JPS5820733A - Preparation of extremely small iron oxide not in needle state - Google Patents

Preparation of extremely small iron oxide not in needle state

Info

Publication number
JPS5820733A
JPS5820733A JP56118612A JP11861281A JPS5820733A JP S5820733 A JPS5820733 A JP S5820733A JP 56118612 A JP56118612 A JP 56118612A JP 11861281 A JP11861281 A JP 11861281A JP S5820733 A JPS5820733 A JP S5820733A
Authority
JP
Japan
Prior art keywords
particles
extremely small
washing
water
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56118612A
Other languages
Japanese (ja)
Other versions
JPH0247410B2 (en
Inventor
Kinya Ueno
欽也 上野
Shintaro Suzuki
鈴木 新太郎
Yuichi Omote
雄一 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP56118612A priority Critical patent/JPS5820733A/en
Publication of JPS5820733A publication Critical patent/JPS5820733A/en
Publication of JPH0247410B2 publication Critical patent/JPH0247410B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare extremely small alpha-Fe2O3 not in needle state not requiring the washing of particles, by washing a water dispersion of lepidocrosite with water until the wash liquid is made into a given pH, followed by subjecting the dispersion to hydrothermal reaction at a fixed temperature. CONSTITUTION:Lepidocrosite of relatively large particles is washed with water until the pH of the wash liquid is made 6-8, so that unnecessary ions contained in it are removed. Lepidocrosite thus washed with water is dispersed into water to make a proper slurry concentration. The slurry with a pH of the aqueous phase of 5-9 is subjected to hydrothermal reaction at >=100 deg.C. Consequently, extremely small alpha-Fe2O3 not in needle state not requiring the washing of particles is obtained.

Description

【発明の詳細な説明】 本発明は極めて微小な非針状の鉄酸化物(α−Fe20
3)の製造方法に関する。さらに詳細には、洗液のpl
(が6〜8になるまで洗浄したレピドクる極めて微小な
鉄化合物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to extremely fine non-acicular iron oxide (α-Fe20
3) relates to the manufacturing method. More specifically, the washing liquid pl
(Relates to a method for producing extremely fine iron compounds that have been washed until they become 6 to 8.)

微小な酸化鉄粒子は、顔料用、研磨材用、電磁気材料用
等として有用である。例えば、弁柄顔料(α−Fe20
3 )を分類すると、一般的には黄系統、赤系統、紫系
統になるが、その色相変化は一般に粒子の大きさによっ
て決まることが認められており、微小(0,5μ前後)
では、黄日系であり、粒子寸法が大きくなるに従って赤
口系(0,7μ前後)を経て、衆口系(1〜2μ前後)
になると言われている。そして従来は、顔料の粒子寸法
が小さくなるほど(すなわち黄日系製品を製造する場合
はど)、繁雑な手順と工程とを経て長時間にわたる処理
を必要とし、かつ製品収率も低かった。故に弁柄顔料製
造において、微小酸化鉄が容易にしかも収率良く得られ
ることは、工業上極めて有意義であり、また新たな技術
的発展をもたらすものである。黄日系顔料粒子よりもさ
らに微小(約0.1μより小)になると、可視光線を通
過させるが紫外線を通過させ難い透明弁柄顔料となり、
特殊顔料としての用途も生じ、その有用性を増大する。
Fine iron oxide particles are useful for pigments, abrasive materials, electromagnetic materials, etc. For example, Bengara pigment (α-Fe20
3) are generally classified into yellow, red, and purple, but it is generally accepted that the hue change is determined by the particle size, and it is recognized that the change in hue is determined by the size of the particles, and it is said that the change in hue is determined by the size of the particles.
In this case, it is yellow day type, and as the particle size becomes larger, it passes through red mouth type (around 0.7 μ), and then becomes shokuchi type (around 1 to 2 μ).
It is said that it will become Conventionally, the smaller the particle size of the pigment (i.e., when manufacturing a yellow-skinned product), the more complicated procedures and processes were required, the longer the processing time, and the lower the product yield. Therefore, in the production of Bengara pigments, it is extremely significant industrially that minute iron oxides can be obtained easily and in good yields, and also brings about new technological developments. When the particles become even smaller than the yellow pigment particles (less than about 0.1μ), they become transparent Bengara pigments that allow visible light to pass through but do not allow ultraviolet light to pass through.
Applications as specialty pigments also arise, increasing its usefulness.

