JPS5821178A - Ultrasonic detector - Google Patents

Ultrasonic detector

Info

Publication number
JPS5821178A
JPS5821178A JP11962481A JP11962481A JPS5821178A JP S5821178 A JPS5821178 A JP S5821178A JP 11962481 A JP11962481 A JP 11962481A JP 11962481 A JP11962481 A JP 11962481A JP S5821178 A JPS5821178 A JP S5821178A
Authority
JP
Japan
Prior art keywords
transmission
detection
circuit
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11962481A
Other languages
Japanese (ja)
Inventor
Yasunobu Irimoto
入本 泰亘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11962481A priority Critical patent/JPS5821178A/en
Publication of JPS5821178A publication Critical patent/JPS5821178A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the frequencies of detection by performing detection with other transmitted ultrasonic waves within the period corresponding to a max. detecting distance. CONSTITUTION:A transmission signal generating and power amplifying circuit 2 is controlled by the control signal from a control circuit 7, by which various ultrasonic pulses such as short pulses for short distances, narrow band long pulses for moving targets and the like are generated at every period of fractions of integers of the time when the acoustic waves reciprocate in the max. detection distance. The pulses are transmitted from an electro-acoustic transducer 1. According to the transmission thereof, a local signal generating and demodulating circuit 4, a signal processing circuit 5, etc. are controlled by the circuit 7 and the selection of the frequencies of the local signal during processing of the received waves, etc. are performed. With such constitution, the detector deals with the states of the target without decreasing the max. detection capacity and has improved frequencies of detection.

Description

【発明の詳細な説明】 本発明は水中に音波を送出し、その反射信号を受信して
目標物の探知を行う超音波探知装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic detection device that detects a target by transmitting sound waves underwater and receiving the reflected signals.

従来、この種の超音波探知装置は第1図に示すように、
制御回路7、送信信号発生及び電力増幅回路2、送受切
替回路3、電気音響変換器1、ローカル信号発生及び復
調回路4、信号処理回路5、及び表示回路6から構成さ
れている。
Conventionally, this type of ultrasonic detection device, as shown in Figure 1,
It is comprised of a control circuit 7, a transmission signal generation and power amplification circuit 2, a transmission/reception switching circuit 3, an electroacoustic transducer 1, a local signal generation and demodulation circuit 4, a signal processing circuit 5, and a display circuit 6.

制御回路7からの制御信号によシ探知しようとする最大
探知距離(第2図(2)のX)を音波が往復するのに要
する時間(第2図(2)のT)の周期で送信信号発生回
路2において送信変調波信号(第2図(1) ’) 、
送信周波数fいパルス幅Iを発生し電力増幅回路2で増
幅した彼、送受切替回路3を通し電気音響変換器1を介
して音波を送出する。受信側においては送信周波数に対
応したローカル周波数で復調した後、周期Tごとに送信
変調波信号に応じて最適な信号処理方式に信号処理回路
5を制御回路7からの制御信号により切替へ処理をし、
その結果を表示している。
A control signal from the control circuit 7 is transmitted at a cycle of the time required for a sound wave to travel back and forth (T in Figure 2 (2)) over the maximum detection distance (X in Figure 2 (2)) to be detected. In the signal generation circuit 2, a transmission modulated wave signal (Fig. 2 (1)'),
A pulse width I with a transmission frequency f is generated, amplified by a power amplifier circuit 2, and a sound wave is transmitted through a transmission/reception switching circuit 3 and an electroacoustic transducer 1. On the receiving side, after demodulating at a local frequency corresponding to the transmission frequency, the signal processing circuit 5 is switched to the optimal signal processing method according to the transmission modulated wave signal every cycle T by a control signal from the control circuit 7. death,
The results are displayed.

運用に際しては少しでも遠くの目標物を探知することが
望まれる。たとえば、最大探知距離Xを16Kydとし
た場合周期Tは2X/〔音速〕となシ音速を1600 
yd/secとすると20秒となる。
During operation, it is desirable to detect targets as far away as possible. For example, if the maximum detection distance
If it is yd/sec, it will be 20 seconds.

