JPH03252313A - Production of a2b2o7-type oxide powder - Google Patents

Production of a2b2o7-type oxide powder

Info

Publication number
JPH03252313A
JPH03252313A JP4895290A JP4895290A JPH03252313A JP H03252313 A JPH03252313 A JP H03252313A JP 4895290 A JP4895290 A JP 4895290A JP 4895290 A JP4895290 A JP 4895290A JP H03252313 A JPH03252313 A JP H03252313A
Authority
JP
Japan
Prior art keywords
powder
solution
solution containing
type oxide
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4895290A
Other languages
Japanese (ja)
Inventor
Munetoshi Watanabe
宗敏 渡辺
Hiroyuki Hata
畑 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP4895290A priority Critical patent/JPH03252313A/en
Publication of JPH03252313A publication Critical patent/JPH03252313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject oxide powder composed of uniform fine particles, having uniform composition and excellent sinterability and useful as a dielectric ceramic material by preparing a pyrochlore-type oxide under specific condition. CONSTITUTION:A pyrochlore-type oxide of formula A2N2O7 (A is Ca, Cd, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Sn, Sr, Tb, Tm, Y, Yb or Zr; B is Sb, Ta, Nb, Ru, Sn, Tc, Ti, Ru, Hf, Zr or Ce; O is oxygen) is produced by mixing a solution containing A (e.g. a solution produced by dissolving Nd2O3 in nitric acid) with a solution containing B (e.g. an aqueous solution of TiCl4) to form a homogeneous solution containing A and B, reacting the solution with an aqueous solution of an alkali metal (e.g. aqueous solution of KOH) to precipitate the hydroxides of the elements A and B, subjecting the precipitate to hydrothermal reaction, filtering, washing and drying the reaction product and calcining and disintegrating the obtained powder.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、発振器や誘電体共振器等の磁器材料となる
A z B t Oq型酸化物(パイロクロア型酸化物
)の粉末を製造する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention provides a method for producing powder of A z B t Oq type oxide (pyrochlore type oxide), which is used as a ceramic material for oscillators, dielectric resonators, etc. Regarding.

(従来の技術) 従来から、パイロクロア型酸化物からなる誘電体材料を
マイクロ波頭域において応用する試みがなされてきた。
(Prior Art) Attempts have been made to apply dielectric materials made of pyrochlore type oxides in the microwave head region.

近年、マイクロ波フィルターや発振器の周波数安定化を
図るため、パイロクロア型酸化物でも高誘電率で低損失
の誘電体材料を用い、しかもそれを小型化する努力が進
められている。
In recent years, in order to stabilize the frequency of microwave filters and oscillators, efforts have been made to use dielectric materials such as pyrochlore oxides that have a high dielectric constant and low loss, and to miniaturize them.

上記のような誘電体材料の原料となる酸化物粉末の製法
としては、固相合成法(酸化物仮焼法)が−船釣である
。この従来の固相合成法では、例えばNdtTi、07
粉末を製造する場合、原料となる酸化物(Nd、O,と
Ti0z)の粉末を混合し、1200℃以上の高温で仮
焼してNdzTilOtの仮焼物とし、これを粉砕して
粉末とする。しかし、この固相合成法では、原料酸化物
粉末の混合は機械的に行われるため粒子の不均一や組成
の不均一が生じやすく、また高温で仮焼するために粒子
が粗大化し、焼結性を損ねて製品磁器に所望の特性が与
えられない等の問題がある。さらに実用上、磁器の小型
化、高性能化をめざすためには、材料粉末の微細化が必
要である。
As a method for producing oxide powder that is a raw material for the above-mentioned dielectric material, a solid phase synthesis method (oxide calcination method) is commonly used. In this conventional solid phase synthesis method, for example, NdtTi, 07
When manufacturing a powder, powders of oxides (Nd, O, and TiOz) as raw materials are mixed, calcined at a high temperature of 1200° C. or higher to obtain a calcined product of NdzTilOt, and this is crushed to form a powder. However, in this solid phase synthesis method, the raw material oxide powder is mixed mechanically, which tends to cause non-uniformity of the particles and composition, and the calcination at high temperatures causes the particles to coarsen and cause sintering. There is a problem that the desired properties cannot be imparted to the finished porcelain due to the loss of properties. Furthermore, in order to make porcelain more compact and have higher performance, it is necessary to make the material powder finer.

