JP2016224047A - Buried object exploratory device and buried object exploratory method - Google Patents

Buried object exploratory device and buried object exploratory method Download PDF

Info

Publication number
JP2016224047A
JP2016224047A JP2016104443A JP2016104443A JP2016224047A JP 2016224047 A JP2016224047 A JP 2016224047A JP 2016104443 A JP2016104443 A JP 2016104443A JP 2016104443 A JP2016104443 A JP 2016104443A JP 2016224047 A JP2016224047 A JP 2016224047A
Authority
JP
Japan
Prior art keywords
radio wave
exploration
buried
buried object
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016104443A
Other languages
Japanese (ja)
Inventor
尾崎 健司
Kenji Ozaki
健司 尾崎
晃生 隅田
Akio Sumida
晃生 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JP2016224047A publication Critical patent/JP2016224047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a buried object exploratory technique capable of exploring a buried state of either a structure or a plurality of buried objects buried underground.SOLUTION: A buried object exploratory device 10 explores a buried state of either a structure 11 or buried objects in a target exploratory area with radio waves transmitted to and reflected from the buried objects. The buried object exploratory device comprises: signal generation means 14 to generate high frequency signals; radio wave transmission means 15 to transmit radio waves of the generated high frequency signals to the target exploratory area; radio wave receiving means 16 to receive reflected waves which are the radio waves transmitted to and reflected from the buried objects; analogue-digital conversion means 18 to convert the high frequency signals of received radio waves into digital signals; and buried object position calculation means 20 to calculate a distance to the structure 11 or the buried objects in the target exploratory area on the basis of signal levels of the recorded digital signals and propagation time of the radio waves. A distance between the radio wave transmission means 15 and the radio wave receiving means 16 can be adjusted according to a size of the buried object in the target exploratory area.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、埋設物探査装置およびその探査方法に関する。   Embodiments described herein relate generally to a buried object search apparatus and a search method thereof.

建物や橋などの建造物の壁や床の鉄筋コンクリート中に埋設される鉄筋や電線管、配管類の埋設物の配置は、設計図面が存在しないものや、設計図面はあるものの施工時の変更などで図面通りに施工されていない場合が存在する。また、道路やトンネルのコンクリート構造物に埋設される水道管や電線等の配管類も、追加工事による変更があったり、設計図面等で正確な配管位置を把握することが困難な場合がある。   The layout of reinforcing bars, conduits, and piping embedded in reinforced concrete on the walls and floors of buildings such as buildings and bridges, etc., where there are no design drawings, or there are design drawings, changes during construction, etc. In some cases, it is not constructed as shown in the drawing. In addition, pipes such as water pipes and electric wires buried in concrete structures of roads and tunnels may be changed due to additional work, or it may be difficult to grasp an accurate pipe position with a design drawing or the like.

コンクリート構造物の埋設物の位置や形状、サイズ、本数等の埋設状態を確認するため、電磁誘導法、電磁波レーダ法や超音波探傷法、X線透過撮影法等を使用した埋設物の探査技術が知られている。   Exploration technology for buried objects using the electromagnetic induction method, electromagnetic wave radar method, ultrasonic flaw detection method, X-ray transmission imaging method, etc., in order to confirm the buried state such as the position, shape, size and number of concrete structures It has been known.

特開平9−88351号公報JP-A-9-88351

電磁誘導や電磁波、超音波を利用した従来の埋設物の探査技術においては、探査面から最も浅い一段目の位置にある埋設物の深さや水平位置を検査することができるが、深さ方向に複数あるいは複数段の埋設物が存在する場合、検出信号の多重反射が複数存在するために、多重反射の検出信号であることの判別ができず、二段目以降の埋設物が検知することができない課題がある。また、X線やγ線の放射線を用いた探査技術は、透過方式の検査であるため、深さ方向の位置は判別することができない問題がある。   In the conventional buried exploration technology using electromagnetic induction, electromagnetic waves, and ultrasonic waves, the depth and horizontal position of the buried object at the shallowest first level from the exploration surface can be inspected. When there are multiple or multiple stages of embedded objects, multiple detection signal multiple reflections exist, so it is not possible to determine that they are multiple reflection detection signals, and the second and subsequent embedded objects may be detected. There is a problem that cannot be done. Further, since the exploration technique using X-ray or γ-ray radiation is a transmission inspection, there is a problem that the position in the depth direction cannot be determined.

アレイ式送受信部を有する探査装置は、探査対象に対して異なる位置から送受信を行なうことができ、埋設物が深さ方向に複数存在している場合にも位置検出できる可能性がある。しかし、電子走査方式となるため、検出信号の信号処理が複雑で、処理に多大な時間と労力がかかり、装置コスト上問題がある。   An exploration device having an array type transmission / reception unit can perform transmission / reception with respect to an exploration target from different positions, and can detect a position even when a plurality of embedded objects exist in the depth direction. However, since the electronic scanning method is used, the signal processing of the detection signal is complicated, and it takes a lot of time and labor for the processing, which causes a problem in apparatus cost.

本発明の実施形態は、上述した事情を考慮してなされたもので、構造物または地中に埋設された複数の埋設物の埋設状態を探査することができる埋設物探査技術を提供することを目的とする。   The embodiment of the present invention has been made in consideration of the above-described circumstances, and provides an embedded object exploration technique capable of exploring the embedded state of a structure or a plurality of embedded objects embedded in the ground. Objective.

本発明の実施形態に係る埋設物探査装置は、探査対象内に電波を送受信して探査対象内部の埋設物の埋設状態を探査する埋設物探査装置において、高周波信号を発生させる信号発生手段と、発生した高周波信号の電波を前記探査対象内に送信する電波送信手段と、送信された電波による前記埋設物から反射波を受信する電波受信手段と、受信した電波の高周波信号をディジタル信号に変換するアナログ・ディジタル変換手段と、変換されたディジタル信号の高周波信号を記録する信号記録手段と、記録されたディジタル信号の信号レベルと前記電波の伝搬時間とから前記探査対象内部の埋設物までの距離を算出する埋設物位置算出手段とを有し、前記電波送信手段と前記電波受信手段との間隔が変更可能に構成されることを特徴とするものである。   The buried object exploration device according to the embodiment of the present invention includes a signal generating means for generating a high-frequency signal in the buried object exploration device for exploring the buried state of the buried object inside the exploration target by transmitting and receiving radio waves in the exploration target; Radio wave transmitting means for transmitting the radio wave of the generated high frequency signal into the object to be searched, radio wave receiving means for receiving a reflected wave from the buried object by the transmitted radio wave, and converting the high frequency signal of the received radio wave into a digital signal The distance from the analog / digital conversion means, the signal recording means for recording the high frequency signal of the converted digital signal, the signal level of the recorded digital signal and the propagation time of the radio wave to the buried object in the search target An embedded object position calculating means for calculating, and the interval between the radio wave transmitting means and the radio wave receiving means is configured to be changeable. That.

また、本発明の実施形態に係る埋設物探査装置は、探査対象内に電波を送受信して探査対象内部の埋設物の埋設状態を探査する埋設物探査装置において、高周波信号を発生させる信号発生手段と、発生した高周波信号の電波を前記探査対象内に送信する電波送信手段と、送信された電波による前記埋設物から反射波を受信する電波受信手段と、受信した電波の高周波信号をディジタル信号に変換するアナログ・ディジタル変換手段と、変換されたディジタル信号の高周波信号を記録する信号記録手段と、記録されたディジタル信号の信号レベルと前記電波の伝搬時間とから前記探査対象内部の埋設物までの距離を算出する埋設物位置算出手段とを有し、前記電波送信手段と前記電波受信手段とを、前記探査対象の表面上の任意な第1方向に並べた配置で行った探査結果と、前記第1方向に直交する第2方向に並べて行った探査結果とを合成する埋設物位置算出手段を有するものである。   Further, the buried object exploration device according to the embodiment of the present invention is a signal generating means for generating a high-frequency signal in the buried object exploration device for exploring the buried state of the buried object inside the exploration target by transmitting and receiving radio waves in the exploration target. A radio wave transmitting means for transmitting the radio wave of the generated high frequency signal into the exploration target, a radio wave receiving means for receiving a reflected wave from the buried object by the transmitted radio wave, and a high frequency signal of the received radio wave as a digital signal Analog / digital conversion means for conversion, signal recording means for recording high-frequency signals of the converted digital signal, signal level of the recorded digital signal and propagation time of the radio wave to the buried object in the search target Embedded object position calculating means for calculating a distance, and the radio wave transmitting means and the radio wave receiving means are arranged in an arbitrary first direction on the surface of the search target. Exploration results made in arrangement, and has a buried object position calculating means for combining search results and went side by side in a second direction perpendicular to said first direction.

さらに、本発明の実施形態に係る埋設物探査装置は、探査対象内に電波を送受信して埋設物の埋設状態を探査する埋設物探査装置において、前記探査対象内に電波を送受信する送受信アンテナ部と、この送受信アンテナ部の電波送受信側に配設され、前記電波を集束して電波の焦点領域を生成する電波レンズ部とから構成される送受信アンテナ装置と、前記送受信アンテナ装置を水平方向および垂直方向に3次元走査して電波の焦点エリアを走査する3次元走査機構とを備えることを特徴とするものである。   Further, the buried object exploration device according to the embodiment of the present invention is a transmission / reception antenna unit that transmits / receives radio waves in the exploration target in the buried object exploration device that transmits / receives radio waves in the exploration target and searches the buried state of the buried object. A transmission / reception antenna device disposed on a radio wave transmission / reception side of the transmission / reception antenna unit and configured to focus the radio wave and generate a focal region of the radio wave, and the transmission / reception antenna device in a horizontal direction and a vertical direction. And a three-dimensional scanning mechanism that scans the focal area of the radio wave by three-dimensional scanning in the direction.

さらにまた、本発明の実施形態に係る埋設物探査方法は、探査対象内に電波を送受信して探査対象内部の埋設物の埋設状態を探査する埋設物探査方法において、電波送信手段から放射される電波が前記探査対象内に送信され、埋設物からの反射波を電波受信手段が受信し、受信した反射波の高周波信号をディジタル変換して信号記録手段に記録し、記録した前記高周波信号の信号レベルと電池の伝搬時間とから前記探査対象内に存在する前記埋設物までの距離を埋設物算出手段で算出し、前記探査対象内に存在する前記埋設物の大きさに応じて前記電波送信手段と前記電波受信手段との間隔を調節設定することを特徴とする探査方法である。   Furthermore, the buried object exploration method according to the embodiment of the present invention is a buried object exploration method for exploring the buried state of the buried object in the exploration target by transmitting and receiving radio waves in the exploration target, and is radiated from the radio wave transmitting means. A radio wave is transmitted into the exploration target, the radio wave receiving means receives the reflected wave from the buried object, digitally converts the received high frequency signal of the reflected wave and records it in the signal recording means, and the recorded signal of the high frequency signal The distance from the level and the battery propagation time to the buried object existing in the exploration target is calculated by the buried object calculating means, and the radio wave transmitting means is calculated according to the size of the buried object existing in the exploration target. And adjusting the interval between the radio wave receiving means and the radio wave receiving means.

加えて、本発明の実施形態に係る埋設物探査方法は、探査対象内に電波を送受信して探査対象内部の埋設物の埋設状態を探査する埋設物探査方法において、前記電波送信手段と前記電波受信手段とを、前記探査対象の表面上の任意な第1方向に並べた配置において、高周波信号の電波を発生させて前記探査対象内に送信し、送信された電波による前記埋設物から反射波を受信し、受信した電波の高周波信号をディジタル信号に変換し、変換されたディジタル信号の高周波信号を記録し、前記電波送信手段と前記電波受信手段とを、前記第1方向直交する第2方向に並べた配置において、高周波信号の電波を発生させて前記探査対象内に送信し、送信された電波による前記埋設物から反射波を受信し、受信した電波の高周波信号をディジタル信号に変換し、変換されたディジタル信号の高周波信号を記録し、前記第1方向に直交する探査結果と第2方向に並べて行った探査結果とを合成することを特徴とする探査方法である。   In addition, the buried object exploration method according to the embodiment of the present invention is the buried object exploration method for exploring the buried state of the buried object in the exploration target by transmitting and receiving radio waves in the exploration target. In an arrangement in which receiving means are arranged in an arbitrary first direction on the surface of the exploration target, a radio wave of a high-frequency signal is generated and transmitted into the exploration target, and a reflected wave from the embedded object by the transmitted radio wave The received radio wave high-frequency signal is converted into a digital signal, the converted digital signal high-frequency signal is recorded, and the radio wave transmitting means and the radio wave receiving means are in a second direction orthogonal to the first direction. In the arrangement, the radio wave of the high frequency signal is generated and transmitted into the search target, the reflected wave is received from the buried object by the transmitted radio wave, and the high frequency signal of the received radio wave is converted into a digital signal. It was converted to the recorded high frequency signals of converted digital signal, a search method characterized by synthesizing a search result and went side by probing result and a second direction orthogonal to the first direction.

本発明の実施形態では、探査対象内部に複数の埋設物が深さ方向に埋設されている場合にも、各埋設物の埋設状態を探査することができる。   In the embodiment of the present invention, even when a plurality of buried objects are buried in the depth direction within the exploration target, the buried state of each buried object can be explored.

