JPS58208142A - Method for recovering uranium from sea water - Google Patents

Method for recovering uranium from sea water

Info

Publication number
JPS58208142A
JPS58208142A JP9099982A JP9099982A JPS58208142A JP S58208142 A JPS58208142 A JP S58208142A JP 9099982 A JP9099982 A JP 9099982A JP 9099982 A JP9099982 A JP 9099982A JP S58208142 A JPS58208142 A JP S58208142A
Authority
JP
Japan
Prior art keywords
uranium
aqueous solution
resin
contg
eluted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9099982A
Other languages
Japanese (ja)
Other versions
JPS6055448B2 (en
Inventor
Kazuhiko Sugasaka
菅坂 和彦
Shunsaku Kato
俊作 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9099982A priority Critical patent/JPS6055448B2/en
Publication of JPS58208142A publication Critical patent/JPS58208142A/en
Publication of JPS6055448B2 publication Critical patent/JPS6055448B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To economically recover uranium from sea water, by bringing an aqueous soln. of a salt of a mineral acid contg. uranium into contact with a specified chelate resin to separate the uranium. CONSTITUTION:Uranium in sea water is allowed to adsorb on an adsorbent contg. titanic acid, and the uranium is eluted with an aqueous soln. contg. a carbonate or a hydrogencarbonate. The eluate contg. uranium is brought into contact with a strongly basic anion exchange resin to allow uranium to adsorb on the resin, and the uranium is eluted with an aqueous soln. contg. a salt of a mineral acid. The soln. contg. uranium is brought into contact with a phenolic chelate resin to elute the adsorbed uranium. Each phenol ring of the phenolic chelate resin has a primary or secondary alkylamino group having one or more methylenesulfonic acid groups substituted for a part or all of the hydrogen atoms of the amino group.

Description

【発明の詳細な説明】 本発明は海水中のウランを効率的に回収する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently recovering uranium from seawater.

海水中には、ウランが炭酸ウラニルとして:5ppb1
度含まれており、このウランを回収し取1号する研究が
広く行われている。
Uranium is present in seawater as uranyl carbonate: 5ppb1
There is a lot of research going on to recover and extract this uranium.

海水中のウランを回収する方法は、通常ウランを吸着し
つる吸着剤の層に海水を通過させてウランを吸着させ、
吸着したウランを溶漉液により吸着剤から溶離させて、
溶離液中のウランをさらに濃縮し、最終的に固形ウラン
を取得するものである。
The method of recovering uranium from seawater is to pass the seawater through a layer of adsorbent that adsorbs uranium and adsorb the uranium.
The adsorbed uranium is eluted from the adsorbent using a solution,
The uranium in the eluent is further concentrated to finally obtain solid uranium.

そのような方法の一つとして、例えば、チタノ酸系の吸
着剤に海水中のウランを吸着させ、吸肩したウランを炭
酸アンモニウム水溶液で吸着剤から溶離させて1−11
1 ppm程度の譲いウラン水溶液を形成させたのち、
水溶液中の炭酸アンモニウムを除去したのち、これを#
縮して固形ウランを得る方法が提案されている。しかし
、この力を去−C1史用すり炭酸アンモニウムを水溶液
から除去するには、該水浴液(こ蒸気を通して水蒸気蒸
腎の形−CC02とNH5に分解して除去し在けJlば
ならず、その分解のだめの加熱蒸気に装するエネルキー
哨費kLが極めて大きいばかりでなく、溶離液の調製の
ためにリサイクルされる■−記分解ガス成分のアンモニ
アが吸着剤中に残留し、海水を汚染するなどの欠点があ
る。
As one such method, for example, uranium in seawater is adsorbed onto a titanoic acid adsorbent, and the adsorbed uranium is eluted from the adsorbent with an aqueous ammonium carbonate solution.
After forming an aqueous uranium solution of about 1 ppm,
After removing ammonium carbonate from the aqueous solution, this
A method to obtain solid uranium by reducing uranium has been proposed. However, in order to remove this force from the aqueous solution, it must be removed by passing the water through the water bath and decomposing it into CC02 and NH5. Not only does the amount of energy (kL) charged to the heated steam in the decomposition tank be extremely large, but also the ammonia, which is a component of the cracked gas that is recycled for the preparation of the eluent, remains in the adsorbent and contaminates seawater. There are drawbacks such as.