(発明が解決しようとする課題) 本発明の目的は、微細均一な粒子からなり、組成が均一
で焼結性に優れたA z B z O?型酸化物粉末を
製造する新しい方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to produce A z B z O? which is composed of fine, uniform particles, has a uniform composition, and has excellent sinterability. The object of the present invention is to provide a new method for manufacturing type oxide powder.

(課題を解決するための手段) 本発明の、一般式A、B、O,で表される酸化物粉末の
製造方法は、下記の工程からなることを特徴とする。
(Means for Solving the Problems) The method for producing oxide powder represented by general formulas A, B, and O according to the present invention is characterized by comprising the following steps.

■ へ元素を含む溶液とB元素を含む溶液を混合して、
AとBの両元素を含む均一溶液を生成させる工程。
■ Mix a solution containing element B and a solution containing element B,
A step of generating a homogeneous solution containing both elements A and B.

■ 反応容器内で、(1)の工程で生成させた溶液をア
ルカリ金属水溶液と反応させて、AとBの両元素の水酸
化物沈殿を生成させる工程。
(2) A step in which the solution produced in step (1) is reacted with an aqueous alkali metal solution in a reaction vessel to produce hydroxide precipitates of both elements A and B.

■ 反応容器内で水熱反応を行わせる工程。■ A process in which a hydrothermal reaction is carried out in a reaction vessel.

■ 濾過、洗浄および乾燥して粉末を得る工程。■ Process of obtaining powder by filtration, washing and drying.

■ 粉末を仮焼し、解砕する工程。■ Process of calcining and crushing powder.

ただし、前記の一般式中において、A、BおよびOはそ
れぞれ下記の元素を表す。
However, in the above general formula, A, B and O each represent the following elements.

A : CaXCd、 Dy5Er、 Eu、 Cd、
 tlo、 La、 Lu、 Nd、Pr、 S++、
 Sn、 Sr、、TbSTm、Y、YbおよびZrの
中の1種以上。
A: CaXCd, Dy5Er, Eu, Cd,
tlo, La, Lu, Nd, Pr, S++,
One or more of Sn, Sr, TbSTm, Y, Yb and Zr.

B : Sb、 Ta、 Nb、、Ru、、Sn、 T
c、 Ti、 Ru、 U、 ZrおよびCeの中の1
種以上。
B: Sb, Ta, Nb, Ru, Sn, T
1 among c, Ti, Ru, U, Zr and Ce
More than a species.

0:M素 上記A群およびB群の元素は、製造する粉末の目的組成
に応してそれぞれの群から1種以上が選定される。
0:M element One or more elements of the above groups A and B are selected from each group depending on the intended composition of the powder to be produced.

(作用) 以下、第1図に示す概略工程図にそって、本発明方法の
各工程を説明する。
(Function) Hereinafter, each step of the method of the present invention will be explained along the schematic process diagram shown in FIG.

■勿工豆 A群元素の1種以上を含む溶液と、B群元素の1種以上
を含む溶液とを混合する工程である。ここで用いられる
原料は、溶解性のものならば特に制限はなく、例えば、
塩化物、オキシ塩化物、硝酸塩、炭酸塩、水酸化物、酢
酸塩およびシュウ酸塩等から選択される0通常は水溶液
として使用されるが、水に難溶性の場合には、酸または
適当な溶媒を用いて可溶にすればよく、不溶性原料の場
合は、懸濁溶液として使用することも可能である。
(2) This is a step of mixing a solution containing one or more of the A-group elements of the soybean and a solution containing one or more of the B-group elements. The raw materials used here are not particularly limited as long as they are soluble; for example,
0 selected from chlorides, oxychlorides, nitrates, carbonates, hydroxides, acetates, oxalates, etc. Usually used as an aqueous solution, but in the case of sparingly soluble in water, acid or suitable solution may be used. What is necessary is to make it soluble using a solvent, and in the case of an insoluble raw material, it is also possible to use it as a suspension solution.