(A)は第1の実施形態に係る埋設物探査装置の構成を示す図、(B)はスライド機構の構成例を示す図。(A) is a figure which shows the structure of the buried object search apparatus which concerns on 1st Embodiment, (B) is a figure which shows the structural example of a slide mechanism. 第1の実施形態に係る埋設物探査装置によるコンクリート構造物の探査例を示す図。The figure which shows the search example of the concrete structure by the buried object search apparatus which concerns on 1st Embodiment. 電波の送受信部と埋設物の位置関係を示す図。The figure which shows the positional relationship of the transmission / reception part of an electromagnetic wave, and an embedded object. 埋設物探査装置による探査結果を2次元表示したコンタ図。The contour figure which displayed the exploration result by the buried object exploration device two-dimensionally. (A)はアンテナにおける電波の送受信部とコンクリート構造物の配置例を示す側面図、(B)は電波の送受信部と走査方向における配置関係を示す平面図。(A) is a side view showing an arrangement example of a radio wave transmission / reception unit and a concrete structure in an antenna, and (B) is a plan view showing an arrangement relationship between the radio wave transmission / reception unit and a scanning direction. アンテナにおける電波の送受信部とコンクリート構造物との位置関係を示す側面図。The side view which shows the positional relationship of the transmission / reception part of an electromagnetic wave in an antenna, and a concrete structure. (A),(B)および(C)は、電波の送受信部と走査方向の位置関係を変えた場合の埋設物の探査結果1,2および3をそれぞれ示す図。(A), (B), and (C) are the figures which respectively show the search results 1, 2, and 3 of the buried object when the radio wave transmission / reception unit and the positional relationship in the scanning direction are changed. 電波の周波数を変えた場合の埋設物の探査結果を示す図。The figure which shows the exploration result of the buried object at the time of changing the frequency of an electromagnetic wave. アンテナにおける電波の送受信部の異なる配置例を示す平面図。The top view which shows the example of arrangement | positioning from which the transmission / reception part of the electromagnetic wave in an antenna differs. 誘電体を備えた埋設物探査装置の構成を示す図。The figure which shows the structure of the buried object search apparatus provided with the dielectric material. 第2の実施形態に係る埋設物探査装置の構成を示す図。The figure which shows the structure of the buried object search apparatus which concerns on 2nd Embodiment. 埋設物の複数の探査結果から埋設物の埋設方向を同定した3次元の探査データの取得例を示す図。The figure which shows the acquisition example of the three-dimensional exploration data which identified the embedding direction of the embedded object from the several search result of the embedded object. 第3の実施形態に係る埋設物探査装置の構成を示す図。The figure which shows the structure of the buried object search apparatus which concerns on 3rd Embodiment. 3軸自動ステージ装置を構成する3次元走査機構の模式図。The schematic diagram of the three-dimensional scanning mechanism which comprises a 3-axis automatic stage apparatus. コンクリート構造物内に配筋される鉄筋構造体を示す図。The figure which shows the reinforcing bar structure arranged in a concrete structure. 第3の実施形態に係る埋設物探査装置の運用例を示す図。The figure which shows the operation example of the buried object search apparatus which concerns on 3rd Embodiment.

以下、本発明の実施形態について添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

[第1の実施形態]
図1の(A)は、第1の実施形態に係る埋設物探査装置10を示す構成図であり、(B)はスライド機構の構成図である。図2はコンクリート構造物11に埋設された埋設物探査装置10の適用例を示す図である。
[First Embodiment]
FIG. 1A is a configuration diagram illustrating an embedded object searching apparatus 10 according to the first embodiment, and FIG. 1B is a configuration diagram of a slide mechanism. FIG. 2 is a diagram showing an application example of the buried object searching device 10 buried in the concrete structure 11.

埋設物探査装置10は、図1の(A)に示すように、数GHzの周波数の高周波信号を発生させる信号発生手段14と、発生した高周波信号をケーブルあるいは無線で入力し、数GHz(例えば1GHz〜6GHz)の周波数の電波を発信させる電波送信手段15とを備える。電波送信手段15は探査対象であるコンクリート建造物11の探査(物質)表面に接触して配置され、探査表面に垂直方向で放射状に、例えば拡がり角度60°〜100°で放射される電波を発信させる。発信された電波は、探査対象のコンクリート構造物11の物質内を拡がりをもって放射、伝搬され、探査対象内部の鉄筋等の埋設物12表面で反射される。反射した電波は物質内を反射方向に伝搬されて電波受信手段16に受信される。   As shown in FIG. 1A, the buried object exploration device 10 receives signal generation means 14 for generating a high-frequency signal having a frequency of several GHz, and the generated high-frequency signal by a cable or wirelessly, and receives several GHz (for example, Radio wave transmission means 15 for transmitting radio waves having a frequency of 1 GHz to 6 GHz. The radio wave transmitting means 15 is arranged in contact with the exploration (material) surface of the concrete building 11 to be explored, and transmits a radio wave radiated in a direction perpendicular to the exploration surface, for example, at an expansion angle of 60 ° to 100 °. Let The transmitted radio wave radiates and propagates in the material of the concrete structure 11 to be searched, and is reflected on the surface of the buried object 12 such as a reinforcing bar inside the search object. The reflected radio wave is propagated through the substance in the reflection direction and received by the radio wave receiving means 16.

電波受信手段16は探査対象としてのコンクリート構造物11の探査表面上に、電波送信手段15と所要の間隔をおいて配置される。電波送信手段15と電波受信手段16は、ボックス状のアンテナ17内に一体に構成しても、または別々のアンテナとして個別に設けてもよい。   The radio wave receiving means 16 is disposed on the exploration surface of the concrete structure 11 as the exploration target with a predetermined distance from the radio wave transmission means 15. The radio wave transmission means 15 and the radio wave reception means 16 may be integrally formed in the box-shaped antenna 17 or may be provided separately as separate antennas.

埋設物探査装置10は、鉄筋等の埋設物12で反射した電波を受信し、高周波信号に変換する電波受信手段16と、受信したアナログ信号の高周波信号をディジタル信号に変換するアナログ・ディジタル(AD)変換手段18と、AD変換された電波の高周波信号がディジタル信号の波形データ信号として記録される信号記録手段19と、記録された波形データ信号の信号レベルと電波の送信(発信)から受信までの伝搬時間とからコンクリート構造物11の物質中の埋設物12まで距離を算出する埋設物位置算出手段20と、を備える。   The buried object exploration device 10 receives a radio wave reflected by a buried object 12 such as a reinforcing bar and converts it into a high frequency signal, and an analog / digital (AD) that converts the received high frequency signal into a digital signal. ) Conversion means 18, signal recording means 19 for recording high-frequency signals of radio waves subjected to AD conversion as digital waveform data signals, signal levels of recorded waveform data signals and transmission (transmission) to reception of radio waves Embedded object position calculating means 20 for calculating the distance from the propagation time to the embedded object 12 in the material of the concrete structure 11.

信号記録手段19には、信号発生手段14で発信するタイミング情報が併せて入力され、記録されることにより、電波を発信してから受信するまでの時間差が把握され、電波の伝搬時間が求められる。   The timing information transmitted by the signal generating unit 14 is also input and recorded in the signal recording unit 19 so that a time difference from when the radio wave is transmitted to when it is received is grasped, and the propagation time of the radio wave is obtained. .

埋設物位置算出手段20は、信号記録手段19で求められた電波の伝搬時間と、電波受信手段16で受信された高周波信号の信号レベルとを演算することにより、コンクリート構造物11に埋設された埋設物12の深さ位置や形状を探査することができる。   The buried object position calculating means 20 is embedded in the concrete structure 11 by calculating the propagation time of the radio wave obtained by the signal recording means 19 and the signal level of the high frequency signal received by the radio wave receiving means 16. The depth position and shape of the buried object 12 can be searched.

図3は、コンクリート構造物11の探査表面上設置のアンテナ17に電波送信手段15と電波受信手段16とを設け、コンクリート構造物11の表面に電波RWが送受信された場合を示している。図3は電波送信手段15から送信された電波RWが埋設物22bで反射して電波受信手段16に受信する様子を原理的に示している。一般に、電波RWは、物質の誘電率に依存した速度で伝搬されるため、コンクリート構造物11に相当する物質の誘電率を入力することにより、電波の速度が算出され、信号記録手段19に記録される時間差から埋設物22bまでの距離を求めることができる。   FIG. 3 shows a case where the radio wave transmitting means 15 and the radio wave receiving means 16 are provided in the antenna 17 installed on the exploration surface of the concrete structure 11, and the radio wave RW is transmitted and received on the surface of the concrete structure 11. FIG. 3 shows in principle how the radio wave RW transmitted from the radio wave transmission means 15 is reflected by the buried object 22b and received by the radio wave reception means 16. In general, since the radio wave RW is propagated at a speed depending on the dielectric constant of the substance, by inputting the dielectric constant of the substance corresponding to the concrete structure 11, the speed of the radio wave is calculated and recorded in the signal recording means 19. The distance to the buried object 22b can be obtained from the time difference.

さらに、アンテナ17を図3の走査方向Sに移動させ、電波送信手段15と電波受信手段16、または電波送信手段15および電波受信手段16のいずれか一方を、探査(物質)表面上を走査し、平行に位置変更させて電波RWを送受信させて記録処理を行なうことで、位置変更毎の記録点を連続的に示すことができ、埋設物22a,22bの距離表示を行なうことができる。具体的には、埋設物探査装置10は、電波送信手段15または電波受信手段16の位置変更毎の記録点において、埋設物22a,22bからの電波RWの受信強度と深さ情報である伝搬時間とを、図4に示す2次元信号記録手段24の表示手段で2次元情報として表示することができる。   Further, the antenna 17 is moved in the scanning direction S of FIG. 3, and the radio wave transmitting means 15 and the radio wave receiving means 16 or the radio wave transmitting means 15 and the radio wave receiving means 16 are scanned on the surface of the exploration (substance). By performing the recording process by changing the position in parallel and transmitting / receiving the radio wave RW, the recording points for each position change can be continuously indicated, and the distance between the embedded objects 22a and 22b can be displayed. Specifically, the buried object exploration device 10 has a propagation time which is reception intensity and depth information of the radio wave RW from the buried objects 22a and 22b at each recording point change of the radio wave transmission means 15 or the radio wave reception means 16. Can be displayed as two-dimensional information on the display means of the two-dimensional signal recording means 24 shown in FIG.

埋設物位置算出手段20で、(電波RWの受信強度である)高周波信号の信号レベルと、埋設物12の深さ情報である電波RWの伝搬時間とから、埋設物12までの距離を算出することができる。埋設物12までの距離は、図4に示す2次元情報で表わすことができる。位置変更毎の各記録点において、埋設物12の電波の受信強度と深さ情報である電波の伝搬時間とから得られる図4の2次元情報は、2次元信号記録手段24で処理され、記録される。   The buried object position calculation means 20 calculates the distance to the buried object 12 from the signal level of the high frequency signal (which is the reception intensity of the radio wave RW) and the propagation time of the radio wave RW which is the depth information of the buried object 12. be able to. The distance to the embedded object 12 can be represented by the two-dimensional information shown in FIG. At each recording point for each position change, the two-dimensional information in FIG. 4 obtained from the radio wave reception intensity of the buried object 12 and the radio wave propagation time as depth information is processed by the two-dimensional signal recording means 24 and recorded. Is done.

埋設物で反射した電波の受信位置と深さ情報である電波の伝搬時間の関係を示す図4の2次元情報は、電波の受信強度の信号レベルに応じた分布を濃淡で示す2次元のコンタ図等の表示で表わすことができる。この2次元のコンタ図から電波の受信強度が強い部分24a,24bに埋設物12が存在していると推定することができる。   The two-dimensional information shown in FIG. 4 showing the relationship between the reception position of the radio wave reflected by the buried object and the propagation time of the radio wave, which is depth information, is a two-dimensional contour indicating the distribution according to the signal level of the radio wave reception intensity in shades. It can be represented by a display such as a figure. From this two-dimensional contour diagram, it can be estimated that the embedded object 12 exists in the portions 24a and 24b where the radio wave reception intensity is strong.