また、吸′L削からのウランの1容離に炭酸ソーダ水溶
液を用い、1〜10 ppm8度のウランを含有する浴
湘液をイオン交換膜による電解透析にかけてウランと炭
酸、ソーダを分離する方法も4h1案さitでいるが、
この方法も多量の電力を消費するので工又的に何利な方
法ではない。
Another method is to use a sodium carbonate aqueous solution to remove 1 volume of uranium from L absorption, and to separate the uranium, carbonic acid, and soda by subjecting the bath solution containing 1 to 10 ppm of 8 degrees of uranium to electrolytic dialysis using an ion exchange membrane. There is also a 4H1 plan, but
This method also consumes a large amount of power, so it is not technically advantageous.

本発明者は、このような実情に鑑み、海水からウランを
回収する効果的方法について鋭意研究した結果、ウラン
を含有する鉱酸塩水溶液を特定のキレート樹脂と接)払
させることにより鉱酸塩水溶液とウランとを容易に分離
しうろことを見出し、本発明に至った。
In view of these circumstances, the inventor of the present invention has conducted extensive research on an effective method for recovering uranium from seawater, and as a result, the inventors have discovered that mineral salts can be recovered by contacting a mineral salt aqueous solution containing uranium with a specific chelate resin. The inventors discovered that an aqueous solution and uranium can be easily separated from each other, leading to the present invention.

すなわち、4へ発明け、海水中のウランをチタン酸を含
有する吸着剤に吸着させ、これを炭酸塩又は炭酸R素塩
を含有する水溶液で浴シ1Fさせ、そのウラン含有C容
離液を強+H基性アニオ/交換11’J 11旨と接門
虫させてウラン金吸渚させたのち、遣〉、r戎塙含有水
溶液でウランを溶離させ、得らJまたウラン含有鉱酸塩
水溶液を、アミ7基の水素涼r−の一部又は全部がメチ
レノホスホン酸基で置侠さilだ第 級又は第二級のア
ルキルアミノ」ILをフェノール核に有するフェノール
系キレ−1・樹脂と接触させて吸着したウランを溶離さ
せることを特徴とする海水からウランを回収する方法を
提供するものである。
That is, according to the invention in Section 4, uranium in seawater is adsorbed on an adsorbent containing titanic acid, and this is bathed in an aqueous solution containing carbonate or R carbonate, and the uranium-containing C synerte liquid is After adsorbing uranium gold with strong + H-based anion/exchange 11'J 11 effect, the uranium is eluted with an aqueous solution containing R Ebisuhan, and the obtained J is also a uranium-containing mineral salt aqueous solution. is contacted with a phenolic resin having a phenol nucleus containing a secondary or secondary alkylamino compound in which part or all of the hydrogen atoms of the amide 7 group are substituted with methylenophosphonic acid groups. The present invention provides a method for recovering uranium from seawater, which is characterized by eluting adsorbed uranium.

海水中のウランは、捷ず斉陣の吸着剤7(吸もさせて捕
集されるが、本発明の方法においては、チタン酸を吸着
剤成分とするチタン酸含有吸イ、−削が使用される。こ
のチタン酸含有吸着剤は、チタン酸を含有する吸着剤で
あれ(・よ、どのようなものを用いてもよく、そのよう
な吸着剤は仕来知られた方法(例えは王化誌74148
ti (1971)、海水誌3,31υ2 (”/!j
) 、rl’)水ite、、:351 (i (’ 8
1 )、参照)で’に’! i=することができる。
Uranium in seawater is collected by adsorbing it with Saijin's adsorbent 7 without removing it, but in the method of the present invention, a titanic acid-containing adsorbent and remover containing titanic acid as an adsorbent component is used. The titanic acid-containing adsorbent may be any titanic acid-containing adsorbent. 74148
ti (1971), Seawater Journal 3, 31υ2 (”/!j
), rl') water ite,, :351 (i (' 8
1), see) 'to'! i=can be done.

吸着剤へのウランの吸着は、通常行われているカラム法
又はバッチ法のいずれかの方法で海水と吸着剤を接触さ
せることにより容易に得られる。その接触温間は、例え
ば5℃〜50℃が適当である。欠Vこ吸着剤(lこ吸着
させたウランは炭酸塩又r↓炭酸水素13Kを8有する
水溶液で溶離させるが、両と八kを含有する水溶液を用
いることもできる。そのような炭酸塩又は炭酸水素塩を
ぽ有する水溶液の濃IWは、両えば0.1〜3規定、+
1にfl 、 5〜1規軍が好ましく用いられる。まだ
、炭酸塩とL2てQす、1夕1]えば炭酸ナトリウム、
炭酸カリウム、炭酸アンモニウムなどが挙げられ、また
炭酸水素1語としては、例えば、炭酸水素ナトリウム、
炭酸水素カリウム、炭酸水素アンモニウム、などか挙げ
1)!する。これらは羊独あるいは混合し、て用いく。
Adsorption of uranium onto an adsorbent can be easily achieved by bringing seawater into contact with the adsorbent using either the commonly used column method or batch method. The appropriate contact temperature is, for example, 5°C to 50°C. The adsorbed uranium is eluted with an aqueous solution containing carbonate or hydrogen carbonate 13K, but an aqueous solution containing both and 8K can also be used. The concentrated IW of an aqueous solution containing hydrogen carbonate is, for example, 0.1 to 3N, +
1, fl, and 5 to 1 square are preferably used. Still, carbonate and L2Q, for example, sodium carbonate,
Potassium carbonate, ammonium carbonate, etc. are mentioned, and the word hydrogen carbonate includes, for example, sodium hydrogen carbonate,
Potassium bicarbonate, ammonium bicarbonate, etc.1)! do. These can be used alone or in combination.