Ω至工■ 上記(1)の工程で得たA群元素とB群元素を含む溶液
に、アルカリ金属水溶液を加えて水酸化物の沈殿を生成
させる工程である。沈澱形成液としては、濃度が1〜1
5mol/j!の苛性アルカリ溶液を用いるのが望まし
い。
This is a step in which an aqueous alkali metal solution is added to the solution containing group A elements and group B elements obtained in step (1) above to form a hydroxide precipitate. As a precipitate forming solution, the concentration is 1 to 1
5mol/j! It is preferable to use a caustic solution of

既に(1)の工程において、A元素およびB元素の均一
な混合溶液を得ているので、■の工程で生成する水酸化
物沈澱の組成は、均一性が非常に高い。
Since a uniform mixed solution of elements A and B has already been obtained in step (1), the composition of the hydroxide precipitate produced in step (2) is extremely homogeneous.

Ω至工五 前記■の工程で得た水酸化物を含む溶液をオートクレー
ブに移し、水熱反応を行わせる。この反応は100〜2
00°Cの温度、大気圧から15atm程度までの圧力
の下で行わせるのがよい。ここで水酸化物はA t B
 z O?型の酸化物になる。
The hydroxide-containing solution obtained in step (1) above is transferred to an autoclave and subjected to a hydrothermal reaction. This reaction is 100-2
It is preferable to carry out the reaction at a temperature of 00°C and a pressure ranging from atmospheric pressure to about 15 atm. Here, the hydroxide is A t B
z O? It becomes an oxide of the type.

[相]皇工豆 前の工程で生成した沈殿物を濾過し洗浄した後、乾燥す
る工程である。この工程終了後にA z B ! 07
型の酸化物の粉末が得られる。
[Phase] This is a process in which the precipitate generated in the previous process is filtered, washed, and then dried. After completing this process, A z B! 07
A powder of type oxide is obtained.

血食二栓 ■の工程で得られた粉末を仮焼した後、解砕する工程で
ある。仮焼は、■の工程で得られた粉末の結晶性の向上
および粒度の調整のため実施される。仮焼温度としては
、低すぎると効果が不十分であり、また、過度に高いと
粉末が粗大化し、解砕によっても微細にならなくなるの
で、通常500〜1000℃の範囲が好ましい。仮焼は
大気中で行ってよい。
This is the process of calcining the powder obtained in step (2) and then crushing it. Calcining is carried out to improve the crystallinity of the powder obtained in step (1) and adjust the particle size. If the calcination temperature is too low, the effect will be insufficient, and if it is too high, the powder will become coarse and will not become fine even when crushed, so a range of 500 to 1000°C is usually preferred. Calcination may be performed in the atmosphere.

解砕は、仮焼において粗大化した粒子を微細にするため
実施されるものである。通常0.1−0.5μ竹程度の
粒径にするのが望ましい。
Crushing is carried out to make particles coarsened during calcination into fine particles. It is usually desirable to have a particle size of about 0.1-0.5 μm.

以上の工程を経て製造された粉末は、組成が均−で粒径
も均一微細であり、誘電体材料の原料として優れたもの
である。
The powder produced through the above steps has a uniform composition and uniform particle size, and is excellent as a raw material for dielectric materials.

(実施例) 以下に、本発明の一実施例としてNd2TizO7の製
造方法を説明する。
(Example) A method for manufacturing Nd2TizO7 will be described below as an example of the present invention.

