6, the difference signal has a low voltage, but is inverted by the inverting amplifier 10 and becomes a high voltage IOV, and the variable attenuator 12 Set the attenuation to the maximum of 50dB. Therefore, the output of the V/F converter 11 is attenuated and does not reach the acoustic transducer 13.
I can't hear the KH2 monitor sound. Next, objects buried underground 6
3, the difference signal becomes a high voltage, and this voltage is inverted by the inverting amplifier 1o and becomes a low voltage, so the attenuation of the variable attenuator 12 decreases.
Therefore, the output of the v/do converter J1 is the acoustic converter 13
I Kl[Z was heard as a monitor line,
be detected. Next, if there is a stone on the ground as shown in (b) of Figure 3, a high voltage will appear in the difference signal, so the monitor sound will be heard, which is the same as in the case of (a) a buried object. However, since the level of sum signal a changes, V
The /F converter 110 frequency deviates from IKlv, so the monitor sound also deviates from IKt-IZ and can be heard as something other than the underground object 6.

前述したように、これが石以外の岸や地面の凹凸あるい
は地面の傾斜(アンテナ1の傾きと言いかえてもよい)
であっても同様である。
As mentioned above, this is the shore other than stones, the irregularities of the ground, or the slope of the ground (you can also call it the slope of antenna 1)
The same applies even if

このように、信号処理器を聴覚に依る方法で構成したこ
とは、有力な情報収集の手段である視覚を、対象地面5
の観測に向けることができ、地面の#i斜(アンテナの
傾きと6いかえてもよい)や凹凸あるいは石の存在など
を目視追認できるという効果を生んだ外、装置が小形、
軽量で携行可能という特徴と適合して一人でアンテナl
の走査と信号処理が行なえるという運用上の利点も生ん
だ。
In this way, configuring the signal processor using a method that relies on hearing means that visual perception, which is a powerful means of information gathering, can be used to
In addition to the fact that the device is small,
Compatible with its lightweight and portable features, it can be used alone as an antenna.
It also had the operational advantage of being able to perform scanning and signal processing.

第5図において、和信号aと差信号すの入力を互いに入
れ換えた使い方も可能である。この場合は、差信号すの
変化はモニター音の周波数の変化として現われ、和信号
aの変化はモニター靜の強弱として現われてくる。)v
/lパコンバーター11は差信号すの大きさがある値(
スレッシュホールドレベル)を越えるまでは出力されな
いようにして、埋設物6や石9などの異物が無い状態で
は、モニター晋を出さないようにし1耳の疲労を防止す
る必要がある。
In FIG. 5, it is also possible to use the inputs of the sum signal a and the difference signal S interchangeably. In this case, a change in the difference signal a appears as a change in the frequency of the monitor sound, and a change in the sum signal a appears as a change in the intensity of the monitor sound. )v
/l converter 11 sets the magnitude of the difference signal to a certain value (
It is necessary to prevent output from occurring until the signal exceeds a threshold level (threshold level), and in a state where there are no foreign objects such as buried objects 6 or stones 9, to prevent monitor fatigue from occurring and to prevent ear fatigue.

前述の信号処理器においては、最終的に埋設物6か石9
か、埋設物6が金属か非金属かなどの判定を操作者に行
わせていて、操作者に若干−の熟練が要求される。
In the signal processor described above, the final result is a buried object 6 or a stone 9.
The operator is required to judge whether the buried object 6 is metal or non-metal, and requires some level of skill from the operator.

