JPS58206949A - Inspecting device of defect - Google Patents

Inspecting device of defect

Info

Publication number
JPS58206949A
JPS58206949A JP57089932A JP8993282A JPS58206949A JP S58206949 A JPS58206949 A JP S58206949A JP 57089932 A JP57089932 A JP 57089932A JP 8993282 A JP8993282 A JP 8993282A JP S58206949 A JPS58206949 A JP S58206949A
Authority
JP
Japan
Prior art keywords
signal
defect
absolute value
envelope
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089932A
Other languages
Japanese (ja)
Inventor
Tadashi Suda
須田 匡
Kazuya Tsukada
塚田 一也
Yukio Kawakami
幸雄 川上
Hiroto Nagatomo
長友 宏人
Masakuni Akiba
秋葉 政邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP57089932A priority Critical patent/JPS58206949A/en
Publication of JPS58206949A publication Critical patent/JPS58206949A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To detect exactly a defect on the surface of a semiconductor chip, by recognizing the existence of DC and AC components appearing in one scanning signal as it is, envelope-detecting its signal, and thereafter, using it as comparison voltage of an original signal, and binary-coding and extracting a defect signal pulse. CONSTITUTION:A signal is amplified by an amplifier 23, and thereafter, is inputted to an absolute value circuit 25 through an atteuator 24 provided in order that adjustment is executed easily. It is executed so that detection can be executed even in case when that which inverts polarity of a defect signal pulse appears, and an output signal of the absolute value circuit 25 is made one of inputs of a comparator 29. Also, an output of the absolute value circuit 25 is separated and is envelope-detected through a low-pass filter 26. An output of the low-pass filter is amplified by prescribed times, and also an adder 28 for applying variable DC voltage 27 is provided in order to adjust upwards and downwards a level of an envelope. When envelope detection of automatic level following, which is generated in this way is inputted as comparison voltage of the comparator 29, a defect signal pulse can be extracted.

Description

【発明の詳細な説明】 本発明はパターニングされた半導体梁構回路チップに発
生する欠陥を光学的に非接触で検出する欠陥検査装置に
闇し、とくにそれにおける欠陥信号の抽出方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defect inspection apparatus for optically and non-contact detecting defects occurring in a patterned semiconductor beam structure circuit chip, and particularly to a defect signal extraction method therein.

シリコンウェハなどの基板上に集積回路または大規模集
積回路(以ト、集積回路)の形成時に使わnるホトマス
クの回路パターン欠陥の光学的な欠陥検出可能はすでに
賎多く提案され、その中の幾つかは実用に供されている
。しかし、シリコンウェハ上にホトマスクを用いて、集
積回路が形成されたチップもしくはペレツト(以下、集
積回路チップ)上の欠陥(付着ゴミ等の異*を含む)を
(自動)検査する装置はいまだ出現していない。
Many proposals have already been made to optically detect circuit pattern defects in photomasks used when forming integrated circuits or large-scale integrated circuits (hereinafter referred to as integrated circuits) on substrates such as silicon wafers. Some are in practical use. However, no equipment has yet appeared that uses a photomask on a silicon wafer to (automatically) inspect for defects (including defects such as adhering dust) on chips or pellets on which integrated circuits are formed (hereinafter referred to as integrated circuit chips). I haven't.

したがって、机在でも、この集積回路チップの検査は光
学顕微説による目視検査が依然として行われている。こ
のような@食方法では、検査の能率。
Therefore, even in modern times, integrated circuit chips are still inspected visually using optical microscopy. With this @food method, the efficiency of inspection.

検査員の数、横f結果の信頼性、などの点に問題がおる
とされ、検査方法の改督が強く望まれている。
It is said that there are problems with the number of inspectors and the reliability of transverse f results, and there is a strong desire for reform of the inspection method.