またフェライトを製造する場合、普通は酸化鉄とZn 
、 Mn 、 Ba等の二価金属の酸化物もしくは炭酸
塩とを、高温度で固体反応させるが、そのような固体反
応の容易性を考慮して、その原料酸化鉄として微小酸化
鉄が望まれている。
Also, when manufacturing ferrite, iron oxide and Zn are usually used.
, Mn, Ba, and other divalent metal oxides or carbonates are subjected to a solid-state reaction at high temperatures. Considering the ease of such a solid-state reaction, microscopic iron oxide is desired as the raw material iron oxide. ing.

従来、微小な鉄酸化物の製造方法としては、既にいくつ
かの方法が提案、報告され、例えば(1)アルカリ水溶
液と第一鉄塩を含む水溶液の中和反応時にリン酸イオン
を共存させて酸化反応を行わせる方法、(11)一旦、
微細な針状第二鉄水和物(主としてα−またはγ−F 
eoOH等)を製造し、それを加熱脱水I−て微小な鉄
酸化物とする方法、(i*i)第二鉄化物の水溶液を用
い、中和反応後、過冷却するかオートクレーブ中で加圧
、加熱処理して鉄酸化物を得る方法等がある。これらの
従来法においては、共通的に、得られる生成物スラリー
中に望ましくない不要のイオンが存在するので、これを
除くため生成微小粒子を濾過し、不要のイオンが除、1
゜ 去されるまで洗浄を行う1籾が必要である。ところが粒
子が非常に微小であるため、この不要イオン除去のため
の工程に要する作業および時間は莫大なものとなり、実
際の工業的操作における最大の問題点として、この洗浄
困難性が挙げられている。また従来の方法においては、
沈澱生成時に粒子が微小であっても、粒径が不揃い(粒
度分布が広い)であったり、その後の製品化過程(特に
乾燥、焼成工程)における加熱によって粒子の二次成長
による粗大化が起こり易いなどの欠点がある。
Conventionally, several methods have already been proposed and reported as methods for producing minute iron oxides. A method for carrying out an oxidation reaction, (11) once,
Fine acicular ferric hydrates (mainly α- or γ-F
(i*i) Using an aqueous solution of ferric oxide, after neutralization reaction, supercooling or adding in an autoclave. There are methods of obtaining iron oxide by pressure and heat treatment. In these conventional methods, undesirable and unnecessary ions are commonly present in the resulting product slurry, so in order to remove these, the generated microparticles are filtered, and the unnecessary ions are removed.
One paddy is required to be washed until it is removed. However, since the particles are extremely small, the amount of work and time required for the process of removing unnecessary ions is enormous, and the difficulty of cleaning is cited as the biggest problem in actual industrial operations. . In addition, in the conventional method,
Even if the particles are microscopic at the time of precipitate formation, the particle size may be uneven (wide particle size distribution), or the particles may become coarse due to secondary growth due to heating during the subsequent product manufacturing process (especially drying and calcination processes). There are drawbacks such as being easy to use.

本発明は、従来法におけるこれらの諸問題を解決し、か
つ前記要求を満す新規な鉄酸化物の製造方法を提供する
ものである。従って本発明は、レビトゝクロサイサイト
を水中に分散させたスラリーをオートクレーブ中で一定
の条件下で水熱反応処理に付すことにより、粒径が極め
て均一であり、分散性が良好な、X線回折上主としてα
型三二酸化鉄からなる微小な非針状鉄化合物を得ること
を可能とし、しかもその後の製品化において従来法の洗
浄工程等の繁雑な作業を省けるという顕著な効果をもた
らす方法である。
The present invention solves these problems in the conventional methods and provides a novel method for producing iron oxide that satisfies the above requirements. Therefore, in the present invention, by subjecting a slurry in which levitocrocysite is dispersed in water to a hydrothermal reaction treatment under certain conditions in an autoclave, X-ray particles with extremely uniform particle size and good dispersibility are produced. Diffractionally mainly α
This method makes it possible to obtain a minute non-acicular iron compound consisting of iron sesquioxide, and has the remarkable effect of omitting the complicated work such as the washing step of the conventional method in subsequent commercialization.