埋設物探査装置10の2次元信号記録手段24には、電波送信手段15および電波受信手段16、または電波送信手段15および電波受信手段16の少なくとも一方の位置変更における各記録点(箇所)において、電波の受信強度とその伝搬時間(深さ情報)の2次元情報が処理され、記録される。埋設物から電波の受信強度とその伝搬時間(深さ情報)の処理および記録は、2次元信号処理手段を兼ねる、2次元信号記録手段24で行なわれる。2次元信号記録手段24では、図4に示す信号レベルに応じて濃淡で分布が表わされる2次元のコンタ図の分析により、信号レベル強度が強い部分24a,24bに埋設物22a,22bが存在していることがわかる。   The two-dimensional signal recording unit 24 of the buried object exploration device 10 includes a radio wave transmission unit 15 and a radio wave reception unit 16, or at each recording point (location) in the position change of at least one of the radio wave transmission unit 15 and the radio wave reception unit 16. Two-dimensional information of radio wave reception intensity and propagation time (depth information) is processed and recorded. The processing and recording of the reception intensity of radio waves from the embedded object and the propagation time (depth information) are performed by the two-dimensional signal recording means 24 that also serves as the two-dimensional signal processing means. In the two-dimensional signal recording unit 24, the embedded objects 22a and 22b exist in the portions 24a and 24b where the signal level strength is strong, by analyzing the two-dimensional contour diagram in which the distribution is represented by shading according to the signal level shown in FIG. You can see that

また、図3では、コンクリート構造物11内に埋設された複数の埋設物22a,22bがあらかじめ深さ方向に存在する場合で、特に探査(物質)表面に近い埋設物22aが大きい場合にも、深い位置に存在する埋設物22bの探査が可能な構造となっている。埋設物の大きさは既知の場合が多く、電波送信手段15および電波受信手段16の間隔は予想される既知の埋設物の大きさに適した(例えば埋設物22aの大きさを超える)間隔に予め調節設定されており、この状態で埋設物22a,22bの最初の探査が行なわれる。   Further, in FIG. 3, when a plurality of embedded objects 22 a and 22 b embedded in the concrete structure 11 exist in the depth direction in advance, especially when the embedded object 22 a near the exploration (material) surface is large, The structure is such that the buried object 22b existing at a deep position can be searched. The size of the buried object is often known, and the interval between the radio wave transmitting means 15 and the radio wave receiving means 16 is suitable for the expected size of the buried object (for example, exceeds the size of the buried object 22a). Adjustment is set in advance, and in this state, the first exploration of the buried objects 22a and 22b is performed.

埋設物探査装置10で埋設物22a,22bの探査を行なった結果、探査表面に近い埋設物22aの大きさが予想された既知の埋設物の大きさと異なることを知見した場合、埋設物22aの大きさに適した電波送信手段15および電波受信手段16の間隔に調節設定される。間隔を調整設定した後、再び埋設物探査装置10により埋設物22a,22bの非破壊探査が実施される。   As a result of exploring the buried objects 22a and 22b with the buried object exploration device 10, if it is found that the size of the buried object 22a near the exploration surface is different from the expected size of the buried object, The distance between the radio wave transmission means 15 and the radio wave reception means 16 is adjusted and set according to the size. After adjusting and setting the interval, the embedded object exploration device 10 again performs nondestructive exploration of the embedded objects 22a and 22b.

このように、埋設物探査装置10では、アンテナ17内において、一段目(上段)の埋設物22aの大きさに合わせて電波送信手段15と電波受信手段16との間隔を適宜調節させることができ、コンクリート構造物11の物質内に送信されて伝搬される電波RWが二段目以降の下段側埋設物22bにも伝搬され、当てられるように配置される。具体的には一段目(上段)の埋設物22aが水平方向に大きい場合に埋設物22aの水平方向の大きさを検知して電波送信手段15と電波受信手段16との間隔を広げることで二段目以降の下段側埋設物22b探査が可能となる。   As described above, in the buried object exploration device 10, the distance between the radio wave transmission means 15 and the radio wave reception means 16 can be appropriately adjusted in the antenna 17 according to the size of the first stage (upper stage) buried object 22 a. The radio wave RW transmitted and propagated in the substance of the concrete structure 11 is also propagated to the lower-stage embedded object 22b after the second stage and arranged so as to be hit. Specifically, when the first stage (upper) buried object 22a is large in the horizontal direction, the horizontal size of the buried object 22a is detected to increase the interval between the radio wave transmitting means 15 and the radio wave receiving means 16. Exploration of the lower-stage buried object 22b after the stage becomes possible.

上段側一段目の埋設物22aの大きさや深さに応じて、アンテナ17内の発信と受信との間隔調節が行なわれる。アンテナ17にスライド機構を設けることもできる。図1(B)にスライド機構の一例を示す。スライド機構60は、電波送信手段15と電波受信手段16の背面にわたって配置されたスライド板61と、このスライド板61に電波送信手段15および電波受信手段16を固定する固定ねじ62a、62bを備える。スライド板61には長手方向に沿った孔部が設けられており、固定ねじ62bが緩められた状態では、電波受信手段16と固定ねじ62bが長手方向の孔部に沿って移動可能であり、任意の位置でねじを締めて固定することで電波送信手段15と電波受信手段16の間隔を定めることができる。アンテナ17にスライド機構60を設けることで、埋設物22a,22bがコンクリート構造物11の深さ方向に複数存在する場合にも、各段の各埋設物22a,22bの深さ位置や大きさ、形状を正確に検出することができる。なお、スライド機構60は上述の構成に限られず、電波送信手段15または電波送信手段15と電波受信手段16の両方をスライド可能としてもよい。また、上述の構造では連続的に位置を変更可能であるが、ラッチ構造を採用する等して離散的に変更可能としてもよい。   The distance between the transmission and reception in the antenna 17 is adjusted according to the size and depth of the first-stage embedded object 22a. A slide mechanism can be provided on the antenna 17. An example of the slide mechanism is shown in FIG. The slide mechanism 60 includes a slide plate 61 disposed over the back surfaces of the radio wave transmission unit 15 and the radio wave reception unit 16, and fixing screws 62 a and 62 b that fix the radio wave transmission unit 15 and the radio wave reception unit 16 to the slide plate 61. The slide plate 61 is provided with a hole along the longitudinal direction. When the fixing screw 62b is loosened, the radio wave receiving means 16 and the fixing screw 62b can move along the hole in the longitudinal direction. The interval between the radio wave transmission means 15 and the radio wave reception means 16 can be determined by fastening and fixing the screw at an arbitrary position. By providing the slide mechanism 60 on the antenna 17, even when there are a plurality of buried objects 22a and 22b in the depth direction of the concrete structure 11, the depth positions and sizes of the buried objects 22a and 22b in each stage, The shape can be detected accurately. The slide mechanism 60 is not limited to the above-described configuration, and the radio wave transmission unit 15 or both the radio wave transmission unit 15 and the radio wave reception unit 16 may be slidable. Moreover, although the position can be continuously changed in the above-described structure, it may be changed discretely by adopting a latch structure or the like.

また、アンテナ17は、電波送信手段15と電波受信手段16とを個別に、あるいは一体的に設けた簡素な構成でよく、アレイ式アンテナのように複数のアンテナをアレイ状に配列したり、アレイ式アンテナを走査する走査回路を設ける必要がない。したがって、埋設物探査装置10を簡素な構成とすることができ、コンクリート構造物11内に埋設された複数の鉄筋等の埋設物12,12(図2);22a,22b(図3)の探査を容易にかつ安価に行なうことができる。   The antenna 17 may have a simple configuration in which the radio wave transmission means 15 and the radio wave reception means 16 are provided individually or integrally, and a plurality of antennas may be arranged in an array like an array antenna, or an array There is no need to provide a scanning circuit for scanning the antenna. Therefore, the buried object exploration device 10 can have a simple configuration, and the exploration of the buried objects 12, 12 (FIG. 2); 22a, 22b (FIG. 3) such as a plurality of reinforcing bars embedded in the concrete structure 11 is possible. Can be carried out easily and inexpensively.

[第1変形例]
第1の実施形態による埋設物探査装置10において、電波送信手段15と電波受信手段16との間隔が広過ぎると、電波受信手段16で上段側の一段目の埋設物22aからの反射波(反射した高周波信号)が得られず、上段側の埋設物22aの位置を検出できない場合がある。この場合には、最も浅い位置にある上段側の埋設物22aと、別の埋設物探査装置を用いて位置検出を行なってもよいし、図5(A)および(B)に示す埋設物探査装置10Aを用いて位置検出を行なってもよい。
[First Modification]
In the buried object exploration device 10 according to the first embodiment, if the distance between the radio wave transmitting means 15 and the radio wave receiving means 16 is too wide, the radio wave receiving means 16 reflects the reflected wave (reflected) from the first stage buried object 22a. High-frequency signal) cannot be obtained, and the position of the upper buried object 22a may not be detected. In this case, the position detection may be performed by using the buried object 22a on the upper stage at the shallowest position and another buried object searching device, or the buried object search shown in FIGS. 5 (A) and 5 (B). Position detection may be performed using the apparatus 10A.

埋設物探査装置10Aは、図5(A)および(B)に示すように、アンテナ17内に電波送信手段15と電波受信手段16とを走査方向Sに直交するように配置し、最も浅い位置にある上段側の埋設物22aの位置検出を行なってもよい。しかし、アンテナ17内に電波送信手段15と電波受信手段16とを走査方向Sに直交するレイアウト位置に配置した場合には、下段側の埋設物22bの探査を行なうことができないことがある。   As shown in FIGS. 5A and 5B, the buried object exploration device 10A has the radio wave transmitting means 15 and the radio wave receiving means 16 disposed in the antenna 17 so as to be orthogonal to the scanning direction S, and the shallowest position. It is also possible to detect the position of the upper buried object 22a. However, when the radio wave transmitting means 15 and the radio wave receiving means 16 are arranged in the antenna 17 at a layout position orthogonal to the scanning direction S, the lower-stage buried object 22b may not be searched.

ただ、最も浅い位置にある上段側埋設物22aの位置検出は、埋設物探査装置10Aで正確に行なうことができるので、図3に示す埋設物探査装置10と図5に示す埋設物探査装置10Aを併用することにより、最も浅い位置にある上段側の埋設物22aおよび下段側の埋設物22bの探査を正確に行なうことができる。   However, since the position detection of the upper stage embedded object 22a at the shallowest position can be accurately performed by the embedded object searching apparatus 10A, the embedded object searching apparatus 10 shown in FIG. 3 and the embedded object searching apparatus 10A shown in FIG. By using together, it is possible to accurately search for the upper buried object 22a and the lower buried object 22b at the shallowest position.

電波送信手段15と電波送信手段16の走査方向Sに対する配置を直交と平行とで行い組み合わせる探査について、図5から図8を用いて説明する。図5(A),(B)は、電波送信手段(送信部)15と電波受信手段(受信部)16とを走査方向Sに対して直交する方向に並設したレイアウト配置の場合、図6は電波送信手段15と電波受信手段16とを走査方向Sに対して平行となるように並設したレイアウト配置の場合をそれぞれ示す。図6の埋設物探査装置10Aは、図5(A),(B)に示す埋設物探査装置10Aの送受信部のレイアウト配置を、コンクリート構造物11の探査(物質)表面上で90度シフトさせた例を示すものである。   The exploration in which the arrangement of the radio wave transmission means 15 and the radio wave transmission means 16 with respect to the scanning direction S is performed orthogonally and in parallel will be described with reference to FIGS. 5A and 5B show a layout arrangement in which radio wave transmission means (transmission section) 15 and radio wave reception means (reception section) 16 are arranged side by side in a direction orthogonal to the scanning direction S. FIG. Shows a layout arrangement in which the radio wave transmission means 15 and the radio wave reception means 16 are arranged in parallel so as to be parallel to the scanning direction S. The embedded object exploration device 10A in FIG. 6 shifts the layout arrangement of the transmitting / receiving unit of the embedded object exploration device 10A shown in FIGS. 5A and 5B by 90 degrees on the exploration (material) surface of the concrete structure 11. An example is shown.

図7(A)は、図5(A)および(B)で示された電波送信手段(送信部)15と電波受信手段(受信部)16とのレイアウト配置構成により得られる探査結果1を示したものである。図7(B)は、図6に示された電波送信手段15と電波受信手段16とのレイアウト配置構成での探査結果2を示したものである。図7(C)は、電波送信手段15と電波受信手段16と走査方向Sの位置関係の情報と、図7(A)および図7(B)の探査結果1,2から2次元信号記録手段24で合成された探査結果3を示すものである。   FIG. 7A shows a search result 1 obtained by the layout arrangement configuration of the radio wave transmission means (transmission section) 15 and the radio wave reception means (reception section) 16 shown in FIGS. 5A and 5B. It is a thing. FIG. 7B shows a search result 2 in the layout arrangement configuration of the radio wave transmission means 15 and the radio wave reception means 16 shown in FIG. FIG. 7C shows two-dimensional signal recording means based on the positional relationship information of the radio wave transmission means 15, the radio wave reception means 16, and the scanning direction S, and the search results 1 and 2 in FIGS. 7A and 7B. 24 shows the search result 3 synthesized at 24.

第1変形例に示された埋設物探査装置10Aにより、電波送信手段15が異なる周波数帯域の電波RWを送信すると、埋設物位置算出手段20はそれぞれの周波数帯で受信する探査データが得られ、図7に示されるように、2次元信号記録手段24は深さ方向の感度に応じた合成処理が行なわれて、埋設物24a,24b,24cの深さ位置(埋設位置)が特定される。   When the radio wave transmitting unit 15 transmits the radio wave RW having a different frequency band by the embedded object searching device 10A shown in the first modification, the embedded object position calculating unit 20 obtains the search data to be received in each frequency band, As shown in FIG. 7, the two-dimensional signal recording means 24 is subjected to synthesis processing according to the sensitivity in the depth direction, and the depth positions (embedding positions) of the embedded objects 24a, 24b, and 24c are specified.

