JPS58213856A - Tool steel of high toughness and high wear resistance - Google Patents

Tool steel of high toughness and high wear resistance

Info

Publication number
JPS58213856A
JPS58213856A JP9811182A JP9811182A JPS58213856A JP S58213856 A JPS58213856 A JP S58213856A JP 9811182 A JP9811182 A JP 9811182A JP 9811182 A JP9811182 A JP 9811182A JP S58213856 A JPS58213856 A JP S58213856A
Authority
JP
Japan
Prior art keywords
content
hardness
tool steel
wear resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9811182A
Other languages
Japanese (ja)
Other versions
JPH0478716B2 (en
Inventor
Hisashi Takada
寿 高田
Nobuyasu Kawai
河合 伸泰
Kanji Notomi
納富 完至
Minoru Hirano
稔 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9811182A priority Critical patent/JPS58213856A/en
Publication of JPS58213856A publication Critical patent/JPS58213856A/en
Publication of JPH0478716B2 publication Critical patent/JPH0478716B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture tool steel of high toughness and high wear resistance at a low cost by press-molding high carbon steel powder contg. a specified amount of Cr or further contg. other alloying element and by sintering the molded body. CONSTITUTION:Steel powder contg. 15-21% Cr and C satisfying 7<=Cr%/C%<= 11 or 15-21% Cr, C satisfying 7<=Cr%/C%-0.2V%<=11 and <3.5% V and/or <8% (W+2Mo) is manufactured by a gas atomizing method. The steel powder as a starting material is subjected to HIP treatment to form steel parts, and a high toughness tool steel of high wear resistance and superior heat resistance is manufactured at a low cost. The tool steel contains uniformly and finely distributed Cr carbide or Cr carbide and carbides of V, W, etc.

Description

【発明の詳細な説明】 本発明は高靭性高耐摩耗性工具鋼に関し、さらに詳しく
は、粉末冶金法により製造される高靭性高耐摩耗性工具
鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-toughness, high-wear-resistant tool steel, and more particularly to a high-toughness, high-wear-resistant tool steel produced by powder metallurgy.

従来から、Cr系工具鋼が冷間圧延用ロール材、冷開加
工用金型等に広く使用されている。
Conventionally, Cr-based tool steel has been widely used for cold rolling roll materials, cold opening molds, and the like.

しかしながら、種々の素材の加工に際して、近年になっ
て高精度、低コストが強く要求され、かつ、液加]二材
の高硬度化、加工速度の高速化等による工具の使用条件
が一層苛酷なものとなってきている。そのため、C及び
Crの含有量を増加させて耐摩耗性の改善を図ってきた
が、一方、高合金化により靭性や加工性が着しく低下す
るという問題が発生した、 本発明は、上記に説明した従来から使用されて外でいる
Cr系工具鋼の種々の問題点を解決したものであり、例
えば、JISG44.(145KDIIより靭性、耐摩
耗性に優れた粉末冶金法により製造される高靭性高耐摩
耗性工具鋼を提供するものである。
However, in recent years, there has been a strong demand for high precision and low cost when machining various materials, and the conditions for using tools have become more severe due to higher hardness of the two materials and faster machining speeds. It's becoming a thing. Therefore, efforts have been made to improve wear resistance by increasing the content of C and Cr, but on the other hand, a problem has arisen in that toughness and workability are seriously reduced due to high alloying. It solves various problems of the conventionally used Cr-based tool steel described above, and is compliant with, for example, JIS G44. (It provides a high-toughness, highly wear-resistant tool steel manufactured by a powder metallurgy method that has superior toughness and wear resistance to 145KDII.