従来の製造方法のように、原料たる酸化鉄またはオキシ
水酸化鉄の段階で、すなわち初めから、微小粒子を製造
し、それから製品としての微小粒子を得るために濾過、
洗浄しようとすると、その作業には非常な困難が伴なう
As in the conventional production method, microparticles are produced at the stage of iron oxide or iron oxyhydroxide as a raw material, that is, from the beginning, and then filtration is performed to obtain microparticles as a product.
If you try to clean it, the task is very difficult.

本発明方法の出発原料であるレピドクロサイトは針状で
あり、長軸が約2μと比較的大きい寸法であるため、こ
のような粒子の洗浄は容易である。
Since lepidocrocite, which is the starting material for the method of the present invention, is acicular and relatively large in size, with a long axis of approximately 2 μm, such particles are easy to clean.

従ってこの洗浄容易な出発原料レピドクロサイトを充分
に洗浄して不要なイオンを除去しておけば、生成物であ
る微小粒子の困難な洗浄が不要であるという大きな利点
がある。
Therefore, if this easy-to-clean starting material, lepidocrocite, is thoroughly washed to remove unnecessary ions, there is a great advantage that difficult washing of the product, microparticles, is not necessary.

また従来のα型三二酸化鉄の製造法においては、焼成工
程が含まれ、この焼成工程で粒子は成長を起こし、必ず
粗大化した粒子になるのに対し、本発明の方法にはかか
る焼成工程は含まれないから粒子の粗大化がな(、かつ
驚(べきことには原料γ−FeO○Hが比較的大きい(
長軸約2μ)にもかかわらず生成する鉄酸化物が極めて
微小(0,1μ以下)になる。
In addition, in the conventional production method of α-type iron sesquioxide, a firing step is included, and in this firing step, the particles grow and become coarse particles, whereas the method of the present invention involves a firing step. Because it does not contain particles, the particles do not become coarse (and surprisingly, the raw material γ-FeO○H is relatively large (
Although the long axis is about 2μ), the produced iron oxide is extremely small (less than 0.1μ).

本発明を実施するのに好的な条件は以下に述べる通りで
ある。
Conditions suitable for carrying out the invention are as described below.

原料レビビクロサイトの洗浄は充分であるほど良(、一
般には洗液のpHが6〜8、好ましくはほぼ7になるま
で洗浄を行う。このように洗浄したレビドクロサイトを
本願発明に適当なスラリー濃度(以下に述べる)にした
ときにその水相のpHは5〜9の範囲になることが認め
られる。
The more thoroughly the raw material lebidocrosite is washed, the better (in general, the washing is carried out until the pH of the washing solution reaches 6 to 8, preferably approximately 7. The lebidocrosite thus washed is suitable for the present invention). It is observed that the pH of the aqueous phase ranges from 5 to 9 when the slurry concentration (described below) is achieved.