したがって最大探知距離に比例して探知頻度が悪くなる
という欠点を有する。また1例として、移動目標に対し
ては狭帯域の長パルス信号を送信しドツプラ分析をして
目標を検出すること、及び停止状態に近い目標に対して
は広帯域のコード化信号を送信し相関処理をして目標を
検出することが最大の効果をえるということで一般的な
常識となっているが、この場合においても目標の状態が
不明の場合交互送受信処理全周期Tごとに行う必要があ
り探知頻度がますます悪くなるという欠点を有する。
Therefore, it has the disadvantage that the detection frequency decreases in proportion to the maximum detection distance. Another example is to transmit a narrowband long pulse signal to a moving target and perform Doppler analysis to detect the target, and to a stationary target, a wideband coded signal is transmitted and correlated. It is common knowledge that detecting the target through processing has the greatest effect, but even in this case, if the state of the target is unknown, it is necessary to perform alternate transmission/reception processing every cycle T. The disadvantage is that the detection frequency becomes increasingly poor.

本発明は、探知しようとする最大探知距離を音波が往復
するのに要する時間(第2図(2)のT)の約整数分の
1の周期ごとに異なる送信周波数で同種あるいは異種の
送信変調波信号を音波として送出し、前記時間T内に、
ローカル周波数を切替へ受信するとともに送信変調波信
号に応じて最適な信号処理方式に切替へ処理を行うとと
により上配久点を解決し、目標物の状態にかかわらず最
適な処理を行ないえると共に探知頻度を向上できるよう
にした装置を提供するものである。
The present invention is capable of modulating the same or different types of transmission at different transmission frequencies for each period that is approximately an integer fraction of the time required for a sound wave to travel back and forth over the maximum detection distance (T in Figure 2 (2)). Sending out a wave signal as a sound wave, within the time T,
By receiving the local frequency and switching to the optimal signal processing method according to the transmitted modulated wave signal, the upper distribution point can be solved and optimal processing can be performed regardless of the state of the target object. The present invention also provides a device that can improve detection frequency.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第3Mは本発明の1実施例であり、第4図は4周波の送
信変調波信号を用いて、最大探知距離を4等分し、0〜
最大探知距離の1/4の探知頻度を3倍、最大探知距離
の1/4〜2/4及び2/4〜3/4の探知頻度を2倍
、最大探知距離の3/4〜4/4の探知頻度を1倍とし
た場合の制御状態を示す。
3M is an embodiment of the present invention, and FIG. 4 shows the maximum detection distance divided into four equal parts using four-frequency transmission modulation wave signals, and the maximum detection distance is divided into four equal parts.
3 times the detection frequency at 1/4 of the maximum detection distance, 2 times the detection frequency at 1/4 to 2/4 and 2/4 to 3/4 of the maximum detection distance, 3/4 to 4/ of the maximum detection distance The control state is shown when the detection frequency of 4 is set to 1 times.

また、第5図は同じく4周波の送信変調波信号を用いて
、最大探知距離を4等分し、最大探知距離の1/4〜2
/4の探知頻度を2倍、最大探知距離の2/4〜3/4
の探知頻度を4倍、最大探知距離の3/4〜4/4の探
知頻度を2倍とした場合の制御状態を示す。
In addition, in Figure 5, the maximum detection distance is divided into four equal parts using the same 4-frequency transmission modulation wave signal, and 1/4 to 2 of the maximum detection distance is used.
/4 detection frequency doubled, 2/4 to 3/4 of maximum detection distance
The control state is shown when the detection frequency of 4 times the maximum detection distance and 2 times the detection frequency of 3/4 to 4/4 of the maximum detection distance.

以下の説明においては1実施例として、4周波の送信変
調波信号を用い、2系統の受信処理系を有する場合につ
いて説明を行う。
In the following description, as an example, a case will be described in which four-frequency transmission modulated wave signals are used and two reception processing systems are provided.