実験によると、第6図に示すように、本発明になる探知
装置8に位置検出装置14をとりつけ、XYレコーダー
15のX軸にその位置信号Cを入力し、Y軸に和信号a
または差信号すを入力して、第3図(イ)、(ロ)まだ
は第8図に示すように柚々の埋設物6について描かせた
′電圧波形のパターンは、それら埋設物6との間に一定
の相関を示しだ。第8図は埋設物6が金属の場合、第3
図(イ)は埋設物6がプラスチックの場合である0 第8図でオ0信号aがレベル低下を示しているのは、地
表面反射波を金属埋設物6からの反射波が打ち消す働き
をしているためである。よって第7図の如く信号処理器
諷を構成して、パターンメモリー回路18にあらかじめ
測定した種独の埋設物6の示す代表的なパターンを記憶
させておき、第1信号a1差信号す及び位置信号CをA
/l)&倶器16でデジタル信号に直してパターン認識
回路17でパターンに変換し、パターン照合回路19で
、パターンメモリー回路18に記憶していたパターンと
比較照合を行い、一致したパターンを示す埋設物6を捜
して、埋設物指示回路20にそれを表示させるという方
法を行って、信号処理器34に埋設物6の種類判別機能
を持たせることが可能となる。なお、前述した利点を生
かすKは指示回路20は音に依る方法とする。これによ
り操作性を著しく向上゛することができだ外、マイクロ
コンピュータ−使用により大型a軸化する欠点も解消で
きた。
According to experiments, as shown in FIG. 6, a position detection device 14 is attached to the detection device 8 according to the present invention, and the position signal C is input to the X axis of the XY recorder 15, and the sum signal a is input to the Y axis.
Alternatively, by inputting the difference signal, the pattern of the voltage waveform drawn for the buried objects 6 as shown in Figures 3 (a) and (b) and Figure 8 is It shows a certain correlation between the two. Figure 8 shows that when the buried object 6 is metal, the third
Figure (A) shows the case where the buried object 6 is made of plastic. In Figure 8, the reason why the O0 signal a shows a decrease in level is because the reflected waves from the metal buried object 6 cancel out the waves reflected from the ground surface. This is because they are doing so. Therefore, by configuring a signal processor as shown in FIG. 7, the pattern memory circuit 18 stores a representative pattern of the buried object 6 measured in advance, and the first signal a1 difference signal and position are stored in the pattern memory circuit 18. signal C to A
/l) & Converter 16 converts it into a digital signal, pattern recognition circuit 17 converts it to a pattern, pattern matching circuit 19 compares and matches the pattern stored in pattern memory circuit 18, and indicates a matched pattern. By searching for the buried object 6 and displaying it on the buried object indicating circuit 20, it becomes possible to provide the signal processor 34 with a function of determining the type of the buried object 6. In order to take advantage of the above-mentioned advantages, the instruction circuit 20 uses a sound-based method. This not only significantly improved the operability, but also solved the disadvantage of using a large A-axis due to the use of a microcomputer.

まだ9位置検出装+1t14の代りに、アンテナ1を一
定速度で走査する工夫を施して、走査中の時刻信号を位
置信号として用いる方法があり、この方法を採ることに
よって装置を簡便にする上で効果が得られた。
Instead of the 9 position detection device + 1t14, there is a method in which the antenna 1 is scanned at a constant speed and the time signal during scanning is used as the position signal.By adopting this method, it is possible to simplify the device. It worked.

第9図(ロ)は本発明をパルスレーター一方式に実施し
た例を示す。(イ)は従来のもので、送信機22を出た
パルスは送受切替器21を通ってアンテナ1に達し地面
へ向は発射され、埋設物に当って反射してきて逆の向き
に進んでアンテナl、切替器21を経て受信機23は受
信パルスの遅延時間を測り、埋設物6の深さを表示する
という動作をする。(ロ)は(イ)において第2図の如
くアンテナ1を3本にして、送信、受信を分け、受信を
2本にしかつ加減舅−回路7を付加して、受信パルスの
和と差の信号をとり出すようにしたものである。そして
前述したように差信号すを受信することにより、送・受
のカプリング波や地表面反射波は除去されるので、地表
面近辺の地中に存在する埋設物6の探知が可能となった
0地中奥深く探知するにはオロ信号aが有利であるから
両方の信号を利用する。受信機2つで両方の信号を受信
する方法、あるいは受信機1つで両信号を探知距離によ
り、切り替えて受信する方法が考えられるが、後者の方
が小型・安価にできる。
FIG. 9(b) shows an example in which the present invention is implemented in a pulserator type. (A) is a conventional device, in which the pulses from the transmitter 22 pass through the transmitter/receiver switch 21, reach the antenna 1, are emitted toward the ground, are reflected by a buried object, and travel in the opposite direction to the antenna. 1. The receiver 23 measures the delay time of the received pulse via the switch 21 and displays the depth of the buried object 6. (b) In (b), as shown in Figure 2, the antenna 1 is changed to three, the transmission and reception are separated, the reception is made into two, and an adjustment circuit 7 is added to calculate the sum and difference of the received pulses. It is designed to extract signals. Then, as mentioned above, by receiving the difference signal, the coupling waves of transmission and reception and the waves reflected from the ground surface are removed, making it possible to detect buried objects 6 existing underground near the ground surface. 0 Since Oro signal a is advantageous for detecting deep underground, both signals are used. Possible methods include receiving both signals with two receivers, or receiving both signals with one receiver by switching between them depending on the detection distance, but the latter method is more compact and inexpensive.