原料レピドクロサイトの洗浄が不充分で不要な不純物イ
オン除去が不充分であると、本発明の最大の利点である
「微小生成物粒子の洗浄が不要であること」の効果が低
くなる。レピドクロサイトのスラリー濃度は、約1g凶
ないし約10CHj/lが適当である。スラリー濃度が
低いと反応後の濾過処理が手間どったり、設備が大型化
する等の経済的不利益があり、他方スラリー濃度が高す
ぎると粘度が高く、取扱い難く、また熱伝導が均一でな
く、製品の不均質化を招くことがある。水熱反応処理の
温度は100℃以上、望ましくは150℃ないしろ00
℃である。100℃以下ではレビトゝクロサイトがα型
三二酸化鉄に変化せず、また余り高温度で処理するのは
経済的に不利であり望ましくない。処理時間は約10分
間程度でよいが望ましくはろ0分程度であり、それより
もやや長い時間を使用することもできる。
If the raw material lepidocrocite is insufficiently washed and the removal of unnecessary impurity ions is insufficient, the greatest advantage of the present invention, ``no need to wash microscopic product particles,'' will be less effective. The appropriate slurry concentration of lepidocrocite is about 1 g to about 10 CHj/l. If the slurry concentration is too low, there will be economic disadvantages such as tedious filtration after the reaction and increased equipment size.On the other hand, if the slurry concentration is too high, the viscosity will be high, making it difficult to handle, and heat conduction will be uneven. , may lead to non-uniformity of the product. The temperature of the hydrothermal reaction treatment is 100°C or higher, preferably 150°C to 0.00°C.
It is ℃. At temperatures below 100°C, levitochrosite does not change to α-type iron sesquioxide, and treatment at too high a temperature is economically disadvantageous and undesirable. The treatment time may be about 10 minutes, preferably about 0 minutes, but a slightly longer time can also be used.

以下本発明のいくつかの実施例およびいくつかの比較例
を記載する。ここで用いたレビドクロサイトは以下のよ
うに調製した。
Some examples of the present invention and some comparative examples will be described below. The lebidocrosite used here was prepared as follows.

塩化第一鉄FeC#2(12,0モル’ )を純水(1
50ぎ)に溶解し、これを3001溶の反応容器に仕込
んだ。窒素を1001/f+ の速度で導入しなから液
温を約25℃に調整してから溶液を攪拌しながら、Na
OH水溶液(120モルNaOH,44水751)を1
0分間にわたって添加し、さらに攪拌を1時間継続した
。次いで窒素導入を停止し、空気を100d/分の速度
で導入すると、約2時間でpHが約6.5に低下し、オ
レンジ色の芽晶スラリーが得られた。
Ferrous chloride FeC#2 (12,0 mol') was mixed with pure water (1
50g) and charged this into a reaction vessel containing 3001g. While introducing nitrogen at a rate of 1001/f+, adjust the liquid temperature to about 25°C, and then add Na while stirring the solution.
1 OH aqueous solution (120 mol NaOH, 44 751 water)
The addition was over 0 minutes and stirring continued for an additional hour. Next, the introduction of nitrogen was stopped and air was introduced at a rate of 100 d/min. The pH decreased to about 6.5 in about 2 hours, and an orange bud crystal slurry was obtained.

次いで空気を1001.%で導入しつつ、このスラリー
な40℃に加熱した。昇温か完了したときに空気を20
017分 で導入しつつNaOH溶液を添加した。この
際のNaOHの供給速度はスラリーの、H値を4で一定
水準に維持するようなものとした。
Next, the air is 1001. This slurry was heated to 40° C. while introducing the slurry at 40°C. When heating is complete, pump out the air at 20
The NaOH solution was added with introduction at 0.017 minutes. At this time, the NaOH supply rate was such that the H value of the slurry was maintained at a constant level of 4.

この生長段階に要した時間は約5時間であった。The time required for this growth stage was approximately 5 hours.

実施例1 充分に洗浄したレビドクロサイ)10gを純水600 
mlに分散させ(pH6,5)、800 ml!容の鉄
製容器に仕込み、これをオートクレーブに入れて攪拌し
ながら200℃で30分間水熱処理し、生成物を濾過し
た。ケーキを11oo℃で乾燥して微小なα型三二酸化
鉄の粉末、を得た。この製品の各粒子の直径は、はぼ0
.05μであった。
Example 1 10g of thoroughly washed Lebido black rhinoceros was mixed with 600 g of pure water.
ml (pH 6,5), 800 ml! This was placed in an autoclave and hydrothermally treated at 200° C. for 30 minutes with stirring, and the product was filtered. The cake was dried at 110° C. to obtain fine α-type iron sesquioxide powder. The diameter of each particle of this product is approximately 0.
.. It was 05μ.

この製品粉末の電子顕微鏡写真を第1図に示す。An electron micrograph of this product powder is shown in FIG.