第3図において、制御回路7からの制御信号によシ、探
知しようとする最大探知距離(第4図のX)を音波が往
復するのに安する時間(第4図のT)の約整数分の1の
周期(・第4図のΔT)ごとに、イメージ信号を受信す
ることなく、lた残響成分の重々りを生じないように異
人る送信周波数(第4図のf。、 f、、 f2. f
、 )で、かつ目標物の種々な動き及び海洋の状態に対
して最適な処理を行うことにより最大の探知能力かえら
れるように、例えば浅海面及び近距離専用としては短パ
ルス信号を、移動目標に対しては狭帯域長パルス信号を
、移動速力の遅い目標に対しては広帯域コード化信号を
、といったように1程類あるいは異種類の送信変調波信
号を送信信号発生回路2で発生し電力増幅回路2で増幅
した後送受切替回w53f:通し電気音響変換器1を介
して音波を送出する。
In Fig. 3, according to the control signal from the control circuit 7, approximately an integer of the time (T in Fig. 4) for the sound wave to travel back and forth over the maximum detection distance (X in Fig. 4) to be detected. At every 1/1 period (ΔT in Figure 4), different transmission frequencies (f in Figure 4, f, f, , f2.f
, ), and by performing optimal processing for various movements of targets and ocean conditions, maximum detection capability can be achieved. The transmission signal generation circuit 2 generates one type or different types of transmission modulated wave signals, such as a narrowband long pulse signal for a target with a slow moving speed, and a wideband coded signal for a slow-moving target. Transmission/reception switching circuit w53f after being amplified by the amplifier circuit 2: The sound wave is transmitted through the electroacoustic transducer 1.

受信側においては、2系統の復調回路及びロー5− カル信号発生回路4において、前記周期T内に、制御回
路7からの制御信号によシ1実施例として第4図の(6
)、 (7)及び第5図の(5)、 (6)のようにロ
ーカル信号発生回路4のローカル周波数を切替へ復調す
ることによシ、運用要求に応じて重要度の高い領域の探
知頻度を向上して受信処理ができるという効果を有する
On the receiving side, in the two systems of demodulation circuits and the local signal generation circuit 4, within the period T, the control signal from the control circuit 7 is transmitted as shown in FIG.
), (7) and by demodulating the local frequency of the local signal generation circuit 4 to switch as shown in (5) and (6) in Figure 5, it is possible to detect areas of high importance according to operational requirements. This has the effect of increasing the frequency of reception processing.

また、信号処理回路5において、前記周期T内で、制御
回路7からの制御信号によシ送信変調波信号に対して最
適な処理をするよう信号処理回路5を切替制御すること
によシ探知頻度を劣下させることなく最大の探知能力を
えるようにすることができる。
Furthermore, in the signal processing circuit 5, within the period T, the control signal from the control circuit 7 is used to perform switching control on the signal processing circuit 5 so as to perform optimal processing on the transmitted modulated wave signal. Maximum detection capability can be achieved without degrading frequency.

超音波探知装置の非挿索の段階においては、運用上少し
でも遠くの目標物を探知したいという要望は強く、最大
探知距離を大きくとるケースが多く、この場合近距離か
ら遠距離までの探知頻度が少なくなる。また一方、水中
の音の伝播特性によシシャドーゾーンが生じ、水面近く
の目標物の場合相当遠くまで探知できるが、水中深く潜
った6一 目標物は近距離のみしか探知できないといった場面が多
い。この様な状態における初期捜索用としての1実施例
を第4図に示す。図において(1)は送信信号の周波数
f。* fI+ ’2+ f3+  パルス幅乙、送信
間隔ΔT、及び最大探知距離の周期Tの関係を示す。(
2)〜(5)はそれぞれの送信周期と、ローカル周波数
を(6)、 (7)のように切替へた場合の探知領域の
関係を示し、(6)により(2)の実線の部分の領域を
受信し、(7)により(3)、 (4)、 (5)のそ
れぞれの実線の部分の領域を受信し、近距離の探知頻度
を向上しつつ、遠距離をも捜索できるように構成した例
を示す。
At the non-interpolation stage of ultrasonic detection equipment, there is a strong desire to detect targets as far away as possible for operational reasons, and in many cases the maximum detection distance is increased, and in this case, the detection frequency from short to long distances is increased. becomes less. On the other hand, a shadow zone occurs due to the propagation characteristics of underwater sound, and while targets near the water surface can be detected over a considerable distance, there are many cases where targets deep underwater can only be detected at short distances. . FIG. 4 shows an embodiment for initial search in such a situation. In the figure, (1) is the frequency f of the transmission signal. *fI+'2+f3+ This shows the relationship among the pulse width B, the transmission interval ΔT, and the period T of the maximum detection distance. (
2) to (5) show the relationship between each transmission cycle and the detection area when the local frequency is switched as in (6) and (7). By (7), the areas indicated by the solid lines in (3), (4), and (5) are received, and the frequency of short-range detection is improved while also allowing long-distance searches. An example of the configuration is shown below.