本発明に係る高靭性高耐摩耗性工具鋼は、(1)Crを
15−21%、Cを7≦Cr%/C%≦11の比率で含
み、残部Fe及び不純物からなる高靭性高耐摩耗性工具
鋼を第1の発明とし、(2)Crを15〜21%、Cを
7≦Cr%/C%−0.2V%≦11の比率で含み、更
に、■3.5%以下、(W+2Mo)8%以下の1種、
又は、2種以上を含み、残部Fe及び不純物からなる高
靭性高耐摩耗性工具鋼を第2の発明とする2つの発明よ
りなるものである。
The high toughness and high wear resistance tool steel according to the present invention contains (1) 15-21% Cr, C in a ratio of 7≦Cr%/C%≦11, and the balance is Fe and impurities. The first invention is an abrasive tool steel, (2) it contains 15 to 21% Cr, C in a ratio of 7≦Cr%/C%-0.2V%≦11, and furthermore, ■3.5% or less , (W+2Mo) 8% or less,
Alternatively, the second invention is a high-toughness, high-wear-resistant tool steel containing two or more types, the balance being Fe and impurities.

本発明に係る高靭性高耐摩耗性工具鋼について詳細に説
明する。
The high toughness and high wear resistance tool steel according to the present invention will be explained in detail.

先づ、本発明に係る高靭性高耐摩耗性工具鋼の含有成分
、成分割合について説明する。
First, the components and component ratios of the high toughness and high wear resistance tool steel according to the present invention will be explained.

Crは基質及び炭窒化物中に存在して焼入れ性を改善し
、焼戻し効果、高温硬さを付与する元素であり、その含
有量か15%未満ではこれらの効果は少なく、また、含
有量が21%を越えるとこれらの効果か飽和してしまい
、これ以」−含有させる意味がない。よって、Cr含有
量は15〜21%とする。
Cr is an element that exists in the matrix and carbonitride and improves hardenability and imparts a tempering effect and high-temperature hardness.If the content is less than 15%, these effects are small, and if the content is less than If it exceeds 21%, these effects will be saturated, and there is no point in further including it. Therefore, the Cr content is set to 15 to 21%.

Cは硬度を付与する元素であり、M、C3のCr系炭化
物中最高の硬さを示す炭化物を形成するか、このCr系
炭化物中最高の硬さを示すためには、Cr%と0%との
比が重要であり、Cr%/C%か7未満ではマ) l)
ソクスへのCの固溶量の増加により靭性の低下が著しく
、また、Cr%/C%が11を越えると硬さが不充分と
なる。よって、Cは7≦Cr%/C%≦11の範囲とす
る。また、\lが含有されると、VはCrより炭化物を
生1&lJ<\7Cとして結合するものであるカ呟V含
有量1%に月してCを0.2%多く含有させなければな
らず、\l含有の場合のCは7≦Cr%/C%−0.2
XV%≦11とするのである。
C is an element that imparts hardness, and in order to form a carbide that exhibits the highest hardness among Cr-based carbides of M and C3, or to exhibit the highest hardness among Cr-based carbides, Cr% and 0% are required. The ratio of Cr%/C% or less than 7 is important.
An increase in the amount of solid solution of C in the sox causes a significant decrease in toughness, and if Cr%/C% exceeds 11, hardness becomes insufficient. Therefore, C is set in the range of 7≦Cr%/C%≦11. In addition, when \l is contained, V must contain 0.2% more C than Cr to 1% V content, which binds carbides as raw 1&lJ<\7C. C in case of \l content is 7≦Cr%/C%-0.2
XV%≦11.

なお、Cr含有量については後述する第1図乃至第6図
の説明よりも明らかであるが、15〜21%の範囲が好
ましいものであり、また、CとCrとの含有量の関係に
ついても後述する第7図、第8図の説明から明らかであ
る。
As for the Cr content, it is clearer from the explanations in FIGS. 1 to 6 that will be described later, but a range of 15 to 21% is preferable, and the relationship between the content of C and Cr is also This is clear from the explanation of FIGS. 7 and 8, which will be described later.

\lは2次硬化による熱処理硬さが増加し耐摩耗性を向
」ニさせる元素であるが、多く含有されると靭性や加工
性が低下するようになる。よって、■含有量は3.5%
以下とする。
\l is an element that increases heat treatment hardness through secondary hardening and improves wear resistance, but when contained in a large amount, toughness and workability decrease. Therefore, ■The content is 3.5%
The following shall apply.