〔工程1] NdzOsを硝酸に溶解したNd硝#!溶液(N6分8
.56wt1) 475.0 g と、Ticla水溶
液(Ti分16.9wtχ)80.0 gを室温で30
分攪拌しつつ混合し均一な溶液を得た。
[Step 1] Nd nitrate # made by dissolving NdzOs in nitric acid! Solution (N6 min 8
.. 56wt1) 475.0 g and 80.0 g of Ticla aqueous solution (Ti content 16.9wtχ) at room temperature.
The mixture was mixed with stirring for several minutes to obtain a homogeneous solution.

[工程2] 水酸化カリウム200gを水300m lに溶解した水
溶液に、工程■で得たNdとTiを含む溶液を加え、室
温で30分間反応させNdとTiの水酸化物沈澱を生成
させた。
[Step 2] The solution containing Nd and Ti obtained in step (1) was added to an aqueous solution of 200 g of potassium hydroxide dissolved in 300 ml of water, and the solution was reacted at room temperature for 30 minutes to form a hydroxide precipitate of Nd and Ti. .

〔工程3〕 上記の沈ti物を含む懸濁液を、オートクレー7に移し
て、圧力8ats+、温度180°Cで5時間反応させ
た。
[Step 3] The suspension containing the above precipitate was transferred to autoclay 7 and reacted at a pressure of 8 ats+ and a temperature of 180°C for 5 hours.

(工程4] 生成した沈澱物を濾過し、室温の水で充分洗浄した後、
120°Cで15時間乾燥を行った。
(Step 4) After filtering the generated precipitate and thoroughly washing it with room temperature water,
Drying was performed at 120°C for 15 hours.

〔工程5〕 工程■で得られた粉末を、大気中1000°Cで1時間
仮焼し、その後、ボールミルで解砕した。
[Step 5] The powder obtained in Step (2) was calcined in the atmosphere at 1000°C for 1 hour, and then crushed in a ball mill.

(比較例) 固相合成法によりNdzTizOt粉末を製造した。即
ち、所定配合比に秤量したNdzOJ3.6gとTi0
g16.Ogをボールミルで混合した後、1000″C
と1200°Cで仮焼し、ボールミルで解砕して粉末を
得た。
(Comparative Example) NdzTizOt powder was manufactured by a solid phase synthesis method. That is, 3.6 g of NdzOJ and Ti0 weighed at a predetermined mixing ratio
g16. After mixing Og in a ball mill, 1000″C
It was calcined at 1200°C and crushed in a ball mill to obtain a powder.

第1表に、上記実施例および比較例の方法で得た粉末の
平均粒径を示す6本発明方法によれば、従来の固相合成
法よりもはるかに微細な粉末が得られることがわかる。
Table 1 shows the average particle diameters of the powders obtained by the methods of the above Examples and Comparative Examples.6 It can be seen that the method of the present invention yields much finer powder than the conventional solid phase synthesis method. .

第1表 第2図に、実施例で得られた粉末のX線回折パターン(
a)と粒度分布(b)を示した。また、比較例の100
0°Cと1200°Cで仮焼したもののX線回折パター
ンと粒度分布を第3図の(a)、し)および第4図の(
a)、(b)にそれぞれ示した。また、第5図には、比
較例の仮焼前の粉末のX線回折パターンを示した。
Table 1, Figure 2 shows the X-ray diffraction pattern (
a) and particle size distribution (b) are shown. In addition, the comparative example 100
The X-ray diffraction patterns and particle size distributions of the samples calcined at 0°C and 1200°C are shown in Figures 3 (a) and 2) and Figure 4 (
Shown in a) and (b), respectively. Moreover, FIG. 5 shows the X-ray diffraction pattern of the powder before calcination of the comparative example.

比較例の1000°Cで仮焼した粉末のX線回折パター
ン〔第3図(a)〕では、第5図に示す仮焼前の粉末の
ピーク (原料酸化物のピーク)が残っていることがわ
かる。
In the X-ray diffraction pattern of the powder calcined at 1000°C in the comparative example [Figure 3 (a)], the peak of the powder before calcining (the peak of the raw material oxide) shown in Figure 5 remains. I understand.