一方、初期捜索において目標らしきものを探知した場合
及び探知目標の捕捉探知を行う場合が運用上考えられる
。この場合その探知した領域を重点的に捜索あるいは追
尾していくことが重要となる。このような場合の1実施
例を第5図に示す。
On the other hand, in terms of operation, there are cases where something that looks like a target is detected during the initial search, and where the detected target is acquired and detected. In this case, it is important to focus on searching or tracking the detected area. An example of such a case is shown in FIG.

前記と同様に、(5)により(1)と(3)の実線の部
分の領域を受信し、(6)によシ(2)と(4)の実線
の部分の領域を受信することにより、目標らしきものあ
るいは目標がいる領域の探知頻度を4倍とし、その前後
の領域の探知頻度を2倍とすることが可能と々る。
In the same way as above, by (5), the area of solid lines in (1) and (3) is received, and in (6), by receiving the area of solid lines in (2) and (4), , it is possible to quadruple the detection frequency of a target-like object or an area where the target is present, and double the detection frequency of areas before and after it.

また、(1)と(2)の送信変調波信号を広帯域コード
化信号とし、(3)と(4)を狭帯域長パルス信号とし
、(5)及び(6)のタイミングでローカル周波数がf
。及びflの時信号処理回路で相関処理を、f、及びf
、0時はドツプラ分析を行うことによシ、目標のいかな
る動きに対しても最適な処理を探知頻度を劣下させずに
行えるということになる。
In addition, the transmission modulated wave signals in (1) and (2) are wideband coded signals, (3) and (4) are narrowband length pulse signals, and the local frequency is f at the timings (5) and (6).
. and fl, the signal processing circuit performs correlation processing, f, and f
By performing Doppler analysis at 0 o'clock, it is possible to perform optimal processing for any movement of the target without reducing the detection frequency.

本発明は以上説明したように、最大探知距離に相当する
周期内で、異なる送信周波数で同種あるいは異種の送信
変調波信号を多数音波として送出し、受信側においても
最大探知距離に相当する周期内で、ローカル周波数を切
替へ受信することによシ本装置の運用及び環境条件の必
要性に応じて探知頻度を向上することができるとともに
、該周期内で送信変調波信号と最適信号処理の組合せ切
替へによシ探知頻度を劣下させることなく最大の探知能
力をえるような装置を構成できるという効果がある。
As explained above, the present invention transmits multiple transmission modulated wave signals of the same type or different types at different transmission frequencies as sound waves within a period corresponding to the maximum detection distance, and also on the receiving side within a period corresponding to the maximum detection distance. By switching the local frequency to receive the signal, the detection frequency can be increased according to the needs of the operation of this device and the environmental conditions, and the combination of the transmitted modulated wave signal and optimal signal processing within the period can be improved. This has the effect that it is possible to configure a device that achieves the maximum detection capability without reducing the detection frequency due to switching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一実施例を示すブロック図、第2図は第
1図に示した装置のタイミングを示す図、第3図は本発
明の一実施例を示すブロック図、第4図及び第5図は第
2図に示しだ一実施例のタイミングの例を示す図である
。 1・・・・・・電気音響変換器、2・・・・・・送信信
号発生及び電力増幅回路、3・・・・・・送受切替回路
、4・・・・・・ローカル信回発生及び復調回路、5・
・・・・・信号処理回路、6・・・・・・表示器、7・
・・・・・制御回路。 =9−
FIG. 1 is a block diagram showing a conventional embodiment, FIG. 2 is a diagram showing the timing of the device shown in FIG. 1, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIGS. FIG. 5 is a diagram showing an example of the timing of the embodiment shown in FIG. 1... Electro-acoustic transducer, 2... Transmission signal generation and power amplification circuit, 3... Transmission/reception switching circuit, 4... Local signal generation and Demodulation circuit, 5.
...Signal processing circuit, 6...Display device, 7.
...Control circuit. =9-

Claims (1)

