JPS58215004A - Crystal for ion implantation bubble device - Google Patents

Crystal for ion implantation bubble device

Info

Publication number
JPS58215004A
JPS58215004A JP57098117A JP9811782A JPS58215004A JP S58215004 A JPS58215004 A JP S58215004A JP 57098117 A JP57098117 A JP 57098117A JP 9811782 A JP9811782 A JP 9811782A JP S58215004 A JPS58215004 A JP S58215004A
Authority
JP
Japan
Prior art keywords
bubble
crystal
thin film
ion
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57098117A
Other languages
Japanese (ja)
Inventor
Junji Mada
間田 潤二
Hidema Uchishiba
内柴 秀磨
Kazuyuki Yamaguchi
一幸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57098117A priority Critical patent/JPS58215004A/en
Publication of JPS58215004A publication Critical patent/JPS58215004A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets

Abstract

PURPOSE:To lighten the dependence of a bubble operating characteristic on a crystal orientation, by making an anisotroy constant ¦K1¦ of a thin film smaller as a result of adding a transition metal ion of Co<2+> of the predetermined range and using (YSmLuCa)3(GeFe)5O12 as crystals when a bubble propagation pattern is formed by epitaxially growing a magnetic thin film on a crystal and then implanting ions. CONSTITUTION:A bubble propagation pattern is formed by epitaxially growing a magnetic thin film on a crystal substrate and implanting ions thereinto. (YSmLuCa)3(GeFe)5O12 is used for the crystals to which a transition metal/ion of Co<2+> is added by selecting 5Co/Fe within a range between 0.10-0.20. Thus, an anisotropy constant ¦K1¦ of the magnetic thin film is made smaller and the operating characteristics of the ion implantation bubble device are improved.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、イオン注入バブルデバイス用結晶に関し、該
結晶の結晶磁気異方性の絶対値を減少させようとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a crystal for an ion implantation bubble device, and is directed to reducing the absolute value of magnetocrystalline anisotropy of the crystal.

技術の背景 磁気バブル装置はGGG非磁性基板に磁性薄膜をエピタ
キシャル成長させてなる基板を用いるものが多く、従来
はか\る基板にバブル発生およびゲート用導体パターン
およびバブル転送用磁性パターン等を被着してバブル制
御することが普通であった。しかしメモリの大容量化等
を狙ってバブルが微小化するにつれて、T、I、ハーフ
ディスクなどの各素子間にギャップがある転送用磁性パ
ターンを用いる方式は製作上の問題から採用が困難にな
り、代って上記磁性薄膜にイオン注入して無ギヤツプ連
続転送パターンを形成する方式が採用されつ\ある。即
ちGGG基板にエピタキシャル成長させた磁性薄膜は基
板厚み方向に磁化容易であるがイオン注入すると基板表
面に平行な方向に磁化容易となり、イオン注入領域と非
注入領域との境界をバブル転送に適するパターン例えば
多数の半円を継ぎ合せたパターンにすると、回転磁界に
従ってバブルは該パターンに沿って移動するようになり
、パーマロイなどで作るハーフディスク転送用磁性パタ
ーンなどは不要どなる。しかも転送パターンはT、Iま
たはハーフディスクなどのように個々に分離してはいな
い無間隙連続体であり、イオン注入だけでできるから微
細加工が容易で、1μm程度の径の微細バブル用のデバ
イスも容易に製作可能である。
Background of the technology Many magnetic bubble devices use a substrate made by epitaxially growing a magnetic thin film on a GGG non-magnetic substrate. Conventionally, a conductor pattern for bubble generation and gate, a magnetic pattern for bubble transfer, etc. were attached to the substrate. Bubble control was common. However, as bubbles become smaller with the aim of increasing the capacity of memory, it becomes difficult to adopt methods that use transfer magnetic patterns with gaps between each element such as T, I, and half disks due to manufacturing problems. Instead, a method is being adopted in which ions are implanted into the magnetic thin film to form a gapless continuous transfer pattern. That is, a magnetic thin film epitaxially grown on a GGG substrate is easily magnetized in the direction of the substrate thickness, but when ions are implanted, it becomes easily magnetized in a direction parallel to the substrate surface, and the boundary between the ion implanted region and the non-implanted region is formed into a pattern suitable for bubble transfer, for example. If a pattern is formed by piecing together a large number of semicircles, the bubble will move along the pattern according to the rotating magnetic field, and a magnetic pattern for half-disk transfer made of permalloy or the like will be unnecessary. Moreover, the transfer pattern is a gapless continuum that is not separated into individual parts such as T, I, or half disks, and can be easily fabricated by ion implantation, making it suitable for devices for microscopic bubbles with a diameter of about 1 μm. can also be easily manufactured.