ことができる。溶離液の温度Q1−1例えに15)℃〜
80℃が適当である。このようにして得られたウラン言
付液のウラン砲要は、通常1〜20 ppmである〇 ン交換樹脂と接触させてウランを吸着させ、塩ち4と分
離される。その接触ノJ法としては、カラム法、バッチ
法のいずれの方法も口」能である。
be able to. Temperature of eluent Q1-1 For example, 15)℃~
80°C is suitable. The uranium powder in the uranium-attached liquid thus obtained is brought into contact with a 0-n exchange resin, which usually has a concentration of 1 to 20 ppm, to adsorb uranium, and is separated from salt 4. As the contact method, both a column method and a batch method are available.

また接触温凹としては、例えは5C〜5()℃か適当で
ある。
The contact temperature may be, for example, 5C to 5()C.

これによって炭酸塩又は炭酸水素塩水溶液とウランとを
分離することができ、この分離した炭酸塩又は炭酸水素
塩水溶液は、再び前記の溶離液として用いることができ
る。
As a result, the carbonate or hydrogen carbonate aqueous solution and uranium can be separated, and the separated carbonate or hydrogen carbonate aqueous solution can be used again as the eluent.

次いで強塩基性アニオン交換樹脂に吸着17だウラ/は
、例えは0.5〜2規定の濃度の鉱酸l’ilA湾有水
溶液と接触させて溶離さ7″する。そのtうな鉱酸塩と
しては、例えt、′1.塩化ナトリウノ1、I’ilA
化カリウム、塩化アンモニウム、硫酸すトリウム、硫酸
カリウム、硫酸アンモニウムなとかノrげら7Lるが、
これら(ご限定されるものではなり・。
The 17 salts adsorbed on the strongly basic anion exchange resin are then eluted by contacting with an aqueous solution of a mineral acid having a concentration of, for example, 0.5 to 2N. For example, t, '1. Sodium chloride 1, I'ilA
There are 7L of potassium chloride, ammonium chloride, sodium sulfate, potassium sulfate, ammonium sulfate, etc.
These (not limited).

樹脂t」、一般に市販びi’+−Cいる強[晶基性イオ
ン交換樹脂を用いJlばよく、例えばダイヤイオン5A
−1OA (三菱化成社製)アンバーライトIRA〜4
00(ロームアンドハーフ社製)ン゛ウエックス−1(
ダウケミカル社製)等が挙げられるが、これらに限定さ
れるものではない。このようにして得られだ溶離液は、
通常5〜50 ppm8度のウランを含有する比較的濃
いウラン溶液が得られる。
It is sufficient to use a commercially available strong crystalline ion exchange resin such as Diamond 5A.
-1OA (manufactured by Mitsubishi Kasei) Amberlight IRA~4
00 (manufactured by ROHM & HALF) NWEX-1 (
(manufactured by Dow Chemical Company), but is not limited to these. The eluent thus obtained is
A relatively concentrated uranium solution is obtained, typically containing 5 to 50 ppm 8 degrees of uranium.

本発明の方法は、上記のようにして得られたウラン含有
鉱酸塩水溶液を、アミン基の水素原イーの一部又は全部
がメチレンホスホン酸基で置侠さノzた第−級又は第二
級のアルキルアミノ基をフェノール核Klsするdリン
フエノール系キレート樹脂と接触させて樹脂にウランを
吸着させ、これを溶離して菌濃度のウラン溶液を得るも
のである。
In the method of the present invention, the uranium-containing mineral salt aqueous solution obtained as described above is converted into a uranium-containing mineral salt aqueous solution in which part or all of the hydrogen atoms of the amine group are substituted with methylenephosphonic acid groups. A secondary alkylamino group is brought into contact with a d-phosphophenol chelate resin containing a phenol nucleus, uranium is adsorbed onto the resin, and uranium is eluted to obtain a uranium solution with a bacterial concentration.