第10図は、第2図において、受信アンテナを1.とI
llのペアに直交する位置に送信アンテナ1、に対して
対称となるように、もう−組(14,15)設けて、そ
れに合せて加減算回路7と検波・増幅器33を追加した
例である。動作原理は第2図に同じである。従来は、ア
ンテナが3つであるため、3つ並んだその線上に沿って
動かす必要があったが受信アンテナを4つにしたため、
どの方向にも動かすことが可能となり、操作性の向上と
探知時間の短縮が実現できた外、また探知信号が増えた
ことにより信頼性も向上するという効果が得られた。
FIG. 10 shows the receiving antenna 1. and I
This is an example in which an additional pair (14, 15) is provided at a position orthogonal to the pair ll so as to be symmetrical with respect to the transmitting antenna 1, and an adder/subtracter circuit 7 and a detection/amplifier 33 are added accordingly. The operating principle is the same as in FIG. Previously, there were three antennas, so it was necessary to move them along the line where the three antennas were lined up, but now there are four receiving antennas, so
It is now possible to move in any direction, improving operability and shortening detection time.In addition, the increased number of detection signals improves reliability.

アンテナとしては、反射板付ダイポールアンテナが一般
的であるが、第11図(イ)、(ロ)に示すような誘電
体基板において、片面の銅箔の1辺(あるいは直径)を
約λS/2(λBは銹電体板により短縮された波長を示
す)の正方形(あるいは円形)にカットしてアンテナと
するマイクロストリップアンテナを用いて小型化するこ
とが可能となり、アンテナ°を3本ないし5本使用す゛
る本発明の地中埋設物探知装置を可搬型にする上で著し
く効果があった。
A dipole antenna with a reflector is commonly used as an antenna, but in a dielectric substrate as shown in Figure 11 (a) and (b), one side (or diameter) of the copper foil on one side is approximately λS/2. (λB indicates the wavelength shortened by the electric plate) It is now possible to miniaturize the antenna by using a microstrip antenna that is cut into a square (or circle) and uses 3 to 5 antennas. This was extremely effective in making the underground object detection device of the present invention portable.

以上説明したように、本発明によれに、加減算回路7の
差信号すにより妨害波としての地表ビ   面反射波を
効果的に除去できた外、和信号・を併せ利用することに
より埋設物6の選択判別が可能となるという思いがけな
い効果も得られた。
As explained above, according to the present invention, in addition to being able to effectively remove the ground beam reflected waves as interference waves by using the difference signal of the adder/subtractor circuit 7, it is also possible to eliminate buried objects 6 by using the sum signal in combination. An unexpected effect was also obtained in that it became possible to determine the selection of .

そして加減算回路7にラットレース回路または位相反転
型・・イブリッドリンク回路を用い、複数本必要とされ
るアンテナ1にはマイクロストリップアンテナを用いる
ことにより、小型、軽欺、安価に、技術的にも容易に本
発明を実施しつるという利点が得られた。
By using a rat race circuit or a phase inversion type hybrid link circuit for the adder/subtractor circuit 7, and by using a microstrip antenna for the antenna 1, which requires multiple antennas, it is possible to achieve a compact, easy-to-use, low-cost, and technologically friendly design. The advantage is that the invention is easy to implement.