比較例の1200°Cで仮焼したもの(第4図(a)参
照)では、仮焼前の粉末のピークが消失して、仮焼生成
物のみになっている。従って、固相合成法では、約12
00’Cという高温での仮焼が必要であるということに
なる。
In the comparative example calcined at 1200°C (see FIG. 4(a)), the peak of the powder before calcining disappeared and only the calcined product remained. Therefore, in the solid phase synthesis method, approximately 12
This means that calcination at a high temperature of 00'C is required.

一方、第2図(a)に示した実施例の粉末では、仮焼温
度が1000°Cであるにもかかわらず、比較例の12
00’C仮焼のもの〔第4図(a)〕のピークと同位置
にピークが表れ、完全にNd2Sn20vになっている
ことがわかる。
On the other hand, in the powder of the example shown in FIG. 2(a), although the calcination temperature was 1000°C, the powder of the comparative example
A peak appears at the same position as the peak of the 00'C calcined product [Fig. 4(a)], indicating that it is completely Nd2Sn20v.

粒度分布は、第3図の(b)と第4図の(b)に示すと
おり、比較例の粉末では広い範囲に分布をしているが、
実施例の粉末〔第2図(ト))]では比較的狭い範囲に
集まっており、また平均粒径も約0.5μ園と微細であ
る。
As shown in Figure 3 (b) and Figure 4 (b), the particle size distribution of the comparative example powder is distributed over a wide range;
In the powder of Example [Fig. 2 (G)], the particles are concentrated in a relatively narrow range, and the average particle size is as fine as about 0.5 μm.

第2表に、上記のNd2TizO,粉末製造の実施例に
おける各工程の条件、得られた粉末の平均粒径および比
表面積値をまとめて示し、これと別に実施したLaJr
z07、Nd2Sn20v、Ca t T a 207
及び5nzTizOt粉末の製造例(本発明の実施例)
における同じデータを併記した。
Table 2 summarizes the conditions of each step in the above Nd2TizO powder production example, the average particle diameter and specific surface area value of the obtained powder, and the LaJr
z07, Nd2Sn20v, Cat Ta 207
and Example of manufacturing 5nzTizOt powder (Example of the present invention)
The same data are also shown.

NdzTizOt製造の場合と同様に、他のA z B
 z○。
As in the case of NdzTizOt production, other A z B
z○.

型酸化物粉末の製造の場合でも、本発明方法によれば微
細で均一な組成の粉末が得られた。
Even in the case of producing type oxide powder, the method of the present invention resulted in a fine powder with a uniform composition.

(以下、余白) 第1図 ↓ 粉末 (発明の効果) 実施例に示したとおり、本発明方法によれば微細で均一
な粒度のA Z B 207型酸化物粉末が得られる。
(Hereinafter, blank space) Fig. 1↓ Powder (Effects of the Invention) As shown in the examples, according to the method of the present invention, A Z B 207 type oxide powder with a fine and uniform particle size can be obtained.

また、この粉末は組成も均一であるから、近年マイクロ
波領域での応用が進められている誘電体磁器製造用の原
料粉末として好適である。
Furthermore, since this powder has a uniform composition, it is suitable as a raw material powder for the production of dielectric ceramics, which has been increasingly applied in the microwave field in recent years.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の工程図である。 第2[Z(a)および0))は、それぞれ本発明方法で
得られたNdz丁j 20.粉末のX線回折パターンと
粒度分布を示す図である。 第3図および第4図の(a)は、固相合成法で得た粉末
を1000’Cと1200℃で仮焼した粉末のX線回折
パターンであり、(b)はそれらの粒度分布を示す図で
ある。 第5図は、固相合成法で得た仮焼前の粉末のX線回折パ
ターンである。
FIG. 1 is a process diagram of the method of the present invention. The second [Z(a) and 0)) are Ndzdj 20. obtained by the method of the present invention, respectively. It is a figure which shows the X-ray diffraction pattern and particle size distribution of powder. Figures 3 and 4 (a) are the X-ray diffraction patterns of powders obtained by solid-phase synthesis and calcined at 1000'C and 1200°C, and (b) shows their particle size distribution. FIG. FIG. 5 is an X-ray diffraction pattern of the powder before calcination obtained by solid phase synthesis.