従来技術と問題点 か−るイオン注入用バブルデバイス用結晶つまり上記磁
性薄膜では結晶の磁気異方性定数に+が問題である。こ
の定数に1はバブル用結晶では通常質であるのでここで
はその絶対値をとってIKI1で扱うが、1K11が大
であるとバブルを転送路に沿って一方向に駆動するのと
その逆方向の駆動とでは必要な駆動力が大きく異なるこ
とになり、バブル駆動が厄介になる。lK11が小であ
ればバブルをどの方向へ駆動するのも同じ強さの駆動回
転磁界でよく、バブル駆動が容易であるからバブル用磁
性薄膜にはIKI lの小さいものがよい。(YSmL
uCa)3  (GeFe)5012.はバブル用磁性
薄膜として優れた特性を持っているが、この結晶でIK
I lを減少すべくルテニウムイオンRu3+を添加す
ることが試みられたが、Ru3+の添加は逆にIKI 
lを増加させてしまい、IKI l減少にはならなかっ
た。
Problems with the Prior Art In crystals for bubble devices for ion implantation, that is, in the above-mentioned magnetic thin films, there is a problem in that the magnetic anisotropy constant of the crystal is +. Since 1 in this constant is normal quality for bubble crystals, we take its absolute value and treat it as IKI1 here, but if 1K11 is large, the bubble will be driven in one direction along the transfer path and in the opposite direction. The required driving force is significantly different from that of the bubble drive, which makes the bubble drive troublesome. If lK11 is small, a rotating magnetic field of the same strength can be used to drive the bubble in any direction, and bubble driving is easy, so a magnetic thin film for bubbles with a small IKI l is preferable. (YSmL
uCa)3 (GeFe)5012. has excellent properties as a magnetic thin film for bubbles, but with this crystal, IK
Attempts have been made to add ruthenium ion Ru3+ to reduce IKI, but the addition of Ru3+ conversely reduces IKI.
l increased, but IKI l did not decrease.

発明の目的 本発明はイオン注入バブルデバイスの動作特性向上を狙
って該デバイスに用いる磁性薄膜の異方性定数IK1 
lを制御、特に小にしようとするものである。
Purpose of the Invention The present invention aims to improve the operating characteristics of an ion-implanted bubble device by improving the anisotropy constant IK1 of a magnetic thin film used in the device.
The purpose is to control l, especially to make it small.

発明の構成 本発明は結晶基板上にエピタキシャル成長して磁性薄膜
を形成しそしてイオン注入によりバブル伝播パターンを
形成されるイオン注入バブルデバイス用結晶において、
(YSmLuCa)3  (GeFe)50+□なる組
成を持ち、かつ5 Co / F eが0.10〜0.
20の範囲で遷移金属イオンC02+を添加されて結晶
磁気異方性定数lK+ lおよび異方性磁界H4を制御
されてなることを特徴とするものであるが、次に実施例
を参照しながらこれを説明する。
Structure of the Invention The present invention provides a crystal for an ion-implanted bubble device in which a magnetic thin film is formed by epitaxial growth on a crystal substrate and a bubble propagation pattern is formed by ion implantation.
(YSmLuCa)3 (GeFe)50+□, and 5Co/Fe is 0.10 to 0.
This is characterized in that transition metal ions C02+ are added in the range of 20% to control the magnetocrystalline anisotropy constant lK+l and the anisotropic magnetic field H4. Explain.

発明の実施例 バブル径1μmのバブルデバイス用イオン注入Sys結
晶(YSmLuCa)3  (GeFe)a。
Embodiment of the Invention Ion-implanted Sys crystal (YSmLuCa)3 (GeFe)a for a bubble device with a bubble diameter of 1 μm.