またCW方式においては、受信機は簡単な検波・増幅器
33で構成できるので装置全体が可搬型にできる。よっ
てこの特徴を生かすべく信号処理器34は、和信号aと
差信号すを音の強弱と周波数の変化に直し、両信号を音
で同時認識するとか、また位置信号Cにより、和信号a
と差信号すをパターン化し、メモリー回路18のパター
ンと比較して埋設物6を判別するという方法においては
、埋設物6の判定信号を音で指示させるなどの聴覚に依
る方法で構成して、視覚を装置の操作や地面の観察に向
け1人で操作運用が可能であるという効果を得ることが
できた。
Furthermore, in the CW system, the receiver can be configured with a simple detection/amplifier 33, so the entire device can be made portable. Therefore, in order to take advantage of this feature, the signal processor 34 converts the sum signal a and the difference signal S into changes in sound intensity and frequency, and simultaneously recognizes both signals as sound, or uses the position signal C to convert the sum signal a
In the method of patterning the difference signal and comparing it with the pattern of the memory circuit 18 to determine the buried object 6, the determination signal of the buried object 6 is configured by an auditory method such as a sound instruction, We were able to achieve the effect that one person can operate and operate the system by using their vision to operate the equipment and observe the ground.

捷だ、パルスレーダ一方式においては、地表面近傍地下
50cnn位までの従来地表面反射波のため測定できな
かった領域の埋設物6の探知が差信号すの利用により可
能となった。
With one type of pulse radar, it has become possible to detect buried objects 6 in areas that could not be measured conventionally due to reflected waves from the ground surface, up to about 50 cm underground near the ground surface, by using differential signals.

また、アンテナを5本としたことは、操作性と信頼性の
向上に効果があった。
In addition, using five antennas was effective in improving operability and reliability.