図7(A)では、コンクリート構造物11の比較的浅い位置にある埋設物24a,24cが、埋設物位置算出手段20で算出され、埋設物22a,22cからの電波の受信強度と電波の伝播時間とから得られる2次元情報は2次元信号記録手段24で明確に検出される。但し、図5(A)において、電波送信手段15および電波受信手段16から埋設物22bまでの距離が等しくなる位置にゴースト24b´が検出される。   In FIG. 7A, the buried objects 24a and 24c at a relatively shallow position of the concrete structure 11 are calculated by the buried object position calculating means 20, and the reception intensity of the radio waves from the buried objects 22a and 22c and the propagation of the radio waves are calculated. Two-dimensional information obtained from time is clearly detected by the two-dimensional signal recording means 24. However, in FIG. 5A, the ghost 24b 'is detected at a position where the distances from the radio wave transmitting means 15 and the radio wave receiving means 16 to the embedded object 22b are equal.

図7(B)は、図6に示されるレイアウト配置構成での探査結果2を示すもので、コンクリート構造物11の比較的浅い位置にある埋設物24a´,24c´は、水平方向に幅広く延びて、例えば長円形の探査結果2となるのに対し、深い位置にある埋設物24bは明確に検出される。特に、図6に示されるレイアウト配置構成では、送信部15と受信部16との間隔により、埋設物22aの背後に位置する深い位置の埋設物22bを検出することができるように配置されるので、埋設物22bは、図7(B)に示すように、符号24bで明確に検出することができる。   FIG. 7B shows the exploration result 2 in the layout arrangement configuration shown in FIG. 6, and the embedded objects 24a ′ and 24c ′ at a relatively shallow position of the concrete structure 11 extend widely in the horizontal direction. Thus, for example, an oblong exploration result 2 is obtained, whereas the buried object 24b at a deep position is clearly detected. In particular, in the layout arrangement configuration shown in FIG. 6, it is arranged so that the buried object 22b located deep behind the buried object 22a can be detected by the distance between the transmitting unit 15 and the receiving unit 16. The embedded object 22b can be clearly detected by the reference numeral 24b as shown in FIG.

図7(C)は、2次元信号記録手段24により、図7(A)に示された探査結果1と図7(B)に示された探査結果2とを合成させた探査結果3を示すもので、図7(C)に示される探査結果3により、各埋設物24a,24bおよび24cの埋設位置をそれぞれ検出することができる。   FIG. 7C shows a search result 3 in which the search result 1 shown in FIG. 7A and the search result 2 shown in FIG. 7B are combined by the two-dimensional signal recording means 24. Therefore, the embedded positions of the embedded objects 24a, 24b, and 24c can be detected by the search result 3 shown in FIG. 7C.

コンクリート構造物11の浅い位置は、図7(A)に示された探査結果1により、深い位置は図7(B)の探査結果2によりそれぞれ抽出でき、図7(A)の探査結果1と図7(B)の探査結果2とを合成した図7(C)に示された探査結果3により、水平方向および深さ方向にそれぞれ配置されている埋設物24a,24b,24cの位置を正確に検出することができる。   The shallow position of the concrete structure 11 can be extracted from the search result 1 shown in FIG. 7A, and the deep position can be extracted from the search result 2 of FIG. 7B. By combining the search result 2 shown in FIG. 7B with the search result 3 shown in FIG. 7C, the positions of the embedded objects 24a, 24b, and 24c arranged in the horizontal direction and the depth direction can be accurately determined. Can be detected.

図8は埋設物探査装置10Aの電波送信手段15から送信される広帯域の電波により探査を行い、異なる周波数帯の探査結果を合成して埋設物の位置を検出する例を示すものである。電波送信手段15から送信される電波は周波数によってコンクリート構造物11中の伝搬特性が異なる。電波の伝搬特性が異なる特徴を利用して、探査表面からの深さに応じた周波数帯を選定し、それぞれの深さに対して検出感度がよい周波数帯の探査結果を組み合わせることで、精度よい探査結果を得ることができる。図8の探査結果1は、コンクリート構造物11の図5(あるいは図6)における浅い領域の埋設物22a,22cに対して感度がよい3GHz〜6GHz、特に3GHz〜5GHz周波数帯の探査結果を、図8の探査結果2は深い領域(埋設物22b)において感度がよい1GHz〜6GHz、特に1GHz〜3GHzの周波数帯の探査結果をそれぞれ示している。深さ方向に対して、感度がよい探査結果1および2を図1の2次元信号記録手段24で合成することで、より精度よい図8の探査結果3を得ることができる。この処理は、2次元信号記録手段24で、前述の電波送信手段15と電波受信手段16のレイアウト配置を変えた探査結果1,2と合せることでより精度よい探査結果を得ることが可能となる。   FIG. 8 shows an example in which a survey is performed using a broadband radio wave transmitted from the radio wave transmission means 15 of the buried object searching device 10A, and the position of the buried object is detected by combining the search results of different frequency bands. The radio wave transmitted from the radio wave transmission means 15 has different propagation characteristics in the concrete structure 11 depending on the frequency. Using characteristics that have different propagation characteristics of radio waves, select a frequency band according to the depth from the exploration surface, and combine the exploration results of frequency bands with good detection sensitivity for each depth to achieve high accuracy. Search results can be obtained. The exploration result 1 in FIG. 8 shows the exploration result in the 3 GHz to 6 GHz, particularly 3 GHz to 5 GHz frequency band, which is sensitive to the buried objects 22a and 22c in the shallow region in FIG. 5 (or FIG. 6) of the concrete structure 11. The search result 2 of FIG. 8 shows the search results in the frequency band of 1 GHz to 6 GHz, particularly 1 GHz to 3 GHz, which have good sensitivity in the deep region (embedded object 22b). By combining the search results 1 and 2 having good sensitivity with respect to the depth direction by the two-dimensional signal recording unit 24 in FIG. 1, the search result 3 in FIG. 8 with higher accuracy can be obtained. In this process, the two-dimensional signal recording unit 24 can obtain a more accurate search result by combining with the search results 1 and 2 in which the layout arrangement of the radio wave transmission unit 15 and the radio wave reception unit 16 is changed. .

ここで、埋設物22a等が走査方向Sに対して略直交に延びている例で説明したが、走査方向に略平行に延びている場合でも、同様の効果を奏する。   Here, although the example in which the embedded object 22a and the like extend substantially perpendicular to the scanning direction S has been described, the same effect can be achieved even when the embedded object 22a extends substantially parallel to the scanning direction.

また、本変形例では、走査方向Sに対して電波送信手段15と電波受信手段16を直交する方向に配置した探査と平行する方向に配置した探査を行うものを示した。すなわち、走査(スキャン)方向Sに対する電波送信手段15と電波受信手段16との並びを変えて走査方向Sに探査し、合成する例を示したが、走査方向Sに対する電波送信手段15と電波受信手段16との並びはそのままで走査方向を変え、第1の走査方向の探査とこれに直交する第2の走査方向の探査とを行ない、合成してもよい。例えば電波送信手段15と電波受信手段16は走査方向に対して直交する方向に固定し、第1の走査方向での探査と、これに直交する第2の走査方向での走査を行うものとしてもよい。探査面上において、電波送信手段15と電波受信手段16を任意の方向に並べた配置での走査と、当該任意の方向に直交する方向に並べた配置での走査とを行い合成すれば、本変形例で説明した効果を得ることができる。ただし、例えば埋設物の延在する方向が予測されている場合では、当該埋設物が延びる方向に対して電波送信手段15と電波受信手段16が直交な配置と平行な配置とで探査を行うことが好ましい。   Further, in the present modification, the search is performed in which the radio wave transmission unit 15 and the radio wave reception unit 16 are arranged in a direction parallel to the direction in which the radio wave transmission unit 15 and the radio wave reception unit 16 are orthogonal to the scanning direction S. That is, an example in which the arrangement of the radio wave transmission unit 15 and the radio wave reception unit 16 in the scanning (scanning) direction S is changed and the scanning direction S is searched for and synthesized is shown, but the radio wave transmission unit 15 and the radio wave reception in the scanning direction S are shown. The scanning direction may be changed while the arrangement with the means 16 is kept as it is, and the search in the first scanning direction and the search in the second scanning direction orthogonal thereto may be performed and combined. For example, the radio wave transmitting means 15 and the radio wave receiving means 16 may be fixed in a direction orthogonal to the scanning direction, and perform a search in the first scanning direction and a scanning in the second scanning direction orthogonal to the first scanning direction. Good. If the scanning with the arrangement in which the radio wave transmission means 15 and the radio wave reception means 16 are arranged in an arbitrary direction and the scanning with an arrangement in the direction orthogonal to the arbitrary direction are combined on the search surface, The effects described in the modification can be obtained. However, for example, in the case where the direction in which the embedded object extends is predicted, the radio wave transmitting means 15 and the radio wave receiving means 16 are searched in an orthogonal arrangement and a parallel arrangement with respect to the extending direction of the embedded object. Is preferred.

さらに、探査結果を合成せずにそれぞれの結果をディスプレー等に単に別々に表示することでもよい。   Furthermore, each result may be simply displayed separately on a display or the like without combining the search results.

[第2変形例]
図3に示す埋設物探査装置10と図5(A),(B)および図6に示す埋設物探査装置10Aを設ける代りに、図9に示す埋設物探査装置10Bを、第2変形例に示すように設けてもよい。
[Second Modification]
Instead of providing the buried object exploration device 10 shown in FIG. 3 and the buried object exploration device 10A shown in FIGS. 5 (A), (B) and FIG. 6, the buried object exploration device 10B shown in FIG. It may be provided as shown.

第2変形例に示す埋設物探査装置10Bは、アンテナ17A内に一つの電波送信手段15と複数の電波受信手段16a,16bとを、図9に示すレイアウト配置関係に設けたものである。電波送信手段15と一方の電波受信手段16aは、コンクリート構造物の物質表面上で走査方向Sに沿って間隔をおいて配設され、電波送信手段15と他方の電波受信手段16bは、コンクリート構造物の物質(探査)表面上で走査方向Sに直交する方向に配列される。   The buried object searching apparatus 10B shown in the second modification is provided with one radio wave transmitting means 15 and a plurality of radio wave receiving means 16a and 16b in the antenna 17A in the layout arrangement relationship shown in FIG. The radio wave transmitting means 15 and the one radio wave receiving means 16a are disposed on the material surface of the concrete structure with an interval along the scanning direction S. The radio wave transmitting means 15 and the other radio wave receiving means 16b are provided with a concrete structure. They are arranged in a direction perpendicular to the scanning direction S on the surface of the substance (exploration).

埋設物探査装置10Bは、図9に示すように、送信部と複数の受信部とを、コンクリート構造物の物質表面上に送信部を中心として複数の受信部を縦方向と横方向にレイアウト配置して設けることで、単一の埋設物探査装置10Bで最も浅い部分に位置する上段側の埋設物22aと下段側の埋設物22bの双方の探査を容易に行なうことができる。   As shown in FIG. 9, the buried object exploration device 10B has a transmission unit and a plurality of reception units arranged on the material surface of the concrete structure, with the plurality of reception units arranged in the vertical and horizontal directions around the transmission unit. Thus, it is possible to easily search both the upper buried object 22a and the lower buried object 22b located in the shallowest portion of the single buried object searching device 10B.

[第3変形例]
図10は、埋設物探査装置の第1の実施形態における第3変形例を示すものである。
[Third Modification]
FIG. 10 shows a third modification of the first embodiment of the buried object searching device.

第3変形例に示された埋設物探査装置10Cは、電波送信手段15と電波受信手段16を収容したアンテナ17Cの周囲に誘電体21を、例えばクローラ状にて走行自在としたり、押付けてスライド自在としてもよい。誘電体21をコンクリート構造物11の物質表面上で走査方向Sに移動可能な構成とすることにより、コンクリート構造物11の物質との接触面の抵抗を軽減させることができる。誘電体21は、電波を通し易い、例えばゴムシートであり、厚さ数mm、好ましくは1〜2mmのシート厚に構成される。シート厚が厚いと電波は減衰され易くなる。   The buried object exploration device 10C shown in the third modified example allows the dielectric 21 to run around, for example, a crawler, around the antenna 17C that accommodates the radio wave transmission means 15 and the radio wave reception means 16, and slides by pressing. It may be free. By making the dielectric 21 movable in the scanning direction S on the material surface of the concrete structure 11, the resistance of the contact surface with the material of the concrete structure 11 can be reduced. The dielectric 21 is, for example, a rubber sheet that easily allows radio waves to pass therethrough, and is configured to have a thickness of several mm, preferably 1 to 2 mm. When the sheet thickness is thick, radio waves are easily attenuated.

コンクリート構造物11上に設置される埋設物探査装置10Cは、探査対象物であるコンクリート構造物11の物質表面(対象面)上に金属製のアンテナ17を接触させて設置すると、対象面の凹凸等により、電波送信手段15の送信部と電波受信手段16の受信部と対象面である物質表面との間に隙間等が生じて距離を一定に維持できない場合や、対象面の凹凸に干渉して走査方向Sにスムーズに走査できない場合が生ずることがある。   When the buried object exploration device 10C installed on the concrete structure 11 is placed in contact with the metal antenna 17 on the material surface (target surface) of the concrete structure 11 which is the exploration target, the unevenness of the target surface is set. For example, a gap may be generated between the transmission unit of the radio wave transmission unit 15 and the reception unit of the radio wave reception unit 16 and the surface of the target material, and the distance may not be maintained constant. In some cases, the scanning direction S cannot be smoothly scanned.