実施例2 実施例1と同様な操作を繰返えしたが、レビドクロサイ
トスラリー(pH’5 )を180℃で1時間水熱処理
した。得られた製品粉末の粒径は、はぼ0.06μであ
った。この製品の電子顕微鏡写真を第2図に示す。
Example 2 The same operation as in Example 1 was repeated, except that the lebidocrocite slurry (pH'5) was hydrothermally treated at 180° C. for 1 hour. The particle size of the obtained product powder was approximately 0.06μ. An electron micrograph of this product is shown in Figure 2.

比較例1 この比較例は、NaOHを共存させてスラリーのpHを
高(して水熱処理した例である◇実施例1と同様な操作
を繰返えしたが、レピドクロサイトスラリーにNaOH
を0.04モル(1,69)溶解して、Hな15とした
ものを用いた。得られた製品の粒径は約0,05〜0.
5μにわたって分布し、不均一であった。この製品の電
子顕微鏡写真を第6図に示す。
Comparative Example 1 This comparative example is an example in which the pH of the slurry was increased by coexisting NaOH and then hydrothermally treated.◇The same operation as in Example 1 was repeated, but the lepidocrocite slurry was
0.04 mol (1,69) of H-15 was used. The particle size of the product obtained is approximately 0.05 to 0.05.
It was distributed over 5μ and was non-uniform. Figure 6 shows an electron micrograph of this product.

比較例2 この例は処理温度が低すぎる場合の例であや。Comparative example 2 This example is an example where the processing temperature is too low.

実施例1の操作を繰返えしたが、処理温度は95℃であ
った。レピドクロサイトは、α型三二酸化鉄に変化せず
原料レビドクロサイトの形状をほぼそのまま維持した生
成物が得られた。この生成物の電子顕微鏡写真を第4図
に示す。  、比較例5 原料レピドクロサイトなそのまま(すなわちスラリーと
せず)450℃で6時間焼成した場合の電子顕微鏡写真
を第5図に示す。各粒子は非常に大きく焼結した状態で
ある。
The operation of Example 1 was repeated, but the treatment temperature was 95°C. A product was obtained in which lepidocrocite did not change into α-type iron sesquioxide and maintained almost the same shape as the raw material lepidocrocite. An electron micrograph of this product is shown in FIG. , Comparative Example 5 FIG. 5 shows an electron micrograph of the raw lepidocrocite as it is (that is, without making a slurry) and calcined at 450° C. for 6 hours. Each particle is very large and sintered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は、実施例1〜2および比較例1〜5でそれ
ぞれ得られた生成物の電子顕微鏡写真で各写真の撮影倍
率は10,00.0倍そして写真上拡大倍率は50,0
00倍であり、各写真には1μの比較尺度が表示されて
いる。 特許出−願人   関東電化工業株式会社゛1.(外2
名) / 固 τ→ チ − 澹 晒 7 ア 冒 ÷ φ
Figures 1 to 5 are electron micrographs of the products obtained in Examples 1 to 2 and Comparative Examples 1 to 5, respectively. 0
00x and a comparison scale of 1μ is displayed on each photo. Patent applicant: Kanto Denka Kogyo Co., Ltd.゛1. (Outside 2
first name) / solid τ→ chi- 澹zarashi7 abla÷ φ

Claims (3)

【特許請求の範囲】[Claims] (1)  レピトゝクロサイトγ−F eoOHを水に
分散させ、この分散液を10[1℃以上で水熱反応処理
することからなる極微小な非針状鉄酸化物の製造方法。
(1) A method for producing ultrafine non-acicular iron oxides, which comprises dispersing lepitocrosite γ-FeoOH in water and subjecting the dispersion to a hydrothermal reaction treatment at 10[deg.]C or higher.
(2)分散液の水相のpHは5〜9である特許請求の範
囲第1項に記載の方法。
(2) The method according to claim 1, wherein the pH of the aqueous phase of the dispersion is 5 to 9.
(3)レビドクロサイトは、洗液の、Hが6〜8になる
まで予め水で洗浄したものである特許請求の範囲第1ま
たは2項に記載の方法。
(3) The method according to claim 1 or 2, wherein the lebidocrosite is obtained by washing the washing liquid with water until H becomes 6 to 8.
JP56118612A 1981-07-29 1981-07-29 Preparation of extremely small iron oxide not in needle state Granted JPS5820733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118612A JPS5820733A (en) 1981-07-29 1981-07-29 Preparation of extremely small iron oxide not in needle state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118612A JPS5820733A (en) 1981-07-29 1981-07-29 Preparation of extremely small iron oxide not in needle state