目視検査のこのような現状に対処する一方法として、パ
ターン欠陥の検出を容易にし、作業能率を向上させるた
めの工夫が1な、されている(特開昭54−2543号
参照)。この改良された目視検査方法によってしても、
また、いかに熟練者によっても、雪の検食結来にパーソ
ナルエラーが入り込む余地があシ、検査の信頼性に問題
が残る。
As a way to deal with the current state of visual inspection, several efforts have been made to facilitate the detection of pattern defects and improve work efficiency (see Japanese Patent Laid-Open No. 54-2543). Even with this improved visual inspection method,
Furthermore, no matter how skilled the person is, there is always room for personal error to occur in snow inspection results, leaving problems with the reliability of the inspection.

ところで、ホトマスクの欠陥の自動恢査装匝があるので
、集積回路チップの欠陥検査にこnを転用できないだろ
うか?とは誰もが気付くところであろう。すでに故多く
提某嘔扛ている、ろるいは、実用化されているホトマス
ク用光学的検査装置の所定位置に、集積回路チップを設
定し、その検査を試みるとすれば、これらはことごとく
失敗することは明らかでらる。これは、こjLらのホト
マスク用光学的検査装置の光学系は、検査対象であるホ
トマスクが可視元稙域において透過性試料でおることを
前提とし、透過形の光学系が組立ら扛ているところにお
る。すなわち、シリコン9エノ・を基板にしだ集積回路
チップは可視光績域では透過しない。したがって、シリ
コン9エノ・t−基板とする業績回路チップを検査対象
とする場合、しかも、oJ視の改良領域の九番検査手段
とする欠陥検出用光学系は反射形のも□のでなけれはな
らない。
By the way, since there is an automatic detection system for defects in photomasks, could it be used to inspect defects in integrated circuit chips? That's something everyone will notice. Many proposals have already been made, but if an integrated circuit chip is set in a predetermined position in a photomask optical inspection device that is in practical use and an attempt is made to inspect it, all of these will fail. That's obvious. This is because the optical system of these photomask optical inspection devices is assembled with a transmission type optical system, assuming that the photomask to be inspected is a transparent sample in the visible original region. I'll be there. In other words, an integrated circuit chip based on silicon 9eno-oxide does not transmit light in the visible light range. Therefore, when inspecting a circuit chip made of a silicon 9eno/t-substrate, the defect detection optical system, which is the ninth inspection means in the improvement area of OJ vision, must be of the reflective type. .

それでは、ホトマスク用欠陥検査装置の透過形光学系を
反射形光学系に単純に変換すればよいのではないだろう
かlという発想が生ま扛てこよう。
Then, the idea arises that it would be a good idea to simply convert the transmissive optical system of the photomask defect inspection apparatus to a reflective optical system.

しかし、これまでの提案または実用化されているこれら
すべての検f装置の構成について、ぜ考実験によって確
かめてみればわかるように、透過性の試料が反射性の試
料に変わったとき、透過性の試料で可能な構成が反射性
の試料に対して実現可能な構成への鋭葎関係にはなって
いない。したがって、この単純変換という操作は成立し
ない。この発想による方法は今対象とする試料C欠陥検
査の目的を達成し侍ない。
However, as can be seen by conducting experiments on the configurations of all of these f-detection devices that have been proposed or put into practical use, when a transmissive sample is changed to a reflective sample, the transmissive The configurations possible for the sample are not closely related to the configurations possible for the reflective sample. Therefore, this simple conversion operation does not hold true. The method based on this idea does not meet the objective of defect inspection of Sample C, which is the subject of the present study.

以上に検討した結果、集積回路チップの欠陥検査の目的
を達成するためには、この試料が反射性であることに庄
目し、それ%南の欠陥検出可能な方法おLび構成を開発
しなけnはならないことが判明した。
As a result of the above consideration, in order to achieve the purpose of defect inspection of integrated circuit chips, we decided that this sample is reflective, and developed a method and configuration that can detect defects. It turns out that this is not the case.