アンテナ内の送信部と受信部と対象面との距離が変化する場合には、電波の送受信レベルが変化する。電波の送受信レベルは距離が長くなると受信強度が低下するために、探査結果のS/N比が悪くなり、図4に示す、電波の信号レベルの濃淡部分が明瞭でない虞が生じる。   When the distance between the transmission unit, the reception unit, and the target surface in the antenna changes, the radio wave transmission / reception level changes. Since the reception intensity of the radio wave transmission / reception level decreases as the distance increases, the S / N ratio of the search result deteriorates, and there is a possibility that the shaded portion of the radio signal level shown in FIG. 4 is not clear.

図10の埋設物探査装置10Cでは、送信部および受信部の周囲にゴムシート等の誘電体21を配置することにより、送受信部と対象面である物質表面との隙間を常に一定に保ち、走査方向Sへの移動をスムーズにできる。これにより、埋設物の探査を正確に行なうことができる。   In the embedded object exploration device 10C of FIG. 10, the dielectric 21 such as a rubber sheet is disposed around the transmission unit and the reception unit, so that the gap between the transmission / reception unit and the target material surface is always kept constant. The movement in the direction S can be performed smoothly. Thereby, the exploration of the buried object can be performed accurately.

[第1の実施形態の効果]
本実施形態の埋設物探査装置10においては、コンクリート構造物11内の深さ方向に複数の埋設物12,12(図2);22a,22b(図3、図5)が配置されている場合でも、複数の埋設物の探査を安定的に行なうことができ、構成が簡素で、かつ探査箇所の制約のない埋設物探査装置およびその探査方法を提供できる。
[Effect of the first embodiment]
In the buried object exploration device 10 of the present embodiment, a plurality of buried objects 12, 12 (FIG. 2); 22a, 22b (FIGS. 3, 5) are arranged in the depth direction in the concrete structure 11. However, it is possible to stably search for a plurality of buried objects, and to provide a buried object searching apparatus having a simple configuration and having no restriction on a searching position, and a method for searching the same.

しかし、第3変形例の埋設物探査装置10Cでは、送信部と受信部と探査対象物の対象面との間に、誘電体21からなるクローラの走査移動体を設置することにより、送受信部と対象面(探査表面)との間の隙間を一定に保つことができ、埋設物探査装置10Cの走査における抵抗を軽減でき、安定して正確な埋設物の探査を実施することができる。   However, in the buried object exploration device 10C of the third modified example, by installing a crawler scanning moving body made of a dielectric 21 between the transmission unit, the reception unit, and the target surface of the exploration target, The gap between the target surface (search surface) can be kept constant, the resistance in scanning of the embedded object searching device 10C can be reduced, and the embedded object can be stably and accurately searched.

[第2の実施形態]
次に、埋設物探査装置の第2の実施形態を、図11および図12を参照して説明する。
[Second Embodiment]
Next, a second embodiment of the buried object searching device will be described with reference to FIGS. 11 and 12.

第2の実施形態に係る埋設物探査装置25は、図11に示すように、第1の実施形態に示された埋設物探査装置10に3次元探査結果算出手段26を追設した配置構成を備えたものであり、他の構成は図1に示す埋設物探査装置10の構成と同じくするので、同じ構成には同一符号を付して重複説明を省略あるいは簡略化する。   As shown in FIG. 11, the buried object exploration device 25 according to the second embodiment has an arrangement configuration in which a three-dimensional exploration result calculation means 26 is additionally provided in the buried object exploration device 10 shown in the first embodiment. Since the other configuration is the same as that of the buried object searching apparatus 10 shown in FIG. 1, the same components are denoted by the same reference numerals, and redundant description is omitted or simplified.

第2の実施形態の埋設物探査装置25は、図11に示すように構成される。2次元信号記録手段24で、埋設物探査装置25の位置変更毎の各記録点において、例えば、図12に示すように、走査方向に直交する垂直方向の異なる場所で探査した2次元の探査面1,2,3,4のデータが取得される。埋設物探査装置25は、2次元信号記録手段24で取得された2次元の探査面1,2,3,4のデータと走査位置情報とを基に組み合せる3次元探査結果算出手段26により3次元探査データ(3次元探査面)27を得ることができる。3次元探査結果算出手段26は、2次元信号記録手段24で記録された探査結果の位置関係から得られる3次元探査データ(3次元探査面)27により、埋設物24aの埋設方向Dが算出され、埋設物24aの埋設方向を正確に把握することができる。 第1の実施形態に示された埋設物探査装置10では、2次元信号記録手段24で得られる2次元探査面は、埋設物12の有無が検出されるが、検出された埋設物12がどの方向を向いて配設あるいは配管されているのかを同定することは難しい。例えば、複数の埋設物が検出された場合、その埋設物(埋設管)がどの方向に敷設されたものであるか、あるいは、検出された埋設物がどの埋設管あるいは埋設線に該当するものであるのかを把握することは困難である。   The buried object searching device 25 of the second embodiment is configured as shown in FIG. For example, as shown in FIG. 12, a two-dimensional search surface searched by the two-dimensional signal recording unit 24 at different locations in the vertical direction perpendicular to the scanning direction at each recording point for each position change of the buried object searching device 25. Data of 1, 2, 3, 4 is acquired. The buried object searching device 25 is operated by a three-dimensional search result calculating means 26 that combines the data of the two-dimensional search surfaces 1, 2, 3, and 4 acquired by the two-dimensional signal recording means 24 and the scanning position information. Dimensional exploration data (three-dimensional exploration surface) 27 can be obtained. The three-dimensional exploration result calculation means 26 calculates the embedding direction D of the buried object 24a from the three-dimensional exploration data (three-dimensional exploration surface) 27 obtained from the positional relationship of the exploration results recorded by the two-dimensional signal recording means 24. The embedding direction of the embedded object 24a can be accurately grasped. In the embedded object exploration apparatus 10 shown in the first embodiment, the presence or absence of the embedded object 12 is detected on the two-dimensional search surface obtained by the two-dimensional signal recording means 24. It is difficult to identify whether it is arranged or piped in the direction. For example, when a plurality of buried objects are detected, the direction in which the buried object (buried pipe) is laid, or the detected buried object corresponds to which buried pipe or buried line It is difficult to know if there is.

しかし、第2の実施形態では、2次元信号記録手段24で取得された2次元探査面(例えば探査面1,2,3,4)と走査位置情報とを組み合させる2次元探査結果算出手段26を埋設物探査装置25が備えることで、3次元の探査結果が得られる。埋設物探査装置25をコンクリート構造物11や地中の物質の探査表面上で走査方向に移動させて各探査を行なうことにより、2次元信号記録手段24で水平方向、垂直方向の2次元探査面を取得することができる。探査方向に対して垂直方向に各探査位置を組み合せることにより、3次元探査結果算出手段26により3次元の探査結果を得ることができる。   However, in the second embodiment, the two-dimensional search result calculation means for combining the two-dimensional search surface (for example, search surfaces 1, 2, 3, 4) acquired by the two-dimensional signal recording means 24 and the scanning position information. By providing the embedded object searching device 25 with 26, a three-dimensional search result is obtained. By moving the buried object searching device 25 in the scanning direction on the search surface of the concrete structure 11 or the material in the ground, and performing each search, the two-dimensional signal recording means 24 performs the horizontal and vertical two-dimensional search surfaces. Can be obtained. By combining the search positions in the direction perpendicular to the search direction, the three-dimensional search result calculation means 26 can obtain a three-dimensional search result.

2次元信号記録手段24で取得される2次元探査面により、電波強度の高い部分に埋設物12(24a)が存在していることが分かり、複数の2次元探査面における電波強度の高い部分の連続性を3次元探査結果算出手段26で算出することにより、3次元探査データ27が得られる。3次元探査結果算出手段26で得られる3次元探査データ27により、埋設管や電線管の埋設物12(24a)がどの方向に敷設されているのかを正確に把握することができる。   From the two-dimensional search surface acquired by the two-dimensional signal recording means 24, it can be seen that the embedded object 12 (24a) is present in the portion where the radio wave intensity is high. By calculating the continuity by the three-dimensional search result calculation means 26, the three-dimensional search data 27 is obtained. With the three-dimensional exploration data 27 obtained by the three-dimensional exploration result calculating means 26, it is possible to accurately grasp in which direction the buried pipe 12 or the conduit 12 (24a) is laid.

[第2の実施形態の効果]
第2の実施形態に係る埋設物探査装置25では、3次元探査結果算出手段26が設けられ、2次元信号記録手段24で取得された2次元探査面の探査データと走査位置情報とを基にして組み合せて、3次元探査データ27を取得することができ、この3次元探査データ27から埋設物の埋設方向を正確に把握することができる。
[Effects of Second Embodiment]
In the buried object exploration device 25 according to the second embodiment, a three-dimensional exploration result calculation unit 26 is provided, based on the exploration data of the two-dimensional exploration surface acquired by the two-dimensional signal recording unit 24 and the scanning position information. The three-dimensional exploration data 27 can be acquired in combination, and the embedding direction of the buried object can be accurately grasped from the three-dimensional exploration data 27.

[第3の実施形態]
次に、埋設物探査装置の第3の実施形態を、図13ないし図16を参照して説明する。
[Third Embodiment]
Next, a third embodiment of the buried object searching device will be described with reference to FIGS.

第3の実施形態に係る埋設物探査装置30は、電波と電波レンズとを利用してコンクリート構造物31の物質内に埋設された埋設物32を探査する技術に適用される。図13はコンクリート構造物31の物質内に埋設された多段鉄筋構造物の埋設物32の探査、特に二段目以降の鉄筋や多段鉄筋の位置ずれ探査検出に適した埋設物探査装置30である。埋設物探査装置30は、電磁波レーダと電波レンズとを併用して、コンクリート構造物31の物質に埋設された鉄筋の複数段構造体の埋設物32の配置、大きさ、形状を探査し、検出する探査技術に適する。   The buried object searching device 30 according to the third embodiment is applied to a technique for searching for a buried object 32 embedded in the material of the concrete structure 31 using radio waves and a radio wave lens. FIG. 13 shows a buried object exploration apparatus 30 suitable for exploration of the buried object 32 of the multistage reinforcing bar structure embedded in the material of the concrete structure 31, particularly for detecting the displacement of the second and subsequent reinforcing bars and the multistage reinforcing bar. . The buried object exploration device 30 uses the electromagnetic wave radar and the radio wave lens in combination to explore and detect the arrangement, size, and shape of the buried object 32 of the reinforcing steel multi-stage structure embedded in the material of the concrete structure 31. Suitable for exploration technology.

埋設物探査装置30は、図13に示すように、原子力発電施設等のコンクリート構造物31の探査(物質)表面に設置されるフレーム組立体の本体フレーム35を備え、この本体フレーム35内に3軸自動ステージ装置36および傾斜自動ステージ装置37を介して送受信アンテナ装置38が設けられる。   As shown in FIG. 13, the buried object exploration device 30 includes a main body frame 35 of a frame assembly installed on the exploration (substance) surface of a concrete structure 31 such as a nuclear power generation facility. A transmission / reception antenna device 38 is provided via an axis automatic stage device 36 and a tilt automatic stage device 37.

送受信アンテナ装置38は、電波送信部と電波受信部とを備えた送受信アンテナ部39と、この送受信アンテナ部39の電波送受信側に配設され、電波を集束して電波の焦点領域を生成する電波レンズ部40とを備える。送受信アンテナ部39内の電波送信部と電波受信部とは一体あるいは別個に備えられる。電波レンズ部40は、アクリルやテフロン(登録商標)等で構成されるレンズアンテナである。   The transmission / reception antenna device 38 is disposed on the radio transmission / reception side of the transmission / reception antenna unit 39 and includes a radio transmission unit and a radio wave reception unit. A lens unit 40. The radio wave transmission unit and radio wave reception unit in the transmission / reception antenna unit 39 are provided integrally or separately. The radio wave lens unit 40 is a lens antenna made of acrylic, Teflon (registered trademark), or the like.

また、埋設物探査装置30は、1GHz〜6GHz、好ましくは3GHz〜6GHzの周波数の高周波信号を発生させる信号発生手段としてのインパルス発生部44を有し、このインパルス発生部44はケーブルあるいは無線で送受信アンテナ部39の電波送信部に接続される。電波送信部はインパルス発生部44から高周波信号を入力して、コンクリート構造物31の物質内に1GHz〜6GHz、好ましくは3GHz〜6GHzの周波数の電波RWを放射し、送信している。   The buried object exploration device 30 has an impulse generator 44 as a signal generator for generating a high-frequency signal having a frequency of 1 GHz to 6 GHz, preferably 3 GHz to 6 GHz. The impulse generator 44 is transmitted or received by cable or wirelessly. It is connected to the radio wave transmission unit of the antenna unit 39. The radio wave transmission unit inputs a high frequency signal from the impulse generation unit 44 and radiates and transmits a radio wave RW having a frequency of 1 GHz to 6 GHz, preferably 3 GHz to 6 GHz, in the material of the concrete structure 31.