Moもまた2次硬化による熱処理硬さを増加させ耐摩耗
性を向上させるが、多く含有させると靭性や加工性が低
下する。また、Wは工具鋼ではMoと略同様な働きをし
、その効果はMoの約1/2(重量比)に相当するので
、Mo、Wを単独、又は、複合して含有させる場合には
、]/2W+Mo≦4%、3− 即ち、W +2Mo≦8%とする。
Mo also increases heat treatment hardness through secondary hardening and improves wear resistance, but if it is contained in a large amount, toughness and workability decrease. In addition, W acts almost the same as Mo in tool steel, and its effect is equivalent to about 1/2 (weight ratio) of Mo, so when Mo and W are contained alone or in combination, , ]/2W+Mo≦4%, 3−, that is, W+2Mo≦8%.

なお、不純物として、S i、 Mn、 F’、 S、
 N i及びN等か含有されることもあるが、N1は1
%以下とすることが望ましい。
In addition, as impurities, Si, Mn, F', S,
Ni and N may be included, but N1 is 1
% or less.

4− 次いで゛、本発明に係る高靭性高耐摩耗性工具鋼の実施
例について比較月と共に説明する。
4- Next, Examples of the high toughness and high wear resistance tool steel according to the present invention will be explained together with comparative examples.

実施例 ガスアトマイズ法により、62〜3%、Cr8〜25%
及びその池の成分を含む銅粉としてから、HT P処理
(1100’C12000aL+n、2時間処理)によ
り緻密化したビレントを供試材とした。その含有成分、
成分割合は第1表に示す通りである。
Example: 62-3%, Cr8-25% by gas atomization method
The test material was Vilento, which was made into a copper powder containing the components of the copper powder and then densified by HTP treatment (1100'C12000aL+n, 2 hours treatment). its ingredients,
The component ratios are shown in Table 1.

なお、第1表中の(イ)は第1図〜第6図の鋼、(ロ)
は第7図〜第12図の鋼、(ハ)は第15図、第16図
の鋼、(ニ)は第17図、第18図の鋼である。
In addition, (a) in Table 1 refers to the steels shown in Figures 1 to 6, and (b)
(c) is the steel shown in FIGS. 15 and 16, and (d) is the steel shown in FIGS. 17 and 18.

第1図にCr含有量と焼入れ温度との関係を示すが、こ
れは最高の焼入れ硬さを示す焼入れ温度であり、以下に
説明する各種試験は、この焼入れ温度に15分間保持後
油冷し、150〜600°Cで焼戻しを行なって製造し
た試験材により行なった。
Figure 1 shows the relationship between Cr content and quenching temperature. This is the quenching temperature that exhibits the highest quenching hardness, and the various tests described below were carried out at this quenching temperature after being held at this quenching temperature for 15 minutes and then oil-cooled. The tests were conducted using test materials manufactured by tempering at 150 to 600°C.

第2図はCr含有量と硬さとの関係を示すが、特に、5
00’C焼戻し硬さを示してあり、2%CでCr含有量
が18%までは硬さか著しく増加するが、Cr含有量が
18%を越えても硬さが増加せず大差がない。しかし、
3%Cでは同しCr含有量で硬さは著しく低いことがわ
かる。
Figure 2 shows the relationship between Cr content and hardness, especially 5
00'C tempering hardness is shown, and the hardness increases significantly when the Cr content reaches 18% at 2% C, but even when the Cr content exceeds 18%, the hardness does not increase and there is no significant difference. but,
It can be seen that at 3% C, the hardness is extremely low at the same Cr content.

第3図はCr含有量と抗折力との関係を示すが、2%C
−Cr含有量18%のものが、3%Cでは同じCr含有
量でも抗折力は著しく劣っており、2%C−18Cr鋼
が最高の靭性な示していることがわかる。
Figure 3 shows the relationship between Cr content and transverse rupture strength.
It can be seen that the transverse rupture strength of the steel with a -Cr content of 18% is significantly inferior at 3%C even at the same Cr content, and the 2%C-18Cr steel exhibits the highest toughness.