尚、本発明に係る探知器では、例えば雪゛中の埋設物の
探知も可能であり、本明細書で”地中”という言葉は上
記雪中等を含めていう概灸である0
The detector according to the present invention is also capable of detecting objects buried in snow, for example, and the term "underground" in this specification generally refers to the above-mentioned snow, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCW方式における従来の装置を示すブロック図
、第2図はCW方式による本発明の実施例を示すブロッ
ク図、第3図は第2図の装置の運用例とそのときの出力
波形の例を示す特性図で、(イ)に地中に非金属の埋設
物のある場合を、(ロ)に地表面に石のある場合をそれ
ぞれ示し、第4図はラットレース回路を示す回路図で(
イ)にP、端子の人力信号がP!およびへ端子に同レベ
ル、同位相で出力される例を、(ロ)にPs端子の入力
信号がP、およびへ端子に同レベル、逆位相で出力され
る例を、(ハ)にP鵞およびへ端子に入力された信号が
P、端子には加算されて、Ps端子には減算されて出力
される例をそれぞれ示し、第5図は第2図の装置の信号
処理器の一実施例を示すブロック図、第6図は第2図の
装置に位置検出装置を取り付けて運用する例を示すブロ
ック図、第7図は第2図の装置に位置検出装置を取り付
けた場合の信号処理器の一実施例を示すブロック図、第
8図は第6図の例において埋設物が金属である場合の出
力波形の例を示す特性図、第9図はパルス方式の例で(
イ)は従来の装置を、(ロ)は本発明の実施例をそれぞ
れ示すブロック図、第1O図は第2図の装置において、
アンテナを5つ使用した例を示すブロック図、そして第
11図はマイクロストリップアンテナの例を示す構造概
略図で(イ)は銅箔が正方形の場合を、(ロ)は銅箔が
円形の場合をそれぞれ示している。 1・・・アンテナ    1.・・・送信アンテナ1、
〜1.・・・受信アンテナ 2・・・CW送信機3・・
・受信機     31・・・電圧加算器3、・・・増
幅・指示器  3s・・・検波・増幅器3、・・・信号
処理器   4I・・・正極性検波器4、・・・負極性
検波器  5・・・地面6・・・地中埋設物   7・
・・加減算回路8・・・第2図の装置  9・・・石 10・・・反転増幅器  11・・・V/F”コンパ−
゛り12・・・電圧制御可変アッテネータ−13・・・
音響変換器  14・・・位置検出装置15・・・X/
Yレコーダー16・・・Al1)変換器17・・・パタ
ーン認識回路 18・・・パターンメモリー回路19・
・・パターン照合回路 20・・・埋設物指示回路21
・・・送・受切替器 22・・・パルス送信機23・・
・パルス受信機 24・・・マイクロストリップアンテナ24、・・・正
方形銅箔  24.・・・円形銅箔248・・・誘′亀
体    244・・・裏面銅箔a・・・和信号   
  b・・・差信号C・・・位置信号    e・・・
誤差電圧h・・・地上高  p、−八・・・加減算回路
入出力端子0第5図 第6図 fj”18図 bルミ (ロ) トC
Fig. 1 is a block diagram showing a conventional device using the CW method, Fig. 2 is a block diagram showing an embodiment of the present invention using the CW method, and Fig. 3 is an example of operation of the device shown in Fig. 2 and its output waveform. In this characteristic diagram, (a) shows a case where there is a non-metallic object buried underground, (b) shows a case where there is a stone on the ground surface, and Fig. 4 shows a circuit showing a rat race circuit. In the figure (
A) is P, and the human input signal at the terminal is P! (b) shows an example in which the input signal of the Ps terminal is outputted at the same level and in opposite phase to the P and to terminals, and (c) shows an example in which the input signal of the Ps terminal is output to the An example is shown in which the signals input to the and terminals are added to the P terminal, and subtracted and output to the Ps terminal, respectively. FIG. 5 is an example of the signal processor of the device shown in FIG. 2. Fig. 6 is a block diagram showing an example of operating the device shown in Fig. 2 with a position detection device attached, and Fig. 7 shows a signal processor when the position detection device is attached to the device shown in Fig. 2. FIG. 8 is a characteristic diagram showing an example of the output waveform when the buried object is metal in the example of FIG. 6, and FIG. 9 is an example of the pulse method.
A) is a block diagram showing a conventional device, (b) is a block diagram showing an embodiment of the present invention, and FIG. 1O is a block diagram showing the device in FIG.
A block diagram showing an example using five antennas, and Fig. 11 a structural schematic diagram showing an example of a microstrip antenna. (a) shows the case where the copper foil is square, and (b) shows the case where the copper foil is circular. are shown respectively. 1... Antenna 1. ...transmission antenna 1,
~1. ...Receiving antenna 2...CW transmitter 3...
・Receiver 31...Voltage adder 3,...Amplification/indicator 3s...Detection/amplifier 3,...Signal processor 4I...Positive polarity detector 4,...Negative polarity detection Container 5...Ground 6...Underground objects 7.
...Addition/subtraction circuit 8...Device shown in Figure 2 9...Stone 10...Inverting amplifier 11...V/F'' comparator
12...Voltage control variable attenuator-13...
Acoustic transducer 14...Position detection device 15...X/
Y recorder 16...Al1) Converter 17...Pattern recognition circuit 18...Pattern memory circuit 19.
... Pattern matching circuit 20 ... Buried object indication circuit 21
...Sending/receiving switch 22...Pulse transmitter 23...
- Pulse receiver 24...microstrip antenna 24,...square copper foil 24. ...Circular copper foil 248...Dielectric turtle body 244...Backside copper foil a...Sum signal
b...Difference signal C...Position signal e...
Error voltage h...Ground height p, -8...Addition/subtraction circuit input/output terminal 0 Fig. 5 Fig. 6 fj'' Fig. 18 b Lumi (ro) To C

Claims (1)