送受信アンテナ部39の電波送信部から放射された高周波信号の電波RWは、レンズアンテナ40の電波レンズ効果により、絞り込まれて集束され、コンクリート構造物31の物質内の所要の深さ位置に電波の焦点Fを生成するように送信される。送信された電波RWはコンクリート構造物31内の埋設物32に当たって反射し、高周波信号の反射波(反射した電波)となって電波受信部で受信される。   The radio wave RW of the high frequency signal radiated from the radio wave transmission unit of the transmission / reception antenna unit 39 is focused and focused by the radio wave lens effect of the lens antenna 40, and the radio wave is transmitted to a required depth position in the material of the concrete structure 31. Sent to generate focus F. The transmitted radio wave RW hits the buried object 32 in the concrete structure 31 and is reflected to be reflected by the high frequency signal (reflected radio wave) and received by the radio wave receiving unit.

受信された反射波は、電波受信部で高周波信号に変換された後、ケーブルまたは無線により信号処理手段のレシーバ装置45に送られ、このレシーバ装置45で反射波の高周波信号が信号処理され、埋設物32の深さ位置や形状、大きさが検出される。レシーバ装置45は反射波の高周波信号をディジタル信号に変換するアナログ・ディジタル変換手段と、変換された反射波のディジタル高周波信号を記録する信号記録手段と、記録された高周波信号の信号レベルと電波の搬送時間からコンクリート構造物31内の埋設物32の深さ位置、大きさ、形状を算出する埋設物位置算出手段(いずれも図示せず)とが備えられる。   The received reflected wave is converted into a high-frequency signal by the radio wave receiver, and then sent to the receiver device 45 of the signal processing means by cable or wirelessly. The high-frequency signal of the reflected wave is signal-processed by the receiver device 45 and embedded. The depth position, shape, and size of the object 32 are detected. The receiver device 45 includes analog / digital conversion means for converting the high frequency signal of the reflected wave into a digital signal, signal recording means for recording the digital high frequency signal of the converted reflected wave, the signal level of the recorded high frequency signal, and the radio wave A buried object position calculating means (not shown) for calculating the depth position, size, and shape of the buried object 32 in the concrete structure 31 from the conveyance time is provided.

レシーバ装置45で検出された埋設物32の深さ位置や形状、大きさに関する検出情報は表示手段である探査イメージ表示部46に送られ、この探査イメージ表示部46で埋設物32の深さ位置、形状、大きさが探査イメージとして表示される。   Detection information relating to the depth position, shape, and size of the buried object 32 detected by the receiver device 45 is sent to the exploration image display unit 46 as display means, and the exploration image display unit 46 uses the depth information of the buried object 32. The shape and size are displayed as an exploration image.

ところで、第3の実施形態の埋設物探査装置30において、送受信アンテナ装置38は本体フレーム35内に懸架された3軸自動ステージ装置36および傾斜自動ステージ装置37を介して支持される。3軸自動ステージ装置36は、送受信アンテナ部39やレンズアンテナ40を立体的に3次元自動走査させる既知の3次元走査機構を構成している。   By the way, in the buried object searching device 30 of the third embodiment, the transmission / reception antenna device 38 is supported via a three-axis automatic stage device 36 and a tilt automatic stage device 37 suspended in the main body frame 35. The three-axis automatic stage device 36 constitutes a known three-dimensional scanning mechanism that three-dimensionally automatically scans the transmission / reception antenna unit 39 and the lens antenna 40.

3軸自動ステージ装置36は、送受信アンテナ装置38をX軸方向に自動走査させるX軸自動ステージ機構47と、送受信アンテナ装置38をY軸方向に自動走査させるY軸自動ステージ機構48と、送受信アンテナ装置38をZ軸方向に自動走査させるZ軸自動ステージ機構49とから構成され、送受信アンテナ装置38を立体的に3次元移動走査させることができる。   The three-axis automatic stage device 36 includes an X-axis automatic stage mechanism 47 that automatically scans the transmission / reception antenna device 38 in the X-axis direction, a Y-axis automatic stage mechanism 48 that automatically scans the transmission / reception antenna device 38 in the Y-axis direction, and a transmission / reception antenna. It comprises a Z-axis automatic stage mechanism 49 that automatically scans the device 38 in the Z-axis direction, and the transmitting / receiving antenna device 38 can be three-dimensionally moved and scanned in three dimensions.

3軸自動ステージ装置36を構成する3次元走査機構の模式図を図14に示す。図14に示す3次元走査機構の模式図において、符号Aは、3軸自動ステージ装置36のX軸自動ステージ機構47に対応し、符号BはY軸自動ステージ機構48に、符号CはZ軸自動ステージ機構49にそれぞれ対応する。符号Dは、コンクリート構造物の物質表面に設置されるフレーム組立体の本体フレーム35に対応するものである。   A schematic diagram of a three-dimensional scanning mechanism constituting the three-axis automatic stage device 36 is shown in FIG. In the schematic diagram of the three-dimensional scanning mechanism shown in FIG. 14, symbol A corresponds to the X-axis automatic stage mechanism 47 of the three-axis automatic stage device 36, symbol B represents the Y-axis automatic stage mechanism 48, and symbol C represents the Z-axis. Each corresponds to the automatic stage mechanism 49. The symbol D corresponds to the main body frame 35 of the frame assembly installed on the material surface of the concrete structure.

X軸自動ステージ機構47とY軸自動ステージ機構48とから送受信アンテナ装置38を、コンクリート構造物31の探査(物質)表面に平行な2次元の十字方向に走査する2次元(十字方向)走査手段が構成される。Z軸自動ステージ機構49は、送受信アンテナ装置38をコンクリート構造物31の探査表面の垂直な方向に走査する進退走査手段を構成している。   Two-dimensional (cross direction) scanning means for scanning the transmitting / receiving antenna device 38 from the X-axis automatic stage mechanism 47 and the Y-axis automatic stage mechanism 48 in a two-dimensional cross direction parallel to the exploration (material) surface of the concrete structure 31 Is configured. The Z-axis automatic stage mechanism 49 constitutes an advancing / retreating scanning unit that scans the transmission / reception antenna device 38 in a direction perpendicular to the search surface of the concrete structure 31.

また、傾斜自動ステージ装置37は、3軸自動ステージ装置36の下部に設けられ、送受信アンテナ装置38をコンクリート構造物31の探査表面に対し、電波送信角度を任意に調節設定する電波送信角度走査手段を構成している。傾斜自動ステージ装置37の下部に送受信アンテナ装置38が取り付けられる。送受信アンテナ装置38は電波送信面の反対側で傾斜自動ステージ装置37に装着される。送受信アンテナ装置38はレンズアンテナ40の電波レンズにより電波の焦点Fが生成される。電波レンズの焦点位置は、コンクリート構造物31の物質内において任意に調節設定できるようになっている。   The tilt automatic stage device 37 is provided below the three-axis automatic stage device 36, and a radio wave transmission angle scanning means for arbitrarily adjusting and setting the radio wave transmission angle of the transmission / reception antenna device 38 with respect to the exploration surface of the concrete structure 31. Is configured. A transmission / reception antenna device 38 is attached to the lower part of the tilt automatic stage device 37. The transmitting / receiving antenna device 38 is attached to the tilt automatic stage device 37 on the opposite side of the radio wave transmitting surface. The transmission / reception antenna device 38 generates a focal point F of the radio wave by the radio wave lens of the lens antenna 40. The focal position of the radio wave lens can be arbitrarily adjusted and set within the material of the concrete structure 31.

送受信アンテナ装置38は、3軸自動ステージ装置36により立体的に3次元移動走査自在で、かつ傾斜自動ステージ装置37によりコンクリート構造物31の物質表面に対し電波送信角度を任意に設定自在に構成される。送受信アンテナ装置38は、3軸自動ステージ装置36と傾斜自動ステージ装置37とを協動させることで、レンズアンテナ40から物質内に送信される電波の焦点位置Fを物質内で任意に設定することができる。   The transmission / reception antenna device 38 can be three-dimensionally moved and scanned three-dimensionally by the three-axis automatic stage device 36, and the radio wave transmission angle can be arbitrarily set with respect to the material surface of the concrete structure 31 by the inclined automatic stage device 37. The The transmission / reception antenna device 38 cooperates with the three-axis automatic stage device 36 and the tilt automatic stage device 37 to arbitrarily set the focal position F of the radio wave transmitted from the lens antenna 40 into the material. Can do.

具体的には、コンクリート構造物31の探査表面が任意(な自由)サイズの升目状あるいは碁盤の目状に構成されており、3軸自動ステージ装置36により送受信アンテナ装置38を1升毎に間欠的に移動走査させて物質内部の探査を行なう升目探査ステップを実施する。また、傾斜自動ステージ装置37は、レンズアンテナ40の電波送信角度を探査表面に対して任意に設定して物質内部の探査を行なう電波送信角度設定ステップを実施する。   Specifically, the exploration surface of the concrete structure 31 is configured in a grid shape or a grid pattern of arbitrary (free) size, and the transmission / reception antenna device 38 is intermittently moved every 1 km by the triaxial automatic stage device 36. A grid search step is performed in which the inside of the substance is searched by moving and scanning automatically. In addition, the automatic tilt stage device 37 performs a radio wave transmission angle setting step in which the radio wave transmission angle of the lens antenna 40 is arbitrarily set with respect to the search surface to search inside the substance.

送受信アンテナ装置38は、升目探査ステップと電波送信角度設定ステップとを組み合せて実施することで、送受信アンテナ装置38のレンズアンテナ40から送信される電波の焦点位置Fをコンクリート構造物31の物質内部に任意に設定して探査することにより、コンクリート構造物31の物質内部に位置する複数段の鉄筋の組み構造を探査することができる。本実施形態の埋設物探査装置30においては、コンクリート構造物31の物質内部に位置する多段鉄筋、特に二段目以降の鉄筋配筋状態を容易に探査でき、物質内部全体の埋設物の探査が可能となる。   The transmission / reception antenna device 38 performs the combination of the grid search step and the radio wave transmission angle setting step, so that the focal position F of the radio wave transmitted from the lens antenna 40 of the transmission / reception antenna device 38 is placed inside the substance of the concrete structure 31. By arbitrarily setting and searching, it is possible to search for a multi-stage reinforcing bar assembly structure located inside the material of the concrete structure 31. In the buried object exploration device 30 of the present embodiment, the multistage reinforcing bars located inside the material of the concrete structure 31, particularly the second and subsequent reinforcing bar arrangement states can be easily explored, and the buried object can be explored throughout the substance. It becomes possible.

ところで、コンクリート構造物31の物質は、比誘電率が小さくまた均一であることから、電波の伝搬が良好であるため、電波を利用したコンクリート構造物31の内部探査に電波レーダ方式の探査技術が用いられる。   By the way, since the material of the concrete structure 31 has a small relative dielectric constant and is uniform, the propagation of radio waves is good. Therefore, radio wave radar type exploration technology is used for the internal exploration of the concrete structure 31 using radio waves. Used.

しかし、コンクリート構造物31において、物質内部に鉄筋構造体の埋設物32が、一様に整列状態で埋設されているとは限らず、多段構造の鉄筋構造体32では、鉄筋の位置ずれが生じている場合も存在する。原子力発電施設等のコンクリート構造物31の物質に埋設された鉄筋構造体32の位置ずれの有無を正確に検出することが重要になっている。   However, in the concrete structure 31, the reinforced structure embedded object 32 is not always embedded in the material in an aligned state. In the multistage reinforced structure 32, the position of the reinforcing bar is shifted. There is also a case. It is important to accurately detect the presence / absence of displacement of the reinforcing bar structure 32 embedded in the material of the concrete structure 31 such as a nuclear power generation facility.

一方、原子力発電施設等のコンクリート構造物31の物質に埋設される埋設物32として、図13に示す鉄筋構造体が知られている。この鉄筋構造体32は、鉄筋一段目上筋51a、鉄筋一段目下筋51bおよび鉄筋二段目上筋52a、鉄筋二段目下筋52bを升目状に多段に組み立てて構成され、コンクリート構造物31の物質内に多段鉄筋組立構造の鉄筋が埋設されている。   On the other hand, as an embedded object 32 embedded in a material of a concrete structure 31 such as a nuclear power generation facility, a reinforcing bar structure shown in FIG. 13 is known. The reinforcing bar structure 32 is configured by assembling a reinforcing bar first-stage reinforcing bar 51a, a reinforcing bar first-stage lower bar 51b, a reinforcing bar second-stage upper bar 52a, and a reinforcing bar second-stage lower bar 52b in a multi-tiered manner. Reinforcing bars with a multistage reinforcing bar assembly structure are embedded in the material.

鉄筋構造体32は、図15に示すように上筋51a,52aと下筋51b,52bが所要径、例えばφ38mmの棒材が、20cmの等間隔で升目状に配筋される。二段目以降の下段側鉄筋は一段目の鉄筋に倣ってその下方に配設される。このような鉄筋構造体32は、従来の電波レーダ方式の探査装置で探査した場合、この探査装置の送受信アンテナ装置からの電波放射面が広く、送信された電波が、一段目鉄筋51a,51bで干渉すると、二段目以降の鉄筋52a,52bに届かず、二段目以降の鉄筋を探査することが困難となっていた。   In the reinforcing bar structure 32, as shown in FIG. 15, upper bars 51a, 52a and lower bars 51b, 52b are arranged with rods having a required diameter, for example, φ38 mm, at a regular interval of 20 cm. The lower-stage rebars after the second stage are arranged below the first-stage reinforcing bars. When such a reinforcing bar structure 32 is searched by a conventional radio radar type exploration device, the radio wave radiation surface from the transmission / reception antenna device of the exploration device is wide, and transmitted radio waves are transmitted by the first-stage rebars 51a and 51b. When the interference occurs, it does not reach the second and subsequent rebars 52a and 52b, making it difficult to search for the second and subsequent rebars.