このような現状に対し、最近、幾つかの集積回路チップ
上の異物を検査する方法が提案されている。その方法の
第1は、試料面上の1点に偏光レーザを照射し、この点
を、偏光板を肩する顕微鏡で検出することにより、試料
面上の回路パターンを検出せず、異物のみを検出する、
というものである。第2は、この方法を発展させた形式
で、周囲四方向からSIM光レーザで照射し、直交する
方向の二対のレーザで異なる波長のレーザを用い。
In response to this current situation, methods for inspecting foreign substances on some integrated circuit chips have recently been proposed. The first method is to irradiate a point on the sample surface with a polarized laser and detect this point with a microscope that supports a polarizing plate, thereby detecting only the foreign matter without detecting the circuit pattern on the sample surface. To detect,
That is what it is. The second method is an advanced version of this method, in which SIM light lasers are used to irradiate from four directions around the area, and two pairs of lasers in orthogonal directions use lasers with different wavelengths.

検出系で波長分離を行い、それぞれの改良ごとに検出器
を配置して試料面の回路−ターンを検出せずに、異9勿
のみを検出する、というものである。
The detection system performs wavelength separation, and by arranging a detector for each improvement, it detects only the differences without detecting the circuit-turns on the sample surface.

これらの方法は、集積回路チップ上の異物欠陥が検出で
きるという点で画期的でおる。しかし、その検出可能な
欠陥が異物のみであるという点で不十分でめる。
These methods are innovative in that they can detect foreign material defects on integrated circuit chips. However, it is insufficient in that the only detectable defects are foreign particles.

さらに、従来の光学的な各種@j!1.amにおいては
、検出確度を上げるために慎出偽号tl−微分する方法
がとられている(fcと′えは、特公昭56−1418
4 )。しかし、本発明の検査対象であるノくターニン
グされたチップを走査したときは、回路チップサイズと
照射ビーム径との比でほぼ定まる脈動(AC成分という
)、および、走査速度と回路時定数との兼合で決まる矩
形波(f)C成分という)とが発生するため、単純な微
分回路の便用では微小欠陥に対応する鴨の狭い欠陥信号
パルスを抽出することはできない。
In addition, various conventional optical @j! 1. In order to increase the detection accuracy, in am, a method of differentiating the false code tl is used (fc and
4). However, when a turned chip, which is the object of the present invention, is scanned, there is a pulsation (referred to as an AC component) that is approximately determined by the ratio of the circuit chip size and the irradiation beam diameter, and a difference between the scanning speed and the circuit time constant. Since a rectangular wave (referred to as f)C component) determined by the combination of the following is generated, it is not possible to extract a narrow defect signal pulse corresponding to a minute defect using a simple differentiation circuit.

また、検出器出力信号を2分岐し、一つけ差動jJIi
幅器の一方の人力とし、他方は低域フィルタを通して正
常なパターンからの回折光の信号成分を圧縮せしめて基
準電圧として差動増幅器の他方の入力とし、これらの差
分信号をもって欠陥検出に用いることが提案されている
(実開昭5a−2507)。しかし、この方法では、上
述したAC成分が除去されないので欠陥検出は不完全で
おる。
In addition, the detector output signal is branched into two, and a single differential jJIi
The signal component of the diffracted light from the normal pattern is compressed through a low-pass filter and inputted to the other side of the differential amplifier as a reference voltage, and the difference signal is used for defect detection. has been proposed (Utility Model Application Publication No. 5a-2507). However, with this method, defect detection is incomplete because the above-mentioned AC component is not removed.

したがって、本発明の目的はバターニングされた半導体
集積回路チップを光ビームで走査したとき発生する信号
に含まれる欠陥信号パルスを抽出する技術を提供すると
ころにおる。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a technique for extracting defective signal pulses contained in signals generated when a patterned semiconductor integrated circuit chip is scanned with a light beam.

上記の目的を達成するために本発明においては、−走査
信号に現われるDCおよびAC成分の存在をそのまま認
めた上で、この信号(原信号という)を包絡線検波した
後これを原信′4あ比較電圧として用いて欠陥信号パル
スt−2値化して抽出するように構成したことt%徴と
している。
In order to achieve the above object, in the present invention, the existence of the DC and AC components appearing in the scanning signal is recognized as is, and after envelope detection of this signal (referred to as the original signal), this signal is converted into the original signal '4'. It is assumed that the defect signal pulse is t% because it is configured to be used as a comparison voltage and extracted by converting it into a t-binary value.