第4図、第5図はHv750における大越式摩耗試験機
による摩耗特性を、摩擦速度0.3m/5ee(第4図
)と摩擦速度2.86m/5ee(第5図)とについて
、夫々Cr含有量と比摩耗量との関係を示したものであ
る。
Figures 4 and 5 show the wear characteristics measured by the Ohkoshi abrasion tester at Hv750 at a friction speed of 0.3 m/5ee (Fig. 4) and a friction speed of 2.86 m/5ee (Fig. 5), respectively. It shows the relationship between content and specific wear amount.

この場合の摩擦条件は次の通りである。The friction conditions in this case are as follows.

相手材 :  30M415 摩擦距離:  400 m 最終荷重:  6.3Kg 潤   滑   :  無 し 即ち、第4図の摩擦速度0.3m/secの酸化摩耗(
アブレッシブ摩耗)領域では、2%Cの方が3%Cより
優れ、また、第5図の摩擦速度2.86m/seeの凝
着摩耗領域ではCr含有量が18%以上でも優れた耐摩
耗性を示していることがわかる。
Mating material: 30M415 Friction distance: 400 m Final load: 6.3 Kg Lubrication: None In other words, oxidation wear at a friction speed of 0.3 m/sec in Figure 4 (
In the abrasive wear region, 2% C is better than 3% C, and in the adhesive wear region with a friction speed of 2.86 m/see in Figure 5, even with a Cr content of 18% or more, it has excellent wear resistance. It can be seen that it shows.

第6図はCr含有量と焼なまし硬さとの関係を示したも
ので、2%C−18%Crは3%Cで同Cr含有量のも
のより工具製造に大きな影響を与える焼なまし硬さが低
いのである。
Figure 6 shows the relationship between Cr content and annealing hardness. 2%C-18%Cr has a greater impact on tool manufacturing than 3%C with the same Cr content. It has low hardness.

なお、第1図〜第6図において、AはC2%材、Bは0
3%材、C1,tSKDll(溶解材)を示すものであ
る。
In addition, in Figures 1 to 6, A is C2% material and B is 0% C material.
3% material, C1, tSKDll (dissolved material).

第7図はC含有量と焼入れ温度との量系を示すが、これ
は最高の焼入れ硬さを示す焼入れ温度であり、以下説明
する各種試験は、この焼入れ温度に15分間保持後油冷
し、150〜600℃で焼戻しを行なって製造した試験
材により行なった。以下の図面におけるDは18%Cr
材である。
Figure 7 shows the quantitative system of C content and quenching temperature. This is the quenching temperature that shows the highest quenching hardness, and the various tests described below were carried out after holding this quenching temperature for 15 minutes and then oil-cooling. The tests were conducted using test materials manufactured by tempering at 150 to 600°C. D in the following drawings is 18%Cr
It is a material.

第8図はC含有量と硬さとの関係を示すが、特に、50
0℃焼戻し硬さを示してあり、C含有量が2%を越えて
も硬さは変化なく、3%以上のCは硬さか変化のないこ
とを示している。
Figure 8 shows the relationship between C content and hardness.
The hardness after tempering at 0° C. is shown, and the hardness does not change even if the C content exceeds 2%, and the C content of 3% or more indicates that the hardness does not change.

第9図はC含有量と抗折力との関係を示すが、C含有量
は2%がピークであり、それ以上のC含有量は抗折力が
著しく劣化している。
FIG. 9 shows the relationship between the C content and the transverse rupture strength. The C content peaks at 2%, and the transverse rupture strength deteriorates significantly at higher C contents.

第10図、第11図は、l−1シフ50における太線式
摩耗試験機による摩耗特性を、摩擦速度0.3m/5e
c($10図)と摩擦速度2.86m/5ee(第11
図)とについて、C含有量と比摩耗量との関係を示した
ものである。
Figures 10 and 11 show the wear characteristics of the l-1 shift 50 measured by a thick line type wear tester at a friction speed of 0.3 m/5e.
c ($10 figure) and friction speed 2.86m/5ee (11th
The relationship between the C content and the specific wear amount is shown in FIG.

この場合の摩擦条件は次の通りである。The friction conditions in this case are as follows.