Claims (1)

【特許請求の範囲】 下記(1)〜(5)の工程からなる一般式A_2B_2
O_7で表される酸化物粉末の製造製造方法。 ただし、上記一般式において、 Aは、Ca、Cd、Dy、Er、Eu、Gd、Ho、L
a、Lu、Nd、Pr、Sm、Sn、Sr、Tb、Tm
、Y、YbおよびZrの中の1種以上の元素、Bは、S
b、Ta、Nb、Ru、Sn、Tc、Ti、Ru、Hf
、ZrおよびCeの中の1種以上の元素、Oは酸素であ
る。 (1)Aを含む溶液とBを含む溶液を混合して、AとB
の両元素を含む均一溶液を生成させる工程。 (2)反応容器内で、(1)の工程で生成させた溶液を
アルカリ金属水溶液と反応させて、AとBの両元素の水
酸化物沈殿を生成させる工程。 (3)反応容器内で水熱反応を行わせる工程。 (4)濾過、洗浄および乾燥して粉末を得る工程。 (5)粉末を仮焼し、解砕する工程。
[Claims] General formula A_2B_2 consisting of the following steps (1) to (5)
A method for producing an oxide powder represented by O_7. However, in the above general formula, A is Ca, Cd, Dy, Er, Eu, Gd, Ho, L
a, Lu, Nd, Pr, Sm, Sn, Sr, Tb, Tm
, Y, one or more elements among Yb and Zr, B is S
b, Ta, Nb, Ru, Sn, Tc, Ti, Ru, Hf
, Zr and Ce, O is oxygen. (1) Mix a solution containing A and a solution containing B, and
A process of producing a homogeneous solution containing both elements. (2) A step of reacting the solution produced in step (1) with an aqueous alkali metal solution in a reaction vessel to produce hydroxide precipitates of both elements A and B. (3) A step of carrying out a hydrothermal reaction within a reaction vessel. (4) Step of filtering, washing and drying to obtain powder. (5) A step of calcining and crushing the powder.
JP4895290A 1990-02-28 1990-02-28 Production of a2b2o7-type oxide powder Pending JPH03252313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4895290A JPH03252313A (en) 1990-02-28 1990-02-28 Production of a2b2o7-type oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4895290A JPH03252313A (en) 1990-02-28 1990-02-28 Production of a2b2o7-type oxide powder

Publications (1)

Publication Number Publication Date
JPH03252313A true JPH03252313A (en) 1991-11-11

Family

ID=12817612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4895290A Pending JPH03252313A (en) 1990-02-28 1990-02-28 Production of a2b2o7-type oxide powder

Country Status (1)

Country Link
JP (1) JPH03252313A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295012A (en) * 1990-12-28 1992-10-20 Rhone Poulenc Chim Compound of especially titanite type and based on especially reduced titanium vanadium or niobium and method of manufacturing same
JPH04305017A (en) * 1990-12-28 1992-10-28 Rhone Poulenc Chim Compound of especially titanite type and based on especially reduced titanium vanadium or niobium and method of manufacturing same
WO2001040536A1 (en) * 1999-11-29 2001-06-07 Fujikura Ltd. Polycrystalline thin film and method for preparation thereof, and superconducting oxide and method for preparation thereof
EP2484794A1 (en) * 2011-02-07 2012-08-08 Siemens Aktiengesellschaft Material with pyrochlore structure with tantalum, use of the material, layer system and method for manufacturing a layer system
JP2014208580A (en) * 2013-03-26 2014-11-06 Toto株式会社 Composite metal oxide particles and method for producing the same
CN104689812A (en) * 2014-12-26 2015-06-10 南京大学 Preparation method and application of Ce(3-x)SbxTaO7 fly ash zeolite composite porous catalytic material
CN105197984A (en) * 2015-09-06 2015-12-30 安徽工程大学 Preparation method of Pr2Sn2O7 nanospheres
CN116283271A (en) * 2023-03-07 2023-06-23 宁波大学 Gd with high refractive index and high optical quality 2 Sn 2 O 7 Method for preparing pyrochlore type transparent ceramic