【特許請求の範囲】[Claims] 音波を送出し、その反射信号を受信して目標物の探知を
行う超音波探知装置において、最大探知距離を音波が往
復するのに要する時間の約整数分の1の周期ごとに異な
る送信周波数で同種あるいは異種の送信変調波信号を発
生し、この送信信号を電力増幅した後電気音響変換器を
介して音波を送出し、受信側においては最大探知距離を
音波が往復するのに要する時間内に、単一あるいは複数
系統の復調回路で各々異った送信周波数をもつ送信信号
の送信時よシ送信周期の約整数倍遅れて送信周波数に対
応させてローカル周波数を切替へ受信するとともに送信
変調波信号に応じて予め定めた信号処理をし、この結果
を表示するように構成することを特徴とする超音波探知
装置。
In ultrasonic detection devices that detect targets by transmitting sound waves and receiving their reflected signals, the maximum detection distance is determined using different transmission frequencies at intervals of about an integer fraction of the time required for the sound waves to travel back and forth. Generates the same or different types of transmitting modulated wave signals, amplifies the power of this transmitting signal, and then sends out sound waves via an electroacoustic transducer.On the receiving side, the maximum detection distance is within the time required for the sound waves to travel back and forth. When transmitting signals with different transmission frequencies using a single or multiple demodulation circuit, the local frequency is switched to correspond to the transmission frequency with a delay of approximately an integral multiple of the transmission period, and the transmission modulated wave is received. An ultrasonic detection device characterized in that it is configured to perform predetermined signal processing according to a signal and display the results.
JP11962481A 1981-07-30 1981-07-30 Ultrasonic detector Pending JPS5821178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11962481A JPS5821178A (en) 1981-07-30 1981-07-30 Ultrasonic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11962481A JPS5821178A (en) 1981-07-30 1981-07-30 Ultrasonic detector

Publications (1)

Publication Number Publication Date
JPS5821178A true JPS5821178A (en) 1983-02-07

Family

ID=14766042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11962481A Pending JPS5821178A (en) 1981-07-30 1981-07-30 Ultrasonic detector

Country Status (1)

Country Link
JP (1) JPS5821178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203770U (en) * 1985-06-11 1986-12-22
JP2013231620A (en) * 2012-04-27 2013-11-14 Furuno Electric Co Ltd Ultrasonic wave transmitting and receiving device, method and program
JP2019124703A (en) * 2019-04-05 2019-07-25 株式会社AquaFusion Echo-sounding device and multi-beam echo-sounding device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149152A (en) * 1976-06-05 1977-12-12 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic pulse transmitting and receiving system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149152A (en) * 1976-06-05 1977-12-12 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic pulse transmitting and receiving system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203770U (en) * 1985-06-11 1986-12-22
JP2013231620A (en) * 2012-04-27 2013-11-14 Furuno Electric Co Ltd Ultrasonic wave transmitting and receiving device, method and program
JP2019124703A (en) * 2019-04-05 2019-07-25 株式会社AquaFusion Echo-sounding device and multi-beam echo-sounding device

Similar Documents

Publication Publication Date Title
GB1357329A (en) Detection apparatus
US3781773A (en) Direction sensitive doppler processor
JP2017166880A (en) Acoustic measuring device, acoustic measuring method, multi-beam acoustic measuring device, and synthetic aperture sonar
JPS5821178A (en) Ultrasonic detector
GB960849A (en) Improvements in or relating to radar systems
IE782574L (en) Determining the velocity of acoustic waves in earth¹formations
JPH0666930A (en) Radar apparatus
JP2000088942A (en) Method for discriminating left/right of bistatic sonar
JPH01207682A (en) Radar
US3555500A (en) Sonar detection system
JP2770814B2 (en) Active sonar device
JP2957712B2 (en) Ultrasonic ranging device
JPS5455198A (en) Radar apparatus
JPS6018950B2 (en) radar device
JPS6282381A (en) Sonar device
JPS63249071A (en) Pulse compression circuit in searching apparatus
JPH0395477A (en) Ultrasonic detector
JPS6329263Y2 (en)
JPS63203141A (en) Ultrasonic doppler flow speed detector
JPH10123230A (en) Static target of underwater sound
JP2573403B2 (en) Ultrasonic sensor
JP3123715B2 (en) Sonar method and system
JPH01170885A (en) Sonar device
JPH03170082A (en) Active sonar device
JPH01131476A (en) Active sonar device