【特許請求の範囲】 1 送信アンテナから送出した電波の地中埋設物による
反射波を複数の受信アンテナで受信することにより上記
地中埋設物の存在を探知するようにした地中埋設物探知
器に於いて、上記複数のアンテナで受信した反射波を加
減算回路に入力して和信号と差信号を作成し、この和信
号と差信号の双方を用いて上記地中埋設物の存在を表示
するようにした地中埋設物探知方式。 2 電波の形式をCW波(連続波)とした特許請求の範
囲箪1項に記載の地中埋設物探知方式。 3 電波の形式をパルス波とした特許請求の範囲第1項
に記載の地中埋設物探知方式。 4 加減算回路をラットレース回路とした特許請求の範
囲第1項に記載の地中埋設物探信3方式。 5 加減算回路を位相反転形ノ・イフ゛1ノット1ノン
ク回路とした特許請求の範囲第1項に言己載の地中埋設
物探知方式0 6 電波の形式がCW波である地中埋設q勿探知器に於
いて、和信号と差信号のいずれ75)一方を電圧に、他
方を周波数にそれぞれ変換し、地中埋設物の存在を出力
信号のレベルと周波数で表示するようにした特許請求の
範囲第1項に記載の地中埋設物探知方式。 7 電波の形式がCW波である地中埋設物探知器に於い
て、地中埋設物の存在の表示を可聴表示により行うよう
にした特許請求の範囲第1項又は第6項に記載の地中埋
設物探知方式08 受信アンテナを、送信アンテナの設
定イ固所を通る仮想直線上で送信アンテナの設定1固P
hiの両側等距離に設定した1対(2個)のアンテナで
構成した特許請求の範囲第1項に言己載の地中埋設物探
知方式0 9 電波の形式がCW波である地中埋設物探知器に於い
て、受信アンテナを、送信アンテナの設定個所で交わる
2本の仮想直線上で、それぞれ送信アンテナの設定個所
の両側等距離に設定した2対(4個)のアンテナで構成
した特許請求の範囲第1項に記載の地中埋設物探知方゛
式。 10 2本の仮想直線が直交するようにした特許請求の
範囲第9項に記載の地中埋設物探知方式。 11  電波の形式がCW波である地中埋設物探知器に
於いて、送信アンテナ及び受信アンテナをマイクロスト
リップアンテナとした特許請求の範囲第1項、第8項、
第9項又は第10項に記載の地中埋設物探知方式。 12  送信アンテナ及び受信アンテナを反射板付ぜ 
    ダイポールアンテナとした特許請求の範囲第1
項、第8項、第9項又は第10項に記載の地中埋設物探
知方式。 13  送信アンテナから送出したCW電波の地中埋設
物による反射波を複数の受信アンテナで受信することに
より上記地中埋設物を探知するようにした地中埋設物探
知器に於いて、上記複数の受信アンテナで受信した反射
波を加−減算回路に入力してオl信号と差信号を作成す
るとともに、位置検出装置を設けるか又はアンテナ部を
一定速度で走査して当該アンテナ部の位置信号を得、こ
の位置信号に基いて上記オU信号及び差信号をバタ、−
ン化し、地中埋設物の種類について予め記憶している波
形Sターンと上記パターン化した和信号又は差信号とを
比較照合して地中埋設物の存在と、その種類を表示する
ようにした地中埋設物探知方式。 14  加減算回路をラットレース回路とした特許請求
の範囲第13項に記載の地中埋設物探知方式。    
・ 15  加減算回路を位相反転形ノ・イブリッドリング
回路とした特許請求の範囲第13項に記載の地中埋設物
探知方式。 16  地中埋設物の探知を可聴表示により行うように
した特許請求の範囲第13項に記載の地中埋設物探知方
式。 17  受信アンテナを、送信アンテナの設定個所を通
る仮想直線上で送信アンテナの設定個所の両側等距離に
設定した1対(2個)のアンテナで構成した特許請求の
範囲第13項に記載の地中埋設物探知方式。 18  受信アンテナを、送信アンテナの設定個所で交
わる2本の仮想直線上で、それぞれ送信アンテナの設定
個所の両側等距離に設定した2対(4個)のアンテナで
構成した特許請求の範囲第13項に記載の地中埋設物探
知方式。 192本の仮想直線が直交するようにした特許請求の範
囲第18項に記載の地中埋設物探知方式。 20  送信アンテナ及び受信アンテナを、フィクロス
トリップアンテナとした特許請求の範囲第13項、第1
7項、第18項又は第19項に記載の地中埋設物探知方
式。 21  送信アンテナ及び受信アンテナを反射板付ダイ
ポールアンテナとした特許請求の範囲第13項、第17
JJ!、第18項又は第19項に記載の地中埋設物探知
方式。
[Claims] 1. An underground object detector that detects the presence of underground objects by receiving reflected waves of radio waves transmitted from a transmitting antenna by the underground objects using a plurality of receiving antennas. In this step, the reflected waves received by the plurality of antennas are input to an adder/subtractor circuit to create a sum signal and a difference signal, and both the sum signal and difference signal are used to indicate the presence of the underground object. A system for detecting underground objects. 2. An underground object detection method according to claim 1, in which the radio wave format is a CW wave (continuous wave). 3. An underground object detection method according to claim 1, in which the radio wave format is a pulse wave. 4. Three underground object detection methods according to claim 1, in which the addition/subtraction circuit is a rat race circuit. 5 Underground object detection method as stated in claim 1 in which the adder/subtractor is a phase inversion type 1 knot 1 non-k circuit 0 6 Underground object detection system where the radio wave format is CW wave 75) In a detector, one of the sum signal and the difference signal is converted into a voltage and the other into a frequency, and the presence of an underground object is indicated by the level and frequency of the output signal. The underground object detection method described in Scope 1. 7. An underground object detector according to claim 1 or 6, in which the presence of an underground object is indicated by an audible display in an underground object detector whose radio wave format is a CW wave. Intermediate buried object detection method 08 Set the receiving antenna on a virtual straight line passing through the transmitting antenna setting 1 fixed point