本発明の方法に用いる上記含すンフエノール系キレート
樹IJmは、例えば次のような方法で製造することがで
きる。すなわち第−級又は第一級のアルキルアミノ基を
含有するフェノール訪導体に鉱酸の存在で、ホルノ、ア
ルデヒドと即1ノン酸を反応させ、アミン基のプロ]・
ンの 部又は全部をメチレンホスホン酸に置換させ、し
かる後、フェノール類とアルデヒド類とを反16させケ
ル化させることにより製造することができる。そのとき
に用いる第−級又は第二級のアルキルアミノ基を含有す
るフェノール誘4体としてハ、例えはテロ/ン、アンモ
ニアレゾーノ呟サリチルアミン等を挙げることができ、
鉱酸としては、頃酸1、硫酸等を挙げることができる。
The above-mentioned phenol-based chelate tree IJm used in the method of the present invention can be produced, for example, by the following method. That is, in the presence of a mineral acid, a phenol visiting conductor containing a primary or primary alkylamino group is reacted with a forno-aldehyde and a non-monoacid to form a amine group.
It can be produced by substituting part or all of the compound with methylenephosphonic acid, and then reacting phenols and aldehydes to form a keloid. Examples of the phenol derivatives containing a primary or secondary alkylamino group used at that time include teloamine, ammonia resonant salicylamine, etc.
Examples of mineral acids include chlorine acid 1, sulfuric acid, and the like.

i タフ xノール類としては、フェノール、レゾル/
ノ等を挙げることができ、アルデヒド類としては、ホル
ムアルデヒド、アセトアルデヒドが好ましい。まだ、本
発明に用いられる含リンフエノール系キレート樹脂の形
状は、好ましくは、粒状か用いられるが、繊維状、板状
等いがなる形状でもよい。
i Tough x Nols include phenol, resol/
Examples of the aldehydes include formaldehyde and acetaldehyde. The shape of the phosphophenol-containing chelate resin used in the present invention is preferably granular, but it may also be fibrous, plate-like, or any other shape.

このような特定の含リンフエノール系キレ−[・n4 
l″FTと;)II記ウつン劃側、1〔、酸1品、・N
、外I良との接に・Rは、カラム法、バッチ法のいすお
の方法を採用することもでき、まだ、接触温度としては
5℃〜50℃が適当である。
Such specific phosphor-containing phenol-[・n4
l″FT and ;) II entry side, 1 [, 1 item of acid, ・N
For the contact with the outside Iryo, a column method or a batch method can be employed, and the contact temperature is still preferably 5°C to 50°C.

このようにしてウランをキレート樹脂に吸着させて、鉱
酸塩水溶液とウランとを分離することができ、この鉱酸
塩水溶液は再び前記の溶離液として1月いることができ
る。−次いで含すンフエノール糸キレ−) 泣:I脂に
吸着したウランは、例えば0.3〜2規定の炭酸塩又は
/及び炭酸水素塩を含有する水溶液と接触させて容易に
溶離させることができる。その接触方法としては、カラ
ム法、バッチ法のいづれの方法も可能である。また、接
咽!1晶要としては5℃〜50℃が適当である。このよ
うにして得られた溶離液のウラン#度は2000〜20
 、 O(10ppmとなり、非常に尚濃度のウラン溶
液が得られる。
In this way, uranium can be adsorbed onto the chelate resin, and the mineral salt aqueous solution and uranium can be separated, and this mineral salt aqueous solution can be used again as the eluent. The uranium adsorbed on the fat can be easily eluted by contacting it with an aqueous solution containing, for example, 0.3 to 2N carbonate and/or hydrogen carbonate. . The contact method may be either a column method or a batch method. Also, pharynx! A suitable temperature for the first crystal is 5°C to 50°C. The uranium degree of the eluent obtained in this way is 2000 to 20
, O (10 ppm), resulting in a very concentrated uranium solution.

かくして得られた菌濃度ウラン含有溶液は、公知の技術
である例えば沈殿法などを適用して効率よく固形ウラン
として得ることができる。
The bacteria-concentrated uranium-containing solution thus obtained can be efficiently obtained as solid uranium by applying a known technique such as a precipitation method.