相手材 :  SCM415 摩擦距離:  4 (l OI11 最終苛重:  6.3Kg 10− 潤   滑   :  無 し 即ち、第10図では、C含有量か2%を越えると比摩耗
量が多くなり、第11図ではC含有量か2%を越えると
比摩耗量は少なくなっており、これからみてC含有量は
2%においてピークかあると考えられる。
Mating material: SCM415 Friction distance: 4 (l OI11 Final load: 6.3Kg 10- Lubrication: None In other words, in Figure 10, when the C content exceeds 2%, the specific wear amount increases, and the In the figure, the specific wear amount decreases when the C content exceeds 2%, and from this it is thought that the C content peaks at 2%.

第12図はC含有量と焼なまし硬さとの関係を示すもの
で、C含有量が2%を越えると急に硬くなっている。そ
して、実験によればIC−18Cr材は焼戻し硬さは)
lv750にはならないのである。
FIG. 12 shows the relationship between C content and annealing hardness, and when the C content exceeds 2%, the hardness suddenly increases. According to experiments, the tempering hardness of IC-18Cr material is
It will not reach lv750.

以上、第7図〜第12図の説明からCは7≦Cr%/C
%≦11の比率としなければならないのである。
From the above explanation of Figs. 7 to 12, C is 7≦Cr%/C
The ratio must be %≦11.

上記に説明した、第1図〜第12図を種々検討した結果
、500℃における焼戻し硬さ、I(v750における
抗折力、焼なまし硬さについて0%とCr形との関係を
第13図に、また、耐摩耗性についての0%とCr形と
の関係を第14図に夫々示すが、第13図、第14図共
縦線で示す範囲が極めて優れており、即ち、本発明に係
る高靭性高耐摩耗性工具鋼である。第13図、第14図
で■は良で×は悪である。なお、第13図、第14図に
おいて、Xは(CrFe)、C十(CrFe)7C3を
、yは(CrFe)、C3を、2は(CrFe)、Cs
+(CrFe)23C6を、田は(CrFe)2:]C
6を夫々示す。
As a result of various examinations of Figs. 1 to 12 explained above, we found that the relationship between 0% and Cr type for tempering hardness at 500°C, transverse rupture strength at I (v750, and annealing hardness) In addition, the relationship between 0% and Cr type in terms of wear resistance is shown in FIG. 14, and the range shown by the vertical line in both FIGS. 13 and 14 is extremely excellent. It is a high-toughness, high-wear-resistant tool steel. In Figs. 13 and 14, ■ indicates good and × indicates bad. In Figs. 13 and 14, X indicates (CrFe), C (CrFe)7C3, y is (CrFe), C3, 2 is (CrFe), Cs
+(CrFe)23C6, (CrFe)2:]C
6 are shown respectively.

第15図、第16図は18%Cr材の■含有量と抗折力
と焼なまし硬さについての関係を示すもので、■含有量
が約3%を越えると抗折力は低くなり、逆に焼なまし硬
さは高くなる。よって、■含有量は3.5%以下とする
のがよいのである。
Figures 15 and 16 show the relationship between ■ content, transverse rupture strength, and annealing hardness of 18% Cr material. ■ When content exceeds about 3%, transverse rupture strength decreases. , conversely, the annealing hardness increases. Therefore, it is preferable that the content of (1) be 3.5% or less.

第17図はHv750における抗折力を、2C−18C
r鋼と2C−18Cr−2Mo鋼を比較して示したもの
で、抗折力には差はないものである。
Figure 17 shows the transverse rupture force at Hv750, 2C-18C
This is a comparison of R steel and 2C-18Cr-2Mo steel, and there is no difference in transverse rupture strength.

第18図は2C−18CrfIAと2C−18Cr−2
Mo鋼の焼なまし硬さを示すが、略同じ硬さを示してい
る。
Figure 18 shows 2C-18CrfIA and 2C-18Cr-2
The annealing hardness of Mo steel is shown, and the hardness is approximately the same.