以下、本発明を実施例を参照して5vIaに説明する。In the following, the invention will be explained below with reference to examples.

第1図は本発明の一実施例を示すブロック図でおる6n
個の検出器10−l−10−nKl−1個々に前置増幅
器11−1〜11−nが接続嘔lる。
Figure 1 is a block diagram showing one embodiment of the present invention.
Preamplifiers 11-1 to 11-n are connected to each of the detectors 10-l-10-nKl-1.

以下検出器とは検出器と前置増幅器(以下PAと略す)
の対をいう。こ扛らの検出器出力e1〜e、は信号合成
回路21に入力される。その出力e、は、DC成分が消
去または低減されfc波形となる(後に第3図で詳細に
説明する)。このel(’ ” l+、・・・・・・+
”)は機台構成要素でおる包節線検波型欠陥信号抽出回
路220入力となる。
Hereinafter, the term “detector” refers to a detector and a preamplifier (hereinafter abbreviated as PA).
refers to a pair of These detector outputs e1 to e are input to the signal synthesis circuit 21. The output e becomes an fc waveform with the DC component eliminated or reduced (details will be explained later in FIG. 3). This el(' ” l+,...+
”) becomes an input to the envelope detection type defect signal extraction circuit 220, which is a component of the machine.

第1図および他の図に現われる記号nの上限値は領域数
と各領域当シの検出器数の横として与えられ、第1表に
その狗を示した。
The upper limit of the symbol n appearing in FIG. 1 and other figures is given as the number of regions and the number of detectors per each region, and is shown in Table 1.

第1表  nの上限 第2図は包路線検波型欠陥Gi号油抽出回路2の1甲□
□−1■−−1 構成i+利例を示すもので、一旦増幅器23で増幅して
のち、調!&を容易にするために設けたアッテネータ2
4を介して絶対値回路25へ入力する。
Table 1 Upper limit of n Figure 2 shows envelope line detection type defect Gi oil extraction circuit 2 1A □
□-1■--1 This shows the configuration i + interest example. After being amplified by the amplifier 23, the key! Attenuator 2 provided to facilitate &
4 to the absolute value circuit 25.

この絶対値回路250便用目的は信号合成回路21で2
対の検出器出力信号の間で差を取った部分があるために
、欠陥信号パルスの極性が反転したものが現われる場合
も検出可能とするためでおる。絶対値回路25の出力信
号はコンパレータ29の入力の1つとする。また、絶対
値回路25の主力を分岐して低域フィルタ26を通して
包絡線検波する。低域フィルタの出力を定倍だけ増幅す
ると共に、包MINIのレベルを上下に調整するために
、可変の直流電圧27を加える加算器28を設ける。こ
のようにして作ったレベル目動追従の包絡線検波をコン
パレータ29の比較電圧として入力すれば、欠陥信号パ
ルスを抽出できる。以下、この様子t−第3図で説明す
る。
The purpose of this absolute value circuit 250 is to use the signal synthesis circuit 21.
This is because there is a difference between the pair of detector output signals, so that it is possible to detect even when a defective signal pulse with an inverted polarity appears. The output signal of the absolute value circuit 25 is assumed to be one of the inputs of the comparator 29. Further, the main power of the absolute value circuit 25 is branched and passed through a low-pass filter 26 for envelope detection. An adder 28 is provided to amplify the output of the low-pass filter by a fixed amount and to add a variable DC voltage 27 in order to adjust the level of the envelope MINI up or down. If the envelope detection of the level movement tracking created in this way is inputted as a comparison voltage to the comparator 29, a defective signal pulse can be extracted. This situation will be explained below with reference to FIG.