本発明は チタン酸言有吸着剤を用いて吸石させた海水
中のウランを強塩基性アニオン文侠1ケ1脂及び含すン
フエノール系キレート樹)]IIを吸層剤として組み合
わせて順次吸着−溶離処141!することにより、極め
て効率よく海水中のウランを回収する方法を提案するも
ので、吸着ウランを溶隔させる溶離剤ないし溶離4す水
@液は、本′に、F!I]の組み合わせ処理においては
、すべてリリーイクルして実質的に光全に系内で有効、
:Sl1月jさ、!するりで 本発明の方法は従来知ら
れた各科の(11y水中のウランの回収法に比べて、環
境汚染の恐(1も、まだ無県°なエネルギーのt自費も
なく、?l+j4ζ甲のウランを極めて効果的に回収し
うる[菜tl’J Iこ埴ましいものである。
The present invention sequentially adsorbs uranium in seawater that has been adsorbed using a titanium acid adsorbent in combination with a strongly basic anionic chelate resin and a phenol-based chelate resin (II) as a layer absorbent. -Elution treatment 141! This paper proposes a highly efficient method for recovering uranium from seawater by using the eluent or eluent that separates the adsorbed uranium. In the combination treatment of [I], all of the light is released and is effectively used in the system,
:SLJanuary jsa! Compared to the conventionally known methods for recovering uranium in water, the method of the present invention has the advantage of reducing the risk of environmental pollution (1) and the cost of energy, which is still unknown. uranium can be recovered very effectively.

以下、実施例及び蓚考例により、本発明の慣留金さらに
詳細に祝明する。
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples and Examples.

参考例1 重合if 5 (10〜100万のポリアクリルアミド
と80%ヒドラジン水溶液とを反応させてイ!tられる
5係ポリアクリル酸ヒドラジド(以ドPAHと略す) 
’i−、チタンM a’ jイG”Ml”L−た、古1
−十炭2ooy(c加えて約l:j混合+11シ、65
CL、/)温1′Wで水分率が30係になる捷−C乾燥
(た。この塊状物を乳鉢を用いて粉砕したのち、ふるい
分けを行い、チタン酸をa有する粒状吸着削を製造した
Reference Example 1 Polymerization if 5 (5-functional polyacrylic acid hydrazide (hereinafter abbreviated as PAH) produced by reacting 100,000 to 1,000,000 polyacrylamide and 80% hydrazine aqueous solution)
'i-, titanium M a'jIG"Ml"L-ta, old 1
- Jucharo 2ooy (c plus about 1:j mixture + 11 shi, 65
CL, /) Dry with a sieve-C to give a moisture content of 30 at a temperature of 1'W. After pulverizing this lump in a mortar, it was sieved to produce a granular suction abrasion containing titanic acid. .

酸水溶液に溶解させて、かきませながら加熱還流させ、
i:fN;(37受ホルマリン水溶液6モルを1時間か
かつてi1M] ’) シた。滴下終了後さらにかきま
ぜながら1時間磁流させた。次いで、室温に冷却した後
、力性ソーダを加えて、pHI +のアルカリ性をこし
、/こ。この液に、レゾル7ン1.5モル、:37係ポ
ルマリ75モルを加工、カきまぜながら、さらにn−パ
ラフィンを加えた。
Dissolve in an acid aqueous solution and heat to reflux while stirring.
i: fN; (6 mol of formalin aqueous solution was added to i1M for 1 hour) '). After the dropping was completed, magnetic current was applied for 1 hour while stirring. Then, after cooling to room temperature, add sodium hydroxide to strain the pHI + alkalinity. To this liquid, 1.5 mol of Resol 7 and 75 mol of Polymer:37 were processed and, while stirring, n-paraffin was further added.

次いで、これをかさ唸ぜながら、60℃で1時間、80
℃で1時間、90℃で1時間順次加熱すると、内容物は
粒状に固化を始めた。しかる後、オートクレーブに内容
物を移し、120℃の温度で5時間反応させて、ゲル化
金光了させた。
Next, this was heated at 60°C for 1 hour at 80°C while shaking.
After successively heating at 90°C for 1 hour and 1 hour at 90°C, the contents began to solidify into granules. Thereafter, the contents were transferred to an autoclave and reacted at a temperature of 120° C. for 5 hours to complete gelation.

こうして?4)られた粒状の樹脂をろ過により(1’4
^(しし、風乾、水洗後、l NH2SO4溶液に浸よ
きし、樹脂をNa型からH型に変換させた。こ〕Lをろ
別してビーズ伏の含すンノエノ、−ル系ギレ−1・樹脂
を得た。
thus? 4) The resulting granular resin was filtered (1'4
(After drying in the air and washing with water, the resin was soaked in 1 NH2SO4 solution to convert the resin from the Na type to the H type.) The L was filtered out and the resin contained in the beads was filtered out. Resin was obtained.