1□にコバルトイオンC○ を添加した場合のコバルト
添加量対l K + l  (erg /ad)の関係
を第1図に示す。このグラフから明らかなようにコバル
ト添加量が増すにつれてlK11はは\′直線的に減少
し、5 Co / F eが0.15を越える辺りから
逆に増加を始める。従って最も好ましい添加量は5 C
o / F e = 0.15であるが、0.10〜0
.20の範囲なら効果が認められる。これよりコバルト
添加量を少なくしてもまた多くしても効果が薄(なり、
特に多くする場合は、コバルト添加に対応させてsys
結晶のある成分本例ではGeを減少させるので他の磁気
特性に悪影響を与える恐れがある。なおIKI 1が減
少する範囲はコバルトが2価のイオンC02+で入って
おり、0.15を越えて増加する範囲ではこれが3価の
イオンCo”+に変っていると推定できる。またコバル
トは2価のイオンとして、具体的には酸化コバルトco
○として添加しないで、Co単体で添加すると、sYS
結晶中へは3+iI[iのイオンとして入る恐れがある
FIG. 1 shows the relationship between the amount of cobalt added and l K + l (erg /ad) when cobalt ions C○ are added to 1□. As is clear from this graph, lK11 decreases linearly as the amount of cobalt added increases, and begins to increase when 5Co/Fe exceeds 0.15. Therefore, the most preferable addition amount is 5C
o/F e = 0.15, but between 0.10 and 0
.. The effect is recognized within the range of 20. Even if the amount of cobalt added is reduced or increased, the effect will be weak (become
In particular, when increasing the amount, sys
Since a certain component of the crystal, in this example, reduces Ge, it may have an adverse effect on other magnetic properties. It can be assumed that in the range where IKI 1 decreases, cobalt is in the form of divalent ion C02+, and in the range where IKI 1 increases beyond 0.15, this is changed to trivalent ion Co''+. Specifically, as a valent ion, cobalt oxide co
If Co is added alone without adding as ○, sYS
There is a possibility that it may enter the crystal as an ion of 3+iI[i.

またC02+添加でSYS結晶のlK11を減少できる
理由は、この磁性酸化物中の8面***置にCo2+が入
ってその単一イオン性の大きいに1によりSYS結晶の
に+(負値)をプラス方向に変化させることによると解
される。
Also, the reason why the lK11 of the SYS crystal can be reduced by adding CO2+ is that Co2+ enters the octahedral position in this magnetic oxide, and due to its large single ionicity, the + (negative value) of the SYS crystal increases in the positive direction. This is understood to be due to the change in

第2図は、イオン注入に伴なう異方性磁界Hi(Oe)
を注入量D (X 1014/cJ)の関数として求め
たグラフである。○印はコバルトを添加した本発明の磁
性薄膜、・印はコバルトを添加しない従来の磁性薄膜に
ネオンを100 KeVでイオン注入したもので測定し
た結果である。コバルトを添加すると特にドーズ量の多
い領域でH4が向上する。実際のデバイスでイオン注入
は複数回行なうマルチ法をとっており、これに合せて先
ずネオンをlK14,50KeVで、次に水素を2F1
6゜50 KeVで、更にその後でネオンを2E14.
200KeVでイオン注入した例ではH4の最大値は4
800 0eに向上した。こ\でK14は×1014を
意味する。他もこれに準する。一般に異方性磁界H4は
大きい程バブルデバイスとしての特性は良好になると期
待される。
Figure 2 shows the anisotropic magnetic field Hi (Oe) associated with ion implantation.
It is a graph obtained as a function of the injection amount D (X 1014/cJ). The ○ mark indicates the result of measurement using the magnetic thin film of the present invention to which cobalt is added, and the * mark indicates the measurement result obtained by ion-implanting neon at 100 KeV into a conventional magnetic thin film to which cobalt is not added. Adding cobalt improves H4, especially in the high dose region. In actual devices, ion implantation is performed multiple times using a multi-method.
6°50 KeV and then neon at 2E14.
In the example of ion implantation at 200KeV, the maximum value of H4 is 4
Improved to 800 0e. Here, K14 means x1014. Others follow suit. Generally, it is expected that the larger the anisotropic magnetic field H4 is, the better the characteristics as a bubble device will be.