Publications (2)

Publication Number Publication Date
JPS5820733A true JPS5820733A (en) 1983-02-07
JPH0247410B2 JPH0247410B2 (en) 1990-10-19

Family

ID=14740855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118612A Granted JPS5820733A (en) 1981-07-29 1981-07-29 Preparation of extremely small iron oxide not in needle state

Country Status (1)

Country Link
JP (1) JPS5820733A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119117A (en) * 1985-09-13 1987-05-30 Showa Denko Kk Production of lepidocrocite
JPS6364925A (en) * 1986-09-05 1988-03-23 Toda Kogyo Corp Production of hematite particle powder
CN108264092A (en) * 2018-02-09 2018-07-10 河南理工大学 A kind of high circulation performance lithium ion battery negative material Fe2O3The preparation method of nanometer needle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128597A (en) * 1977-04-14 1978-11-09 Matsushita Electric Ind Co Ltd Process for producing alpha ferric oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128597A (en) * 1977-04-14 1978-11-09 Matsushita Electric Ind Co Ltd Process for producing alpha ferric oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119117A (en) * 1985-09-13 1987-05-30 Showa Denko Kk Production of lepidocrocite
JPS6364925A (en) * 1986-09-05 1988-03-23 Toda Kogyo Corp Production of hematite particle powder
CN108264092A (en) * 2018-02-09 2018-07-10 河南理工大学 A kind of high circulation performance lithium ion battery negative material Fe2O3The preparation method of nanometer needle
CN108264092B (en) * 2018-02-09 2019-12-27 河南理工大学 High-cycle-performance lithium ion battery negative electrode material Fe2O3Preparation method of nano needle leaf

Also Published As

Publication number Publication date
JPH0247410B2 (en) 1990-10-19

Similar Documents

Publication Publication Date Title
KR100382563B1 (en) Cerium oxide ultrafine particles and a method for producing the same
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
AU2006329591A1 (en) Methods for production of metal oxide nano particles, and nano particles and preparations produced thereby
DE3633309C2 (en) Composition based on zirconia and process for its manufacture
CN112745105B (en) High-sintering-activity alumina ceramic powder and preparation method thereof
CA2634226A1 (en) Methods for production of metal oxide nano particles with controlled properties, and nano particles and preparations produced thereby
Hayashi et al. Preparation of acicular NiZn-ferrite powders
US3399142A (en) Magnetic materials and methods of making the same
JPS5820733A (en) Preparation of extremely small iron oxide not in needle state
CN106006701B (en) A kind of preparation method of micrometer-submicrometer grade RE oxide powder
JPH03252313A (en) Production of a2b2o7-type oxide powder
US6203774B1 (en) Method for producing iron oxide powder using a particle size and shape controller
JPH05262518A (en) Preparation of ammonium pare earth double oxalate, use thereof for production of rare earth oxide, and obtained rare earth oxide
US3061412A (en) Preparation of mercuric sulfide
JP2829644B2 (en) Production method of α-iron oxide
JPS63252927A (en) Production of fine particle powder of sodium hexatitanate
JPS63319216A (en) Production of cobalt blue pigment
JPS60215527A (en) Production of zirconium oxide fine powder
KR100420276B1 (en) Preparation of ZnO Powder by Pyrophoric Synthesis Method
JPS6252129A (en) Production of fine metal oxide particle
SU1752521A1 (en) Method of manganese-zinc ferrite powder preparation
JP3282264B2 (en) Method for producing magnetic oxide powder
JPS5938170B2 (en) Manufacturing method of fine chromium oxide
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JPS6090828A (en) Manufacture of needlelike spinel ferrite powder