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295012A (en) * 1990-12-28 1992-10-20 Rhone Poulenc Chim Compound of especially titanite type and based on especially reduced titanium vanadium or niobium and method of manufacturing same
JPH04305017A (en) * 1990-12-28 1992-10-28 Rhone Poulenc Chim Compound of especially titanite type and based on especially reduced titanium vanadium or niobium and method of manufacturing same
WO2001040536A1 (en) * 1999-11-29 2001-06-07 Fujikura Ltd. Polycrystalline thin film and method for preparation thereof, and superconducting oxide and method for preparation thereof
US6632539B1 (en) 1999-11-29 2003-10-14 Fujikura Ltd. Polycrystalline thin film and method for preparing thereof, and superconducting oxide and method for preparation thereof
EP2484794A1 (en) * 2011-02-07 2012-08-08 Siemens Aktiengesellschaft Material with pyrochlore structure with tantalum, use of the material, layer system and method for manufacturing a layer system
WO2012107130A1 (en) * 2011-02-07 2012-08-16 Siemens Aktiengesellschaft Material having a pyrochlore structure with tantalum, use of the material, layer system and method for producing a layer system
JP2014208580A (en) * 2013-03-26 2014-11-06 Toto株式会社 Composite metal oxide particles and method for producing the same
CN104689812A (en) * 2014-12-26 2015-06-10 南京大学 Preparation method and application of Ce(3-x)SbxTaO7 fly ash zeolite composite porous catalytic material
CN105197984A (en) * 2015-09-06 2015-12-30 安徽工程大学 Preparation method of Pr2Sn2O7 nanospheres
CN116283271A (en) * 2023-03-07 2023-06-23 宁波大学 Gd with high refractive index and high optical quality 2 Sn 2 O 7 Method for preparing pyrochlore type transparent ceramic
CN116283271B (en) * 2023-03-07 2024-03-12 宁波大学 Gd with high refractive index and high optical quality 2 Sn 2 O 7 Method for preparing pyrochlore type transparent ceramic

Similar Documents

Publication Publication Date Title
KR100382563B1 (en) Cerium oxide ultrafine particles and a method for producing the same
US5096642A (en) Process for producing a high density ceramic of perovskite
US3577487A (en) Preparation of submicron sized alkaline earth titanate and zirconate powders
JPH02296727A (en) Sinterable zirconium oxide powder and production thereof
JPS60155532A (en) Production of barium strontium titanate fine particle
Takahashi et al. Occurrence of Dielectric 1: 1: 4 Compound in the Ternary System BaO—Ln2O3—TiO2 (Ln= La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single‐Phase Powder of Ternary Compound in the BaO—La2O3—TiO2 System
JP2726439B2 (en) Method for producing ceramic powder having perovskite structure
JPH03252313A (en) Production of a2b2o7-type oxide powder
JPH08119745A (en) Production of ceramic powder
JPH0769634A (en) Production of composition
JPH0769645A (en) Production of lead-containing multiple oxide
JP2557344B2 (en) Method for treating inorganic hydroxide precipitate
JPH0210091B2 (en)
JPH0873219A (en) Production of powdery ceramic
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
KR20060102928A (en) Manufacturing method of barium titanate powder
JP2865975B2 (en) Method for producing lead perovski type compound
JPS63285150A (en) Production of neodymium-containing dielectric material ceramic
JPH0328109A (en) Production of compound oxide powder
JPS62235251A (en) Manufacture of dielectric ceramic
JPS63144116A (en) Production of oxide particle
JPH05254841A (en) Production of oxide powder
JPS6325223A (en) Production of ceramic raw material powder
JPS6325261A (en) Manufacture of high density pmn base ferroelectric ceramic
JPH01122907A (en) Production of perovskite oxide powder