しかし、第2の実施形態の埋設物探査装置30においては、図16に示すように、本体フレーム35内に送受信アンテナ装置38を3軸自動ステージ装置36により立体的に移動可能で3次元移動走査自在に設けられる。しかも、3軸自動ステージ装置36の下部に傾斜自動ステージ装置37が設けられ、この傾斜自動ステージ装置37により送受信アンテナ装置38は、コンクリート構造物31の物質表面に対して、電波送信角度が任意に角度調節可能に設定される。   However, in the embedded object exploration device 30 of the second embodiment, as shown in FIG. 16, the transmission / reception antenna device 38 can be moved three-dimensionally by the three-axis automatic stage device 36 in the main body frame 35 and can be moved in three dimensions. It is provided freely. In addition, a tilt automatic stage device 37 is provided below the three-axis automatic stage device 36, and the tilt automatic stage device 37 allows the transmission / reception antenna device 38 to have an arbitrary radio wave transmission angle with respect to the material surface of the concrete structure 31. The angle can be adjusted.

その上、送受信アンテナ装置38には、電波RWの焦点Fを生成する電波レンズを有するレンズアンテナ40が備えられる。電波レンズはレンズ機能を有する誘電体で形成される。レンズアンテナ40の焦点位置Fは送受信アンテナ装置38の高さ調整によりコンクリート構造物31の物質内で自由にかつ任意に調節設定することができる。レンズアンテナ40の電波送信面からコンクリート構造物31の物質内に放射される電波RWは絞られ、焦点Fで集束するように送信される(図13,図16参照)。   In addition, the transmission / reception antenna device 38 includes a lens antenna 40 having a radio wave lens that generates the focal point F of the radio wave RW. The radio wave lens is formed of a dielectric having a lens function. The focal position F of the lens antenna 40 can be freely adjusted and set within the material of the concrete structure 31 by adjusting the height of the transmitting / receiving antenna device 38. The radio wave RW radiated into the material of the concrete structure 31 from the radio wave transmission surface of the lens antenna 40 is narrowed down and transmitted so as to converge at the focal point F (see FIGS. 13 and 16).

[第3の実施形態の効果]
第3の実施形態では、コンクリート構造物内に埋設された多段構造の鉄筋構造体等のような複数の埋設物の探査を正確かつスムーズに行なうことができる。
[Effect of the third embodiment]
In the third embodiment, it is possible to accurately and smoothly search for a plurality of embedded objects such as a multi-stage reinforcing bar structure embedded in a concrete structure.

また、各実施の形態ではコンクリート構造物の中の埋設物の探査を例に挙げているが、この埋設物探査装置は地中に埋設された配管類等の埋設物の探査にも適用することができる。さらに、埋設物の探査はコンクリート構造物のコンクリートに限るものではなく、アスファルト、土砂や砂(砂利、鋳物砂、珪砂等)、ゴム、塩化ビニール樹脂、プラスティック、セラミックなどの様々な誘電体に利用可能である。土砂や砂利等の地中に埋設された埋設物の探査には、地中の土砂や砂利等と埋設物との間に、所定以上の誘電率の違いがあることが探査上必要である。   In each embodiment, the exploration of buried objects in concrete structures is taken as an example, but this buried object exploration device is also applicable to exploration of buried objects such as pipes buried in the ground. Can do. In addition, the exploration of buried objects is not limited to concrete concrete structures, but can be used for various dielectrics such as asphalt, earth and sand (gravel, foundry sand, silica sand, etc.), rubber, vinyl chloride resin, plastic, ceramic, etc. Is possible. In the exploration of buried objects buried in the ground such as earth and sand and gravel, it is necessary for the exploration that there is a difference in dielectric constant more than a predetermined value between the underground earth and sand and gravel and the buried objects.

[その他の実施形態]
さらに、埋設物探査装置25にマーキング機構を搭載させ、2次元信号記録手段24により埋設物が検出された場合に、2次元信号記録手段24からマーキング機構に信号が送信され、マーキング機構が塗料を探査面に塗布して埋設物の位置を直接探査面上に記録させる構成としてもよい。また、例えば2次元信号記録手段24が検出した埋設物の深さに応じて、異なる色や太さでマーキングが行われるようにしてもよい。探査時に探査面上に埋設物の有無が記録されるため、埋設物検出後に必要な工事等を速やかに開始することができる。
[Other Embodiments]
Furthermore, when a marking mechanism is mounted on the buried object searching device 25 and a buried object is detected by the two-dimensional signal recording means 24, a signal is transmitted from the two-dimensional signal recording means 24 to the marking mechanism, and the marking mechanism applies the paint. It is good also as a structure which apply | coats to a search surface and records the position of an embedded object directly on a search surface. Further, for example, marking may be performed with different colors and thicknesses according to the depth of the embedded object detected by the two-dimensional signal recording unit 24. Since the presence or absence of the buried object is recorded on the exploration surface at the time of exploration, it is possible to quickly start the necessary work after the buried object is detected.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行なうことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10,10A,10B,10C…埋設物探査装置、11…コンクリート構造物(探査対象)、12,22a,22b…埋設物、14…信号発生手段、15…電波送信手段、16,16a,16b…電波受信手段、17,17A…アンテナ、18…アナログ・ディジタル変換手段、19…信号記録手段、20…埋設物位置算出手段、24…2次元信号記録手段、25…埋設物探査装置、26…3次元探査結果算出手段、27…3次元探査データ(3次元探査面)、30…埋設物探査装置、31…コンクリート構造物、32…埋設物(鉄筋構造体)、35…本体フレーム、36…3軸自動ステージ装置(3次元自動走査機構)、37…傾斜自動ステージ装置(電波送信角度設定手段)、38…送受信アンテナ装置、39…送受信アンテナ部、40…電波レンズ部(レンズアンテナ)、44…インパルス発生部(信号発生手段)、45…レシーバ装置(信号処理手段)、46…探査イメージ表示部、47…X軸自動ステージ装置、48…Y軸自動ステージ装置、49…Z軸自動ステージ装置(垂直方向走査手段)、60…スライド機構、61…スライド板。   10, 10A, 10B, 10C ... buried object exploration device, 11 ... concrete structure (exploration target), 12, 22a, 22b ... buried object, 14 ... signal generating means, 15 ... radio wave transmitting means, 16, 16a, 16b ... Radio wave receiving means 17, 17A ... antenna, 18 ... analog / digital conversion means, 19 ... signal recording means, 20 ... embedded object position calculating means, 24 ... two-dimensional signal recording means, 25 ... embedded object exploration device, 26 ... 3 Dimensional exploration result calculation means 27 ... 3D exploration data (3D exploration surface), 30 ... buried object exploration device, 31 ... concrete structure, 32 ... buried object (rebar structure), 35 ... main body frame, 36 ... 3 Automatic axis stage device (three-dimensional automatic scanning mechanism), 37... Tilt automatic stage device (radio wave transmission angle setting means), 38... Transmission / reception antenna device, 39. Radio wave lens unit (lens antenna), 44 ... impulse generation unit (signal generation unit), 45 ... receiver device (signal processing unit), 46 ... exploration image display unit, 47 ... X-axis automatic stage device, 48 ... Y-axis automatic stage 49, Z-axis automatic stage device (vertical scanning means), 60 ... Slide mechanism, 61 ... Slide plate.

Claims (14)