こ\で異方性定数に+、異方性磁界Hiについて柵体す
ると、Eaを結晶磁気異方性エネルギ、直交したx、y
、z軸に関する自発磁化の方向余弦をα1.α2.α3
とすると、 Ea = Ko+ K、 (α1′α2′+α22α3
′+α3′α1′)十に2α1′α2′α3′+・ − に展開でき、K1.に2が異方性定数と呼ばれる。
Here, if we add + to the anisotropy constant and block the anisotropic magnetic field Hi, then Ea is the magnetocrystalline anisotropy energy, and orthogonal x, y
, the direction cosine of spontaneous magnetization with respect to the z-axis is α1. α2. α3
Then, Ea = Ko+ K, (α1′α2′+α22α3
'+α3'α1') can be expanded to ten times 2α1'α2'α3'+・-, and K1. 2 is called the anisotropy constant.

F2は小さいので(測定しにくい)こ−では言及しない
。コバルトのような6万晶系では5in2θの級数に展
開して Ea=に、)+Ku、 5in2θ+Ku25in4θ
十90020.。
Since F2 is small (difficult to measure), it will not be mentioned here. In a 60,000 crystal system such as cobalt, it is expanded into a series of 5in2θ, and Ea=)+Ku, 5in2θ+Ku25in4θ
190020. .

とされ、この場合はKul、Ku2が異方性定数と呼ば
れる。異方性磁界Hiは異方性定数をKu、飽和磁化を
Msとして Hi=2Ku/Ms で表わされる。次に本発明磁性薄膜の製造工程の概要を
示す。Y 203 、  S m 20 v 、  L
 u 203 。
In this case, Kul and Ku2 are called anisotropy constants. The anisotropic magnetic field Hi is expressed as Hi=2Ku/Ms, where Ku is the anisotropy constant and Ms is the saturation magnetization. Next, an outline of the manufacturing process of the magnetic thin film of the present invention will be described. Y 203, S m 20 v, L
u203.

Ca2O3,Ge021 Fe2O3、と酸化コハル)
Coo (いずれも粉体)を所要量るつぼに入れ、更に
フラックスとしてPb0.B2O3を加え、1050℃
に加熱して溶融し、数時間その状態にして充分混合させ
る。次にs o o ’cに落とし、GGG基板を回転
させながら融液に浸し、数分間おいて引上げる。これで
GGG基板にCod(YSmLuCa)3  (GeF
e)50+、なる磁性薄膜が該基板に液相成長する。な
おこのコバルト2+ COは(YSmLuCa)3側にあるのか(GeF2)
5側にあるのかはっきりしないので、こ\ではCo” 
:  (YSmLuCa)]  (GeF 2)50.
、、なる表現をとった。
Ca2O3, Ge021 Fe2O3, and cohal oxide)
Pb0. Add B2O3 and heat to 1050℃
Heat to melt and leave in that state for several hours to mix thoroughly. Next, it is dropped into a SO'C, and the GGG substrate is immersed in the melt while being rotated, and then pulled out after a few minutes. Now Cod(YSmLuCa)3 (GeF
e) A magnetic thin film of 50+ is liquid phase grown on the substrate. Is this cobalt2+ CO on the (YSmLuCa)3 side (GeF2)?
I'm not sure if it's on the 5th side, so here's Co"
: (YSmLuCa)] (GeF2)50.
,, I took the following expression.

発明の詳細 な説明したように本発明によれば、イツトリウム・サマ
リウム・ルテチウム・カルシウム・ゲルマニウム・鉄・
酸素からなる1μφ微小バブル用磁性薄膜の異方性定数
lK+ 1が小になるので、問題であったバブル動作特
性の結晶方位依存性を緩和でき、また異方性磁界Hiが
大になるのでバブル動作特性に好影響を与えることがで
き、しかも他の磁気特性には悪影響を与えないという利
点が得られる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, yttrium, samarium, lutetium, calcium, germanium, iron,
Since the anisotropy constant lK+ 1 of the magnetic thin film for 1μφ minute bubbles made of oxygen becomes small, the problem of dependence of the bubble operation characteristics on crystal orientation can be alleviated, and the anisotropic magnetic field Hi becomes large, so the bubble The advantage is that the operating characteristics can be positively influenced, while other magnetic properties are not adversely affected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は異方性定数IK+1の特性図、第2図は異方性
磁界Hiの特性図である。 出願人 富士通株式会社 代理人弁理士  青  柳    稔
FIG. 1 is a characteristic diagram of the anisotropy constant IK+1, and FIG. 2 is a characteristic diagram of the anisotropic magnetic field Hi. Applicant Fujitsu Limited Representative Patent Attorney Minoru Aoyagi