Underground object detection method described in claim 1, which is composed of a pair (two) antennas set at equal distances on both sides of hi. In the object detector, the receiving antenna consists of two pairs (four antennas) set on two virtual straight lines that intersect at the transmitting antenna's location, each at an equal distance on both sides of the transmitting antenna's location. An underground object detection method according to claim 1. 10. The underground object detection method according to claim 9, wherein the two virtual straight lines are orthogonal to each other. 11 Claims 1 and 8, in which the transmitting antenna and the receiving antenna are microstrip antennas in an underground object detector whose radio wave format is CW waves.
The underground object detection method described in paragraph 9 or 10. 12 Attach the transmitting antenna and receiving antenna with a reflector.
Claim 1, which is a dipole antenna
The underground object detection method described in paragraph 8, paragraph 9, or paragraph 10. 13 In an underground object detector configured to detect the underground object by receiving reflected waves from the underground object of CW radio waves transmitted from the transmitting antenna with a plurality of receiving antennas, the above-mentioned plurality of The reflected wave received by the receiving antenna is input to an addition/subtraction circuit to create an O signal and a difference signal, and a position detection device is provided or the antenna section is scanned at a constant speed to obtain a position signal of the antenna section. Based on this position signal, the above O/U signal and the difference signal are converted to -
The presence of underground objects and their types are displayed by comparing and comparing the pre-stored waveform S-turn for the type of underground objects with the patterned sum signal or difference signal. Underground object detection method. 14. An underground object detection method according to claim 13, wherein the addition/subtraction circuit is a rat race circuit.
- 15. The underground object detection method according to claim 13, wherein the addition/subtraction circuit is a phase inversion type hybrid ring circuit. 16. The underground buried object detection method according to claim 13, wherein the underground buried object is detected by an audible display. 17. The antenna according to claim 13, in which the receiving antenna is constituted by a pair (two) antennas set equidistantly on both sides of the transmitting antenna set point on a virtual straight line passing through the transmitting antenna set point. Medium buried object detection method. 18 Claim 13, in which the receiving antenna is constituted by two pairs (four) antennas set at equal distances on both sides of the transmitting antenna setting location on two virtual straight lines that intersect at the transmitting antenna setting location. Underground object detection method described in section. The underground object detection method according to claim 18, wherein the 192 virtual straight lines are orthogonal to each other. 20 Claim 13, 1, in which the transmitting antenna and the receiving antenna are fibrous strip antennas
The underground object detection method described in Section 7, Section 18, or Section 19. 21 Claims 13 and 17 in which the transmitting antenna and the receiving antenna are dipole antennas with reflectors
JJ! , the underground object detection method according to item 18 or 19.
JP57107365A 1982-06-22 1982-06-22 Detection system for underground buried body Granted JPS58223771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57107365A JPS58223771A (en) 1982-06-22 1982-06-22 Detection system for underground buried body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57107365A JPS58223771A (en) 1982-06-22 1982-06-22 Detection system for underground buried body