探査対象内に電波を送受信して探査対象内部の埋設物の埋設状態を探査する埋設物探査装置において、
高周波信号を発生させる信号発生手段と、
発生した高周波信号の電波を前記探査対象内に送信する電波送信手段と、
送信された電波による前記埋設物から反射波を受信する電波受信手段と、
受信した電波の高周波信号をディジタル信号に変換するアナログ・ディジタル変換手段と、
変換されたディジタル信号の高周波信号を記録する信号記録手段と、
記録されたディジタル信号の信号レベルと前記電波の伝搬時間とから前記探査対象内部の埋設物までの距離を算出する埋設物位置算出手段とを有し、
前記電波送信手段と前記電波受信手段との間隔が変更可能に構成されることを特徴とする埋設物探査装置。
In the buried object exploration device for exploring the buried state of the buried object in the exploration target by transmitting and receiving radio waves in the exploration target,
Signal generating means for generating a high-frequency signal;
Radio wave transmitting means for transmitting the radio wave of the generated high frequency signal into the exploration target;
Radio wave receiving means for receiving a reflected wave from the buried object by the transmitted radio wave;
Analog / digital conversion means for converting a received radio wave high frequency signal into a digital signal;
Signal recording means for recording a high-frequency signal of the converted digital signal;
Embedded object position calculating means for calculating the distance from the signal level of the recorded digital signal and the propagation time of the radio wave to the embedded object in the search target;
The buried object exploration device, wherein an interval between the radio wave transmission unit and the radio wave reception unit is changeable.
前記電波送信手段と前記電波受信手段との間隔は、前記探査対象の表面に最も近い埋設物の水平方向の大きさに応じて設定される請求項1に記載の埋設物探査装置。 The buried object searching device according to claim 1, wherein an interval between the radio wave transmitting unit and the radio wave receiving unit is set according to a horizontal size of an embedded object closest to the surface to be searched. 前記電波受信手段は、単一の前記電波送信手段に対して直交方向に複数配置された請求項1または2に記載の埋設物探査装置。 The buried object exploration device according to claim 1, wherein a plurality of the radio wave reception units are arranged in a direction orthogonal to the single radio wave transmission unit. 前記電波送信手段および前記電波受信手段は少なくとも一方が前記探査対象の表面に沿って移動可能に構成され、移動位置において、算出された前記探査対象内部にある前記埋設物の距離を記録する2次元信号記録手段が備えられた請求項1ないし3のいずれか1項に記載の埋設物探査装置。 At least one of the radio wave transmitting means and the radio wave receiving means is configured to be movable along the surface of the exploration target, and a two-dimensional recording of the calculated distance of the buried object inside the exploration target at the movement position The buried object exploration device according to any one of claims 1 to 3, further comprising a signal recording unit. 探査対象内に電波を送受信して探査対象内部の埋設物の埋設状態を探査する埋設物探査装置において、
高周波信号を発生させる信号発生手段と、
発生した高周波信号の電波を前記探査対象内に送信する電波送信手段と、
送信された電波による前記埋設物から反射波を受信する電波受信手段と、
受信した電波の高周波信号をディジタル信号に変換するアナログ・ディジタル変換手段と、
変換されたディジタル信号の高周波信号を記録する信号記録手段と、
記録されたディジタル信号の信号レベルと前記電波の伝搬時間とから前記探査対象内部の埋設物までの距離を算出する埋設物位置算出手段とを有し、
前記電波送信手段と前記電波受信手段とを、前記探査対象の表面上の任意な第1方向に並べた配置で行った探査結果と、前記第1方向に直交する第2方向に並べて行った探査結果とを合成する埋設物位置算出手段を有することを特徴とする埋設物探査装置。
In the buried object exploration device for exploring the buried state of the buried object in the exploration target by transmitting and receiving radio waves in the exploration target,
Signal generating means for generating a high-frequency signal;
Radio wave transmitting means for transmitting the radio wave of the generated high frequency signal into the exploration target;
Radio wave receiving means for receiving a reflected wave from the buried object by the transmitted radio wave;
Analog / digital conversion means for converting a received radio wave high frequency signal into a digital signal;
Signal recording means for recording a high-frequency signal of the converted digital signal;
Embedded object position calculating means for calculating the distance from the signal level of the recorded digital signal and the propagation time of the radio wave to the embedded object in the search target;
Search results obtained by arranging the radio wave transmitting means and the radio wave receiving means in an arbitrary arrangement on the surface of the search target in a first direction and a search performed in a second direction orthogonal to the first direction An embedded object exploration device having an embedded object position calculating means for combining the results.
前記電波送信手段は異なる周波数帯域の電波を送信可能に設けられ、
前記埋設物位置算出手段は、前記探査対象内部の深さ方向の感度に応じた合成処理が行なわれて、前記埋設物の位置が特定される請求項5に記載の埋設物探査装置。
The radio wave transmission means is provided to be able to transmit radio waves of different frequency bands,
The embedded object searching device according to claim 5, wherein the embedded object position calculation means is subjected to a synthesis process in accordance with the sensitivity in the depth direction inside the search object to identify the position of the embedded object.
前記電波送信手段は、広周波数帯域の電波を送信可能に設けられ、
前記埋設物位置算出手段は、得られた受信データから前記探査対象の表面から深さ方向の感度に応じた周波数帯域に分けて探査データを算出し、合成することで埋設物の位置が特定される請求項5または6に記載の埋設物探査装置。
The radio wave transmission means is provided so as to be able to transmit radio waves in a wide frequency band,
The buried object position calculating means calculates the exploration data from the obtained received data into frequency bands corresponding to the sensitivity in the depth direction from the surface of the exploration target, and synthesizes and synthesizes the position of the buried object. The buried object exploration device according to claim 5 or 6.
前記電波送信手段および電波受信手段の走査方向に対して垂直方向に異なる位置を探査した2次元の探査データを取得する2次元信号記録手段と、
取得された2次元の探査データと走査位置情報とに基づいて3次元の探査データを取得する3次元探査結果算出手段とを有する請求項5ないし7のいずれか1項に記載の埋設物探査装置。
Two-dimensional signal recording means for acquiring two-dimensional search data obtained by searching different positions in a direction perpendicular to the scanning direction of the radio wave transmission means and radio wave reception means;
The embedded object exploration device according to any one of claims 5 to 7, further comprising a three-dimensional exploration result calculation unit that obtains three-dimensional exploration data based on the acquired two-dimensional exploration data and scanning position information. .
探査対象内に電波を送受信して埋設物の埋設状態を探査する埋設物探査装置において、
前記探査対象内に電波を送受信する送受信アンテナ部と、
この送受信アンテナ部の電波送受信側に配設され、前記電波を集束して電波の焦点領域を生成する電波レンズ部とから構成される送受信アンテナ装置と、
前記送受信アンテナ装置を水平方向および垂直方向に3次元走査して電波の焦点エリアを走査する3次元走査機構とを備えることを特徴とする埋設物探査装置。
In the buried object exploration device that explores the buried state of buried objects by transmitting and receiving radio waves within the exploration target,
A transmission / reception antenna unit for transmitting and receiving radio waves in the search target;
A transmission / reception antenna device that is disposed on a radio wave transmission / reception side of the transmission / reception antenna unit and includes a radio wave lens unit that focuses the radio wave to generate a focal region of the radio wave;
A buried object exploration device comprising: a three-dimensional scanning mechanism that scans a focal area of radio waves by three-dimensionally scanning the transmission / reception antenna device in a horizontal direction and a vertical direction.
前記送受信アンテナ装置は、送信電波の焦点を生成するレンズアンテナを有し、
前記3次元走査機構は、前記送受信アンテナ装置を前記探査対象の表面に平行な2次元方向に走査する2次元走査手段と前記探査対象の表面に垂直な方向に走査する垂直走査手段とから構成され、
前記送受信アンテナ装置は、前記構造物または地中の物質内部に、前記レンズアンテナから送信される電波の焦点位置を調節設定可能に構成された請求項9に記載の埋設物探査装置。
The transmission / reception antenna device has a lens antenna that generates a focal point of transmission radio waves,
The three-dimensional scanning mechanism includes two-dimensional scanning means for scanning the transmitting / receiving antenna device in a two-dimensional direction parallel to the surface of the search target and vertical scanning means for scanning in a direction perpendicular to the surface of the search target. ,
The buried object searching device according to claim 9, wherein the transmission / reception antenna device is configured to be able to adjust and set a focal position of a radio wave transmitted from the lens antenna in the structure or a substance in the ground.
前記3次元走査機構は、任意サイズの升目状に形成された前記探査対象の表面に前記レンズアンテナを1升毎に(移動)走査させ、前記探査対象内部を探索する請求項9または10に記載の埋設物探査装置。 11. The three-dimensional scanning mechanism searches the inside of the search target by scanning (moving) the lens antenna on the surface of the search target formed in a grid shape having an arbitrary size for every 1 mm (moving). Buried object exploration equipment. 前記レンズアンテナから送信される電波は3GHz〜6GHzの高周波数である請求項10または11に記載の埋設物探査装置。 The embedded object exploration device according to claim 10 or 11, wherein the radio wave transmitted from the lens antenna has a high frequency of 3 GHz to 6 GHz. 探査対象内に電波を送受信して探査対象内部の埋設物の埋設状態を探査する埋設物探査方法において、
電波送信手段から放射される電波が前記探査対象内に送信され、埋設物からの反射波を電波受信手段が受信し、
受信した反射波の高周波信号をディジタル変換して信号記録手段に記録し、
記録した前記高周波信号の信号レベルと電池の伝搬時間とから前記探査対象内に存在する前記埋設物までの距離を埋設物算出手段で算出し、
前記探査対象内に存在する前記埋設物の大きさに応じて前記電波送信手段と前記電波受信手段との間隔を調節設定することを特徴とする埋設物探査方法。
In the buried object exploration method for exploring the buried state of the buried object in the exploration object by transmitting and receiving radio waves in the exploration object,
The radio wave radiated from the radio wave transmitting means is transmitted into the exploration target, the radio wave receiving means receives the reflected wave from the buried object,
The received reflected wave high frequency signal is digitally converted and recorded in the signal recording means,
Calculate the distance from the signal level of the recorded high-frequency signal and the propagation time of the battery to the buried object existing in the exploration object by the buried object calculating means,
A buried object exploration method, wherein an interval between the radio wave transmitting means and the radio wave receiving means is adjusted and set according to the size of the buried object existing in the exploration target.
探査対象内に電波を送受信して探査対象内部の埋設物の埋設状態を探査する埋設物探査方法において、
前記電波送信手段と前記電波受信手段とを、前記探査対象の表面上の任意な第1方向に並べた配置において、
高周波信号の電波を発生させて前記探査対象内に送信し、
送信された電波による前記埋設物から反射波を受信し、
受信した電波の高周波信号をディジタル信号に変換し、
変換されたディジタル信号の高周波信号を記録し、
前記電波送信手段と前記電波受信手段とを、前記第1方向直交する第2方向に並べた配置において、
高周波信号の電波を発生させて前記探査対象内に送信し、
送信された電波による前記埋設物から反射波を受信し、
受信した電波の高周波信号をディジタル信号に変換し、
変換されたディジタル信号の高周波信号を記録し、
前記第1方向に直交する探査結果と第2方向に並べて行った探査結果とを合成することを特徴とする埋設物探査方法。
In the buried object exploration method for exploring the buried state of the buried object in the exploration object by transmitting and receiving radio waves in the exploration object,
In the arrangement in which the radio wave transmitting means and the radio wave receiving means are arranged in an arbitrary first direction on the surface of the search target,
Generate radio waves of high frequency signals and send them within the exploration target,
Receive a reflected wave from the buried object by the transmitted radio wave,
Converts the received radio frequency signal into a digital signal,
Record the high frequency signal of the converted digital signal,
In the arrangement in which the radio wave transmission means and the radio wave reception means are arranged in a second direction orthogonal to the first direction,
Generate radio waves of high frequency signals and send them within the exploration target,
Receive a reflected wave from the buried object by the transmitted radio wave,
Converts the received radio frequency signal into a digital signal,
Record the high frequency signal of the converted digital signal,
A method for searching for an embedded object, comprising combining a search result orthogonal to the first direction and a search result arranged in the second direction.
JP2016104443A 2015-05-26 2016-05-25 Buried object exploratory device and buried object exploratory method Pending JP2016224047A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015106594 2015-05-26
JP2015106594 2015-05-26

Publications (1)

Publication Number Publication Date
JP2016224047A true JP2016224047A (en) 2016-12-28

Family

ID=57747966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016104443A Pending JP2016224047A (en) 2015-05-26 2016-05-25 Buried object exploratory device and buried object exploratory method

Country Status (1)

Country Link
JP (1) JP2016224047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220051744A (en) * 2020-10-19 2022-04-26 국방과학연구소 Free space measurement system and operating method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223771A (en) * 1982-06-22 1983-12-26 Tech Res & Dev Inst Of Japan Def Agency Detection system for underground buried body
JPH01280277A (en) * 1988-05-06 1989-11-10 Komatsu Ltd Underground buried body survey device
JPH02179492A (en) * 1988-12-29 1990-07-12 Oobayashi Doro Kk Method and apparatus for detecting outer periphery of laid underground pipe
JPH10221463A (en) * 1997-02-07 1998-08-21 Geo Saac Kk Searching device
JPH11166977A (en) * 1997-12-04 1999-06-22 Ntt Electornics Corp Buried object surveying antenna
JP2000171569A (en) * 1998-12-03 2000-06-23 Chugoku Electric Power Co Inc:The Underground survey method and underground radar device
JP2001141819A (en) * 1999-11-12 2001-05-25 Constec Engi Co Method and apparatus for measuring depth of buried matter
JP2001166049A (en) * 1999-12-09 2001-06-22 Osaka Gas Co Ltd Object detection device
JP2004354048A (en) * 2003-04-04 2004-12-16 Osaka Gas Co Ltd Search device
JP2006308593A (en) * 2005-04-26 2006-11-09 Hilti Ag Apparatus and method for searching buried long object
JP2008298633A (en) * 2007-05-31 2008-12-11 Mitsui Eng & Shipbuild Co Ltd Method and device for measuring buried depth
JP2010107259A (en) * 2008-10-28 2010-05-13 Geo Search Co Ltd Method and device for nondestructively evaluating soundness of reinforced concrete block
JP2010210394A (en) * 2009-03-10 2010-09-24 Nippon Signal Co Ltd:The Underground radar system
JP2010249715A (en) * 2009-04-17 2010-11-04 Japan Radio Co Ltd Probe radar antenna
CN104267440A (en) * 2014-09-29 2015-01-07 中国神华能源股份有限公司 Common middle point (CMP) detection method used for ground penetrating radar (GPR)

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223771A (en) * 1982-06-22 1983-12-26 Tech Res & Dev Inst Of Japan Def Agency Detection system for underground buried body
JPH01280277A (en) * 1988-05-06 1989-11-10 Komatsu Ltd Underground buried body survey device
JPH02179492A (en) * 1988-12-29 1990-07-12 Oobayashi Doro Kk Method and apparatus for detecting outer periphery of laid underground pipe
JPH10221463A (en) * 1997-02-07 1998-08-21 Geo Saac Kk Searching device
JPH11166977A (en) * 1997-12-04 1999-06-22 Ntt Electornics Corp Buried object surveying antenna
JP2000171569A (en) * 1998-12-03 2000-06-23 Chugoku Electric Power Co Inc:The Underground survey method and underground radar device
JP2001141819A (en) * 1999-11-12 2001-05-25 Constec Engi Co Method and apparatus for measuring depth of buried matter
JP2001166049A (en) * 1999-12-09 2001-06-22 Osaka Gas Co Ltd Object detection device
JP2004354048A (en) * 2003-04-04 2004-12-16 Osaka Gas Co Ltd Search device
JP2006308593A (en) * 2005-04-26 2006-11-09 Hilti Ag Apparatus and method for searching buried long object
JP2008298633A (en) * 2007-05-31 2008-12-11 Mitsui Eng & Shipbuild Co Ltd Method and device for measuring buried depth
JP2010107259A (en) * 2008-10-28 2010-05-13 Geo Search Co Ltd Method and device for nondestructively evaluating soundness of reinforced concrete block
JP2010210394A (en) * 2009-03-10 2010-09-24 Nippon Signal Co Ltd:The Underground radar system
JP2010249715A (en) * 2009-04-17 2010-11-04 Japan Radio Co Ltd Probe radar antenna
CN104267440A (en) * 2014-09-29 2015-01-07 中国神华能源股份有限公司 Common middle point (CMP) detection method used for ground penetrating radar (GPR)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220051744A (en) * 2020-10-19 2022-04-26 국방과학연구소 Free space measurement system and operating method thereof
KR102444196B1 (en) 2020-10-19 2022-09-16 국방과학연구소 Free space measurement system and operating method thereof

Similar Documents

Publication Publication Date Title
Barrile et al. Application of radar technology to reinforced concrete structures: a case study
KR102295246B1 (en) Buried-metal detection method, and detection device therefor
CN105629220B (en) A kind of deep-sea underwater sound passive ranging method based on single hydrophone
KR101899079B1 (en) System for detecting location of underground objects
JP2006308593A (en) Apparatus and method for searching buried long object
US20140104979A1 (en) Ground-Penetrating Tunnel-Detecting Active Sonar
RU2444760C1 (en) Method for removing lower surface of ice cover
JP6478578B2 (en) Exploration equipment
JP2016211897A (en) Measurement method and underground rader device
JP2005098746A (en) Continuous cable position survey device, method, and program
Choi et al. Array type miniaturized ultrasonic sensors to detect urban sinkholes
KR101267016B1 (en) Singnal apparatus for the survey of buriedstructures by used gpr unit
JP2016224047A (en) Buried object exploratory device and buried object exploratory method
JP2017040547A (en) Buried object prospecting method and buried object prospecting apparatus
JP4691656B2 (en) Object search method in structure, computer program, and recording medium
KR20140144005A (en) Device for measuring position and displacement of facility
RU160453U1 (en) 3D georadiograph
Liu et al. Automatic pavement layer identification with multichannel ground penetrating radar at traffic speed
EP2994773B1 (en) Device and method for detecting position and orientation of underground elongated bodies
WO2009014442A2 (en) System and method for examining reinforcements in structures
JP3717835B2 (en) Buried object exploration equipment
JP6420218B2 (en) Underground analysis method
JP4632926B2 (en) Underground exploration device and underground exploration method
JP2006300730A (en) Apparatus for measuring burial depth
JP2023531373A (en) Non-contact microwave test system and method for see-through imaging

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519