さらに、本発明に係る高靭性高耐摩耗性工具鋼と従来の
工具鋼との顕微鏡組織について説明すると、従来の工具
鋼(SKDllで鍛錬比20以11− 上)は第19図に示しまた、2%C−18Cr鋼(as
l−I I P )を第20図に示す。この第19図及
び第20図の顕微鏡写真からも明らかであるが、第20
図に示す本発明に係る高靭性高耐摩耗性工具鋼(2%C
−18%Cr鋼)の粉末冶金法による鋼が従来の工具鋼
(SKDll、溶融法)より炭化物が均一微細に分布し
ていることがわかる。
Furthermore, to explain the microstructures of the high-toughness, high-wear-resistant tool steel according to the present invention and conventional tool steel, the conventional tool steel (SKDll wrought ratio of 20 or higher and 11- or higher) is shown in FIG. 2% C-18Cr steel (as
l-I I P ) is shown in FIG. As is clear from the micrographs in Figures 19 and 20, the 20th
High toughness and high wear resistance tool steel (2% C
It can be seen that carbides are more uniformly and finely distributed in the powder metallurgy steel (-18% Cr steel) than in the conventional tool steel (SKDll, melting method).

この実施例かられかるように、本発明に係る高靭性高耐
摩耗性工具鋼は、従来の溶融法による工具鋼(SKDl
l)に比して、硬さ、抗折力、比摩耗量において同等か
それ以上の優れた性能を示していることがわかる。
As can be seen from this example, the high toughness and high wear resistance tool steel according to the present invention is a tool steel produced by the conventional melting method (SKDl
It can be seen that, compared to 1), it shows the same or better performance in terms of hardness, transverse rupture strength, and specific wear amount.

以上説明したように、本発明に係る高靭性高耐摩耗性工
具鋼は上記の構成を有しており、かつ、粉末冶金法によ
り製造されたものであるから、炭化物が均一微細に分布
しているため、靭性、疲労、熱疲労等の機械的性質、鍛
造、引抜き加工、研削等の加工性及び熱処理性を改善す
ることができ、さらに、耐熱性、耐摩耗性が改善される
ので高合金化が可能となる等の優れた効果を奏するもの
である。
As explained above, the high toughness and high wear resistance tool steel according to the present invention has the above structure and is produced by a powder metallurgy method, so that carbides are uniformly and finely distributed. This makes it possible to improve mechanical properties such as toughness, fatigue, and thermal fatigue, as well as processability and heat treatability such as forging, drawing, and grinding.Furthermore, heat resistance and wear resistance are improved, so high alloy This has excellent effects such as making it possible to