実施例1 参考例1で得たチタン酸を含有する吸眉削2.5tを2
5011IIIIψ×200間のカラムにつめ、温1に
25℃で海水(ウランtriは3ppb ) 60m″
を通液した。そのときの通液法IWは、S、V、(窒間
速’K ) l[]01/hrであった。しかる後、と
の′リラムに0.5N炭酸水素ナトリウム−0,5N炭
酸ナトリウム水溶液25tをS、V、 31/hr 、
温度60℃で通液し、tit脂に吸着されていたウラン
を溶離した。この溶離液のウラン濃度は;フ、5ppH
1であった(この液をAHとする)。
Example 1 2.5 tons of the titanic acid-containing eyebrow shaver obtained in Reference Example 1 were
Pack into a column between 5011IIIψ×200 and seawater (uranium tri: 3ppb) at 1 to 25℃ for 60 m''
The liquid was passed through it. The liquid passing method IW at that time was S, V, (nitrogen velocity 'K) l[]01/hr. After that, 25 tons of 0.5N sodium bicarbonate-0.5N sodium carbonate aqueous solution was added to the lirum at S, V, 31/hr,
A liquid was passed through the solution at a temperature of 60° C. to elute the uranium adsorbed on the tit fat. The uranium concentration of this eluent is;
1 (this liquid is referred to as AH).

次に強塩梧性イオン交換樹脂5A−10A(三菱化成社
4)s、5tを100mmψX 500 rmのカラム
につめ温度25℃でA液251を通液した。
Next, a strong ion exchange resin 5A-10A (Mitsubishi Kasei Co., Ltd. 4), 5t, was packed in a 100 mm ψ x 500 rm column, and liquid A 251 was passed through the column at a temperature of 25°C.

その時の通e、($度はS、 V、5 ”/hrであっ
たっ(通液後のカラl、から出てくる((kをB液とす
る)しかる後、このカラノ、に6憑塩化カトリウム水溶
?& t o tをS、V、 2 ’/hr、 fli
、hJ 25℃で通7夜し樹脂に吸着されていたウラン
を溶離するとUを18ppu++1有する6%塩化ナト
リウム水溶液4t(この液をC液とする)とUを2.5
ppm含有する6チ塩化ナトリウム6t(この液をC′
液とする)と゛が得られた。
At that time, the liquid e, ($ degree was S, V, 5''/hr) (after passing the liquid, the liquid came out from the liquid l) ((K is liquid B) After that, six possessions were added to this carano. Soluble potassium chloride?&t to S, V, 2'/hr, fli
, hJ When the uranium adsorbed on the resin was eluted at 25°C for 7 nights, 4 tons of a 6% sodium chloride aqueous solution containing 18 ppu++1 U (this solution will be referred to as solution C) and 2.5 t of U were added.
ppm containing 6t of sodium chloride (this solution was converted to C'
liquid) and ゛ were obtained.

次に参、4例2で得7/こ含リンフエノール系キレート
樹脂10 ccを10闘ψ×50闘のカラムに詰め、前
記C液4tを、S、V、、 3 ’/hr、  25℃
で通液した。(通液後のカラムから出てくる液をD液と
する) しかる級、1N炭Mk素ナトリウム水溶液71) cc
をS、V、 2 ’/llr、温度25℃で通液し、 
Next, 10 cc of the phosphorus phenol chelate resin obtained in Example 4 was packed into a 10 mm x 50 mm column, and 4 t of the liquid C was heated at S, V, 3'/hr, 25°C.
The liquid was passed through. (The liquid that comes out of the column after passing through the column is called liquid D.) 1N sodium carbonate aqueous solution 71) cc
S, V, 2'/llr, and a temperature of 25°C.
.

樹脂に吸着されたウランを溶離した。この溶離液のウラ
ン濃]Wは、5000 ppmと非常に高く、HClで
中和したのちアンモニヤ水を加えることにより、重ウラ
ンrl?−7”ンモニウム(イエローケーキ)としてウ
ランを固形物として回収することができた。
The uranium adsorbed on the resin was eluted. The uranium concentration] W of this eluent was extremely high at 5000 ppm, and by neutralizing it with HCl and adding aqueous ammonia, heavy uranium rl? It was possible to recover uranium as a solid substance as −7” ammonium (yellow cake).

一方、ウランを脱着したテタ/酸型吸着削2.5tに再
び海水60m3を通液した。そのときの通液法IWはS
 、V、 100 ”/br、温度は25℃であった。
On the other hand, 60 m3 of seawater was again passed through the 2.5 ton Teta/acid suction grinder from which uranium had been desorbed. At that time, the liquid passing method IW is S
, V, 100''/br, and temperature was 25°C.