第3図において、(→は検出器出力信号の一例、たとえ
ばe、の波形でおる。ここに、欠陥信号パルスをβで表
わす。この成形は半導体集積回路パターンを走査したと
きに現われる典型的な波形でおる。この信号を信号合成
画@21によってDC成分がほとんど消去されれば(b
)となる。この(b)の波形は絶対値回路25によって
(C)どなる。これは原信号でもある。この信号を包絡
線検波すれは(d)が得られ、それに包絡線検波波のレ
ベルを調整するために直流電圧を加えれば(e)が得ら
れる。コンパレータ29の入力は、(C)と(e)であ
シ、それを重ねて書けば(f)となる。このようにして
欠陥信号パルスβだけが抽出され、位)となる。
In Figure 3, (→ is an example of the waveform of a detector output signal, e.g. If the DC component of this signal is almost eliminated by the signal synthesis image @21, then (b
). The waveform of (b) is changed to (c) by the absolute value circuit 25. This is also the original signal. When this signal is envelope-detected, (d) is obtained, and when a DC voltage is added thereto to adjust the level of the envelope-detected wave, (e) is obtained. The inputs of the comparator 29 are (C) and (e), and if they are written together, it becomes (f). In this way, only the defective signal pulse β is extracted, resulting in position ().

以上に示したのは、信号合成画j821でDC成分が消
去された場合である。e1〜e、の間で差をとることに
よってDC成分を消去するのであるが、互いに差を取る
とき、DC成分の大きさが異なることがおる。そのとき
は、(b)ではなく、(,1)と相似あるいは極性の反
転した相似の波形が得られる。極性反転しても絶対値回
路によって常に定極性となる。このように、DC成分が
残った場合(DC成分の低減)でも、DC成分が含まれ
た状愈で包絡線検波される。そして、DC成分のレベル
変動に応じて包絡線検収のDC成分も変動してくれる。
What has been shown above is the case where the DC component is erased in the signal composite image j821. The DC component is eliminated by taking the difference between e1 to e, but when taking the difference from each other, the magnitude of the DC component may differ. In that case, instead of (b), a waveform similar to (,1) or similar to (,1) with reversed polarity is obtained. Even if the polarity is reversed, the absolute value circuit always maintains constant polarity. In this way, even if a DC component remains (reduction of the DC component), envelope detection is performed with the DC component included. The DC component of the envelope inspection also changes in accordance with the level fluctuation of the DC component.

すなわち、チップの場均によって、あるいは異なるチッ
プになることによって、信号合成回路21の出力信号に
DC成分が残った場合にも欠陥信号パルスの抽出は完全
である。
In other words, even if a DC component remains in the output signal of the signal synthesis circuit 21 due to the condition of the chip or due to a different chip, the defective signal pulse can be completely extracted.

上記のような性質に注目すると、包1M!IIf!A検
波型欠陥信号抽出回路fn個の検出器に個個に接続すれ
ば第3図(a)のような波形のままで欠陥信号パルスを
抽出できることとなる。その上で、n個の2値化された
抽出パルスの間で0几を取れば、01固の検出器のいず
れか1個の検出器に現われれは欠陥信号パルスを抽出で
きることとなる。この方式を図示したのが第4図で、包
結線検波型欠陥信号抽出回路22′μ検出器の数nだけ
必賛となる。
If you pay attention to the above properties, the package is 1M! IIf! If the A-detection type defect signal extraction circuit is individually connected to fn detectors, the defect signal pulse can be extracted with the waveform as shown in FIG. 3(a). On this basis, if a zero value is taken among the n binarized extraction pulses, it is possible to extract a defective signal pulse that appears on any one of the 01-fixed detectors. This method is illustrated in FIG. 4, where the number n of the envelope detection type defect signal extraction circuit 22'μ detectors is required.

これらのn個の間でOR素子30でORをとる。An OR element 30 performs an OR operation between these n values.

第4図の包絡廟検波型欠陥信号抽出回路22′は第3図
における22とは肥料11回路25がないことが異なる
。それは、第3図(a)の如きの検出器出力は単極性で
あるため絶対値回路が不安となる。
The envelope detection type defect signal extraction circuit 22' shown in FIG. 4 differs from the circuit 22 shown in FIG. 3 in that the fertilizer 11 circuit 25 is not provided. This is because the detector output as shown in FIG. 3(a) is unipolar, which makes the absolute value circuit unstable.