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCr含有量と焼入れ温度との関係を示すグラフ
、$2図はCr含有量と硬さの関係を示すグラフ、第3
図はCr含有量と抗折力との関係を示すグラフ、第4図
、第5図はCr含有量と比摩耗量との関係を示すグラフ
、第6図はCr含有量と焼なまし硬さとの関係を示すグ
ラフ、第7図はC含有量と焼入れ温度の関係を示すグラ
フ、第8図はC含有量と硬さの関係を示すグラフ、第9
図はC含有量と抗折力との関係を示すグラフ、第10図
、第11図はC含有量と比摩耗量との関係を示すグラフ
、第12図はC含有量と硬さとの関係を示すグラフ、第
13図、第14図は本発明に係る高靭性高耐摩耗性工具
鋼のCr含有量とC含有量との関係を示すグラフ、第1
5図、第16図はV含有量と抗折力と硬さとの関係を示
すグラフ、第17図、第18図は2%C−18%Cr鋼
と2%C−18%Cr−2%Mo鋼との抗折力と硬さに
ついて示したグラフ、第19図は5KDI 1の顕微鏡
写真、第12図は本発明に係る高靭性高耐摩耗性工具鋼
(2%C−18%Cr鋼)の顕微鏡写真である。 (08H)&−号 (つ。2皇葛じN封 (つン#−4) て 享\( C−悩→v14ガ項 (%211つ (ンG)11つ (つ署’H)”y”1.免 (つ%H)−c”、LXG (7・)IN援y]らも 30E (9出)で■\9 ;− 手続補正書(方式) 昭和57年09月30日 昭和57年特許願第098111号 2、発明の名称 高靭性高耐摩耗性工具鋼 3、補正をする者 事件との関係  特許出願人 1を所 神戸市中央区脇浜町1丁目3番18号名称 (
1,1,9)  株式会社 神戸製鋼所代表者 高橋孝
吉 、10代理人 住所 東京都江東区南砂2丁目2番15号藤和東陽町フ
ープ901号 307− 5、補正命令の日付(昭和57年9月28日発送日)6
、補正の則象 )明細書の図面の簡単な説明の欄 正の内容 (1)明細書第14頁20行乃至同第15頁2行の[第
19図は・・・・顕微鏡写真である。]を「第19図は
5KD11の金属組織を示す顕微鏡写真、第20図は本
発明に係る高靭性高耐摩耗性工具鋼(2%C−18%C
r鋼)の金属組織を示す顕微鏡写真である。」と補正す
る。
Figure 1 is a graph showing the relationship between Cr content and hardening temperature, Figure 2 is a graph showing the relationship between Cr content and hardness, and Figure 3 is a graph showing the relationship between Cr content and hardness.
The figure is a graph showing the relationship between Cr content and transverse rupture strength, Figures 4 and 5 are graphs showing the relationship between Cr content and specific wear amount, and Figure 6 is a graph showing the relationship between Cr content and annealing hardness. Figure 7 is a graph showing the relationship between C content and hardening temperature, Figure 8 is a graph showing the relationship between C content and hardness, and Figure 9 is a graph showing the relationship between C content and hardness.
The figure is a graph showing the relationship between C content and transverse rupture strength, Figures 10 and 11 are graphs showing the relationship between C content and specific wear amount, and Figure 12 is the relationship between C content and hardness. 13 and 14 are graphs showing the relationship between the Cr content and the C content of the high toughness and high wear resistance tool steel according to the present invention.
Figures 5 and 16 are graphs showing the relationship between V content, transverse rupture strength, and hardness, and Figures 17 and 18 are graphs showing the relationship between V content, transverse rupture strength, and hardness. A graph showing the transverse rupture strength and hardness of Mo steel, Fig. 19 is a micrograph of 5KDI 1, and Fig. 12 is a graph showing the transverse rupture strength and hardness of Mo steel. ) is a microscopic photograph. (08H) &-No. y"1. Immunity (T%H)-c", LXG (7.)IN aidy] et al. 30E (9th issue) ■\9 ;- Procedural amendment (method) September 30, 1980 Showa 1957 Patent Application No. 098111 2, Name of the invention: High toughness and high wear resistance tool steel 3, Relationship with the person making the amendment Case Patent applicant 1: Address: 1-3-18 Wakihama-cho, Chuo-ku, Kobe City Name (
1, 1, 9) Kobe Steel Co., Ltd. Representative: Kokichi Takahashi, 10 Agent address: 307-5, Fujiwa Toyo-cho Hoop 901, 2-2-15 Minamisuna, Koto-ku, Tokyo Date of amendment order (September 1982) Monthly 28th shipping date) 6
, amendment rules) Contents of the brief description of the drawings in the specification . ] "Figure 19 is a micrograph showing the metal structure of 5KD11, and Figure 20 is a high toughness and high wear resistance tool steel according to the present invention (2%C-18%C
It is a micrograph showing the metallographic structure of R steel. ” he corrected.

Claims (2)