Claims (1)

【特許請求の範囲】[Claims] 結晶基板上にエピタキシャル成長して磁性薄膜を形成し
そしてイオン注入によりバブル伝播パターンを形成され
るイオン注入バブルデバイス用結晶において、(YSm
LuCa)3  (GeFe)5012なる組成を持ち
、かっ5 Co / F eが0.10〜0.20の範
囲で遷移金属イオンco2+を添加されて結晶磁気異方
性定数lK11および異方性磁界H1を制御されてなる
ことを特徴とするイオン注入バブルデバイス用結晶。
In crystals for ion-implanted bubble devices, in which a magnetic thin film is formed by epitaxial growth on a crystal substrate, and a bubble propagation pattern is formed by ion implantation, (YSm
It has a composition of LuCa)3(GeFe)5012, and is doped with transition metal ion co2+ in a range of Co/Fe of 0.10 to 0.20, resulting in a magnetocrystalline anisotropy constant lK11 and anisotropic magnetic field H1. A crystal for an ion-implanted bubble device characterized by a controlled state of the crystal.
JP57098117A 1982-06-08 1982-06-08 Crystal for ion implantation bubble device Pending JPS58215004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098117A JPS58215004A (en) 1982-06-08 1982-06-08 Crystal for ion implantation bubble device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098117A JPS58215004A (en) 1982-06-08 1982-06-08 Crystal for ion implantation bubble device

Publications (1)

Publication Number Publication Date
JPS58215004A true JPS58215004A (en) 1983-12-14

Family

ID=14211353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098117A Pending JPS58215004A (en) 1982-06-08 1982-06-08 Crystal for ion implantation bubble device

Country Status (1)

Country Link
JP (1) JPS58215004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711694A (en) * 1984-11-12 1987-12-08 Commissariat A L'energie Atomique Process for producing a layer having a high magnetic anisotropy in a ferrimagnetic garnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711694A (en) * 1984-11-12 1987-12-08 Commissariat A L'energie Atomique Process for producing a layer having a high magnetic anisotropy in a ferrimagnetic garnet

Similar Documents

Publication Publication Date Title
Hirosawa et al. The dependence of coercivity on anisotropy field in sintered R-Fe-B permanent magnets
US3792452A (en) Magnetic devices utilizing ion-implanted magnetic materials
US3711841A (en) Single wall domain arrangement
US3886533A (en) Magnetic devices utilizing garnet epitaxial material
Van Uitert et al. Control of bubble domain properties in garnets
US4034358A (en) Magnetic bubble devices with controlled temperature characteristics
US3613056A (en) Magnetic devices utilizing garnet compositions
CA1068819A (en) Magnetic bubble devices with controlled temperature characteristics
Davies et al. The design of single crystal materials for magnetic bubble domain applications
US3643238A (en) Magnetic devices
US3759745A (en) Hydrogen annealing of substituted magnetic garnets and materials so produced
Blank et al. Design and development of single‐layer, ion‐implantable small bubble materials for magnetic bubble devices
Giess Magnetic bubble materials
US4138530A (en) Magnetic structures
JPS58215004A (en) Crystal for ion implantation bubble device
Grill et al. Effect of diamagnetic substitutions in BaFe 12 O 19 on the magnetic properties
US3964035A (en) Magnetic devices utilizing garnet epitaxial materials
US4239805A (en) Method of depositing a layer of magnetic bubble domain material on a monocrystalline substrate
JPH0570290B2 (en)
EP0088228A2 (en) Garnet film for ion-implanted magnetic bubble device
US4343038A (en) Magnetic bubble domain structure
Omaggio et al. Effects of ion implantation on the uniaxial anisotropy energy of a magnetic bubble film
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
US3837911A (en) Magnetic devices utilizing garnet epitaxial materials and method of production
US4207613A (en) Bubble device containing a ferrite biasing magnet