しかる後、[二記B液251をS、V、1’/hr、温
度25℃で通液し樹脂に1吸着さitていたウランを溶
離した。この溶離液のウラ/a11は:4.4ppmで
あった。(この液をD液とする。)次に前記の実験でウ
ランを溶離した強塩基性イオン交換用11fSA−10
AVcE液251をs、v。
After that, liquid B 251 was passed through the resin at S, V, 1'/hr, and temperature of 25° C. to elute the uranium that had been adsorbed to the resin. Ura/a11 of this eluent was: 4.4 ppm. (This liquid is referred to as liquid D.) Next, use 11fSA-10 for strong basic ion exchange from which uranium was eluted in the above experiment.
AVcE solution 251 s, v.

5 ’/hr、温度25℃で通液した。しかる後、この
ウランを吸着した強塩基性イオン交換・1酊脂5A−1
0Ai/CD液41 (!I1. C’* 6 t ’
f:混合り、Cm欣した。この溶離操作でUを22 p
pm含有する食塩水溶液4tを得だ(この液をF液とす
る。)次に前記の実験でウランを溶離した含り/フェノ
ール系キレート樹AViBs液4tをS、V、 21/
hr、温[25℃で通液した。しかる後IN炭酸水素ナ
トリウム水溶液70 ccをS −V −2”/h r
 −。
The liquid was passed at a rate of 5'/hr and a temperature of 25°C. After that, strongly basic ion exchange 1 roux 5A-1 which adsorbed this uranium
0Ai/CD liquid 41 (!I1. C'* 6 t'
f: Mixed and mixed. This elution procedure removes 22p of U.
4 t of a saline solution containing pm was obtained (this solution is referred to as solution F).Next, 4 t of the phenolic chelate tree AViBs solution from which uranium was eluted in the above experiment was mixed with S, V, 21/
hr, and the solution was passed at a temperature of 25°C. After that, 70 cc of IN sodium hydrogen carbonate aqueous solution was added to S -V -2"/hr.
−.

温親25℃で血液し樹脂に吸着されたウランを溶離した
。この后141F液のウシ7・濃度は5000p’pm
と高く沈殿法により11−4”、収率でウランを固形分
とし2て回収することができた。
The blood was heated at 25°C and the uranium adsorbed on the resin was eluted. After this, the concentration of Cow 7 in the 141F liquid was 5000 p'pm.
By the precipitation method, we were able to recover uranium as a solid content with a yield of 11-4''.

比較例1 市販のギレ−1・位月財であるダイアイオンOR−10
(三菱fヒ成社製)ユニセレソク■UR−50(ユニチ
カit製)、ダウエックスA−1(ダウケミカル社製)
を、各々l OccづつIQIIIWφX5(Jmmの
カラムに詰め実施例1で得られたC液4tをS、V、 
5 ’/hr、温度25℃で通液したが、A液中のウラ
ンの−F記樹脂への吸着効率は非常に悪く、aリンフエ
ノール系キレート樹脂の場ひと同じように脱離しても溶
離液のウラン濃度は5(lfi ppm以ドであった。
Comparative Example 1 Diaion OR-10, a commercially available Gire-1/Igetsu product
(manufactured by Mitsubishi F-Hisei Co., Ltd.) UNISERESOKU UR-50 (manufactured by Unitika IT), DOWEX A-1 (manufactured by Dow Chemical Company)
were packed in a column of IQIIIWφX5 (Jmm) in 1 Occ each, and 4t of C solution obtained in Example 1 was added to S, V,
Although the solution was passed for 5'/hr at a temperature of 25°C, the adsorption efficiency of uranium in solution A to the -F resin was very poor, and even if it was desorbed in the same way as in the case of a-phosphorus phenol chelate resin, it could not be eluted. The uranium concentration of the liquid was less than 5 (lfi ppm).