【特許請求の範囲】[Claims] (1)Crを15−21%、Cを7≦Cr%/C%≦1
1の比率で含み、残部Fe及び不純物からなる高靭性高
耐摩耗性工具鋼
(1) Cr 15-21%, C 7≦Cr%/C%≦1
High toughness and high wear resistance tool steel containing Fe and impurities at a ratio of 1.
(2)Crを15−21%、Cを7≦Cr%/C%−0
.2V%≦11の比率で含み、更に、■3.5%以下、
(W十2Mo)8%以下の1種、又は、2種以上含み、
残部Fe及び不純物からなる高靭性高耐摩耗性工具鋼。
(2) Cr 15-21%, C 7≦Cr%/C%-0
.. Contains at a ratio of 2V%≦11, and further includes ■3.5% or less,
(W12Mo) Contains 8% or less of one type, or two or more types,
High toughness and high wear resistance tool steel consisting of balance Fe and impurities.
JP9811182A 1982-06-08 1982-06-08 Tool steel of high toughness and high wear resistance Granted JPS58213856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9811182A JPS58213856A (en) 1982-06-08 1982-06-08 Tool steel of high toughness and high wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9811182A JPS58213856A (en) 1982-06-08 1982-06-08 Tool steel of high toughness and high wear resistance

Publications (2)

Publication Number Publication Date
JPS58213856A true JPS58213856A (en) 1983-12-12
JPH0478716B2 JPH0478716B2 (en) 1992-12-11

Family

ID=14211208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9811182A Granted JPS58213856A (en) 1982-06-08 1982-06-08 Tool steel of high toughness and high wear resistance

Country Status (1)

Country Link
JP (1) JPS58213856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200743A (en) * 1983-04-26 1984-11-14 Daido Steel Co Ltd Sintered alloy steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538938A (en) * 1978-09-11 1980-03-18 Mitsubishi Metal Corp Fe base sintered alloy with wear resistance
JPS55148745A (en) * 1979-05-08 1980-11-19 Mitsubishi Metal Corp Manufacture of iron type sintered alloy member
JPS57198240A (en) * 1981-05-29 1982-12-04 Sumitomo Electric Ind Ltd Manufacture of wear resistant sintered alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538938A (en) * 1978-09-11 1980-03-18 Mitsubishi Metal Corp Fe base sintered alloy with wear resistance
JPS55148745A (en) * 1979-05-08 1980-11-19 Mitsubishi Metal Corp Manufacture of iron type sintered alloy member
JPS57198240A (en) * 1981-05-29 1982-12-04 Sumitomo Electric Ind Ltd Manufacture of wear resistant sintered alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200743A (en) * 1983-04-26 1984-11-14 Daido Steel Co Ltd Sintered alloy steel
JPH0512424B2 (en) * 1983-04-26 1993-02-18 Daido Steel Co Ltd

Also Published As

Publication number Publication date
JPH0478716B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
US4943321A (en) Synchronizer ring in speed variator made of iron-base sintered alloy
KR101820036B1 (en) Lubricant-compatible copper alloy
US4985309A (en) Alloyed steel powder for powder metallurgy
JP2010280957A (en) Iron-base sintered alloy, method for producing iron-base sintered alloy, and connecting rod
JP2738999B2 (en) High wear-resistant aluminum bronze casting alloy, sliding member using the alloy
JPS63223142A (en) Fe based sintered alloy for valve seat of internal combustion engine
KR20020012609A (en) Powder metallurgy manufactured high speed steel
US5254184A (en) Corrosion resistant duplex stainless steel with improved galling resistance
JPH07179963A (en) Copper-lead alloy bearing
JPH07107183B2 (en) Wear resistant Cu alloy with high strength and toughness
JPS58213856A (en) Tool steel of high toughness and high wear resistance
US4948556A (en) Piston ring material and piston ring
US7666519B2 (en) High temperature sliding alloy
JP3442706B2 (en) Free-cutting steel
JP2005061389A (en) Piston ring for internal combustion engine
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
US2677610A (en) High temperature alloy steel and articles made therefrom
US4279650A (en) Titanium bearing addition alloys
JPS616255A (en) High hardness and high toughness nitrided powder high speed steel
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JPS616254A (en) High hardness and high toughness nitrided powder high speed steel
WO2021044869A1 (en) Iron-based pre-alloyed powder for powder metallurgy, diffusion-bonded powder for powder metallurgy, iron-based alloy powder for powder metallurgy, and sinter-forged member
JPH0441651A (en) Corrosion resisting austenitic stainless steel excellent in machinability
JPH0347952A (en) Wear-resistant ferrous sintered alloy and its production
JP2005194563A (en) High-precision die steel