Publications (2)

Publication Number Publication Date
JPS58223771A true JPS58223771A (en) 1983-12-26
JPH0213756B2 JPH0213756B2 (en) 1990-04-05

Family

ID=14457232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57107365A Granted JPS58223771A (en) 1982-06-22 1982-06-22 Detection system for underground buried body

Country Status (1)

Country Link
JP (1) JPS58223771A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302973A (en) * 1992-10-28 1993-11-16 Hitachi Ltd Apparatus and method for probing of object
JP2001034900A (en) * 1999-07-23 2001-02-09 Toshiba Corp Method and device for detecting airplane
US7362260B2 (en) 2002-09-27 2008-04-22 Innovatum, Inc. Method of using continuous-wave radiation for detecting and locating targets hidden behind a surface
US7535407B2 (en) 2005-03-15 2009-05-19 Prairielands Energy Marketing, Inc. Apparatus using continuous-wave radiation for detecting and locating targets hidden behind a surface
JP2016224047A (en) * 2015-05-26 2016-12-28 株式会社東芝 Buried object exploratory device and buried object exploratory method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302973A (en) * 1992-10-28 1993-11-16 Hitachi Ltd Apparatus and method for probing of object
JP2001034900A (en) * 1999-07-23 2001-02-09 Toshiba Corp Method and device for detecting airplane
US7362260B2 (en) 2002-09-27 2008-04-22 Innovatum, Inc. Method of using continuous-wave radiation for detecting and locating targets hidden behind a surface
US7535407B2 (en) 2005-03-15 2009-05-19 Prairielands Energy Marketing, Inc. Apparatus using continuous-wave radiation for detecting and locating targets hidden behind a surface
JP2016224047A (en) * 2015-05-26 2016-12-28 株式会社東芝 Buried object exploratory device and buried object exploratory method

Also Published As

Publication number Publication date
JPH0213756B2 (en) 1990-04-05

Similar Documents

Publication Publication Date Title
US5151701A (en) Police radar detectors for detecting radar signals and determining the directional origin of the signal source
US5345240A (en) Handheld obstacle penetrating motion detecting radar
US5083129A (en) Police radar detector for detecting radar signals and determining the directional origin of the signal source
US6348891B1 (en) Far field monitor apparatus
US3396395A (en) Receiver system including spurious signal detector
JPS58223771A (en) Detection system for underground buried body
US4263597A (en) Nondisruptive ADF system
KR20150143154A (en) Method and apparatus for processing radar signal
US4983983A (en) Semi-automatic direction finding set
KR101044002B1 (en) Active control system and method for controlling input signal of receiver
JPH11287851A (en) Radar apparatus
GB2092749A (en) Detecting obstacles to vehicles
JP3506112B2 (en) Radar equipment
JPH07191132A (en) On-vehicle radar device
JP3287784B2 (en) Radar equipment
JP2548315B2 (en) Approach target detection device
RU2096796C1 (en) Device which detects direction
JP2829376B2 (en) Method for locating the same interference amount in FM synchronous broadcasting
JP2000111645A (en) Transmission reception separating reflection system ultrasonic distance measuring device
JPH10190339A (en) Antenna device
JPH04120487A (en) Radar apparatus
JP3019423B2 (en) Receiver
JP3364832B2 (en) Radar equipment
JPH09230028A (en) Radar equipment
JP2625504B2 (en) Tracking antenna