Claims (1)

【特許請求の範囲】[Claims] ■ 海水中のウランをチタン酸を含有する吸着剤に吸着
させ、これを炭酸塩又は炭酸水素塩を含有する水溶液で
溶離させ、そのウラン含有溶離液を強塩基性アニオン交
換樹脂と接触させてウランを吸着させたのち、鉱酸塩含
有水溶液でウランを溶離させ、得られたウラン含有鉱酸
塩水溶液を、アミン基の水素原子の一部又は全部がメチ
レンホスホン酸基で置換された第一・級又は第二級のア
ルキルアミノ基をフェノール核に有するフェノール系キ
レート樹脂と接触させて吸着したウランを溶離させるこ
とを4¥敵とする海水からウランを回収する方法。
■ Uranium in seawater is adsorbed onto an adsorbent containing titanic acid, eluted with an aqueous solution containing carbonate or bicarbonate, and the uranium-containing eluate is contacted with a strongly basic anion exchange resin to remove uranium. After adsorbing uranium, uranium is eluted with an aqueous solution containing a mineral salt, and the obtained aqueous solution of a mineral salt containing uranium is mixed with a primary amine group in which some or all of the hydrogen atoms of the amine group are substituted with methylene phosphonic acid groups. A method for recovering uranium from seawater that involves contacting with a phenolic chelate resin having a class or secondary alkylamino group in the phenol core to elute the adsorbed uranium.
JP9099982A 1982-05-26 1982-05-26 How to recover uranium from seawater Expired JPS6055448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9099982A JPS6055448B2 (en) 1982-05-26 1982-05-26 How to recover uranium from seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9099982A JPS6055448B2 (en) 1982-05-26 1982-05-26 How to recover uranium from seawater

Publications (2)

Publication Number Publication Date
JPS58208142A true JPS58208142A (en) 1983-12-03
JPS6055448B2 JPS6055448B2 (en) 1985-12-05

Family

ID=14014189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9099982A Expired JPS6055448B2 (en) 1982-05-26 1982-05-26 How to recover uranium from seawater

Country Status (1)

Country Link
JP (1) JPS6055448B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015413A1 (en) 2009-03-27 2010-09-30 B.P.S. Engineering Gesellschaft für Umwelt und Automatisierungstechnik mbH Adsorbent to remove heavy metals from contaminated water, comprises mesoporous material with homogeneous distribution containing metal oxides and high-molecular cationic polymers, which contain quaternary ammonium and/or phosphonium groups
DE102011009223A1 (en) 2011-01-13 2012-07-19 Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V. Multifunctional composite material, useful e.g. as an adsorbent for removing heavy metal ions from contaminated waste water comprises a solid magnesium ammonium phosphate and homogeneously dispersed titania nanoparticle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187735U (en) * 1984-05-24 1985-12-12 株式会社 アルプス科学貿易 needle cover
JPH01178264A (en) * 1988-01-07 1989-07-14 Bunfu Kaku Syringe
JPH0724341U (en) * 1993-10-19 1995-05-09 正富 ▲吉▼永 Storage container for injection needles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015413A1 (en) 2009-03-27 2010-09-30 B.P.S. Engineering Gesellschaft für Umwelt und Automatisierungstechnik mbH Adsorbent to remove heavy metals from contaminated water, comprises mesoporous material with homogeneous distribution containing metal oxides and high-molecular cationic polymers, which contain quaternary ammonium and/or phosphonium groups
DE102011009223A1 (en) 2011-01-13 2012-07-19 Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V. Multifunctional composite material, useful e.g. as an adsorbent for removing heavy metal ions from contaminated waste water comprises a solid magnesium ammonium phosphate and homogeneously dispersed titania nanoparticle

Also Published As

Publication number Publication date
JPS6055448B2 (en) 1985-12-05

Similar Documents

Publication Publication Date Title
JPS59162108A (en) Washing of solution of sulfuric acid
JPS60139656A (en) Production of lysine
JPH0125818B2 (en)
JPS58208142A (en) Method for recovering uranium from sea water
JP3062448B2 (en) Separation and recovery method of uranium and impurities using chelating resin
JP3373512B2 (en) Production of alkali metal carbonate
JPS5842737A (en) Recovering method for gallium
US4154801A (en) Process for purifying alkali metal hydroxide or carbonate solutions
JPS5912400A (en) Radioactive liquid waste treating process
JPS59118735A (en) Manufacture of pure aqueous solution of l-malic acid
US2863717A (en) Recovery of uranium values from copper-bearing solutions
JPH0143594B2 (en)
JPS62213893A (en) Method of treating waste water containing hydroxylamine or salt thereof
IE58830B1 (en) Recovery of gallium
JPH05253569A (en) Recovery of volatile acids
JPS6280237A (en) Method for concentrating and separating gallium in water
JPH07206804A (en) Purification of taurine
JPH11503146A (en) Method for producing monosodium glutamate
US2884310A (en) Production of alkali metal hydroxides by ion exchange
JPH0218906B2 (en)
JPS647010B2 (en)
JPS6349734B2 (en)
JPH0346177B2 (en)
JPS62283994A (en) Method for purifying glutathione
JPH04321514A (en) Method for removing sulfate ion from aqueous solution of alkali metallic chloride