これを示したのが第5図でるる。This is shown in Figure 5.

第6図(h)は第3図(匈に対応し、検出器出力波形の
一例、(i)はその包MI−検波姑れた波形、(j)は
(りを比較電圧とする(h)の21161化されたコン
バレー・り出力、(k)はn個の包MI縁検技形欠陥偏
号抽出回路22’−1〜22’ −Hの間のOR出力で
るる。
FIG. 6(h) corresponds to FIG. ) is the output of the 21161 convergence signal, and (k) is the OR output of n integral MI margin inspection technique defect deviation extraction circuits 22'-1 to 22'-H.

以上詐述した本願発明は従来手法の率なる適用では欠陥
信号パルスを抽出できないような倍増形態となるパター
ニングされた半導体チップ表面の欠陥を確度よく検出可
能とする性能t−有している。
The present invention as described above has the ability to accurately detect defects on the surface of a patterned semiconductor chip, which are of a multiplied type and cannot extract defect signal pulses by applying conventional techniques.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示すブロック図、#!
2図は第1図における包AI!!4!il検波型欠陥信
号抽出回路部分の詳a構成を示すブロック図、第311
!Jii第2図における各部の動作波形を示す図、第4
図は本発明の第2の実施例を示すブロック図、第5図は
第4図における包絡f1検波型欠陥信号抽出回路部分の
詳細構成を示すブロック図、第6図は4@5図における
各部の動作波形を示す図である。 !A 1 図 Y72  図 耐 3  図 (9)”−−−m−t Y4− 図 VJ5図 某 乙 図 第1頁の続き ■出 願 人 日立電子エンジニアリング株式%式%
FIG. 1 is a block diagram showing a first embodiment of the present invention, #!
Figure 2 is the package AI in Figure 1! ! 4! Block diagram showing the detailed configuration of the il detection type defect signal extraction circuit part, No. 311
! Figure 4 shows the operation waveforms of each part in Figure 2.
The figure is a block diagram showing the second embodiment of the present invention, FIG. 5 is a block diagram showing the detailed configuration of the envelope f1 detection type defect signal extraction circuit part in FIG. 4, and FIG. It is a figure which shows the operation waveform of. ! A 1 Figure Y72 Figure resistance 3 Figure (9)'' ---m-t Y4- Figure VJ5 Figure B Continuation of figure 1 page ■ Applicant Hitachi Electronics Engineering stock % formula %

Claims (1)

【特許請求の範囲】 1、fj1定の太さの元ビームスボンド径kmざしめた
コヒーレント光源部と、該ビームを#&横回路パターン
を有する試料表面上で垂直に走査する走査部と、試料が
光ビームで走査されたとき正常な回路パターンで発生す
る反射回折光が本来到達しない値数の空間領域の各頭載
に複数個の検出器を設けfc検出器群と、検出器群の各
検出器の出力信号を1六ログ績域で一つの信号にするた
めの1d1号合成手段とから成る欠陥検査装置において
、該徊号合成手段によって正または負の極性の欠陥f8
号パルスとなったものを定極性の欠陥信号パルスにする
ための絶対値回路と、該絶刈値回路の出力信号を一方と
他方の信号に2分岐して、その一方の信号を包WIIi
li!検波回箱を介して俊、値可変のDC@圧を加えて
基準信号を作成する手段と、該基準信号と前記2分岐し
た他方の信号とを比較器に加えて欠陥信号パルスを抽出
2値化することt%徴とする欠陥検査装置。 2、所定の太さの光ビームスポット径ヲ44すしめたコ
ヒーレント光源部と、該元ビームを集積回路パターンを
有する試料表面上で老直に走査する走査部と、試料が光
ビームで走青さnたとき正常な回路パターンで発生する
反射回折光が本来到達しない複数の空間領域に複数個の
検出器を設けた検出器群とから成る欠陥検査装置におい
て、各々の検出器の出力信号ごとに欠陥16号パルスを
抽出2値化し、複数個の該2値化匍号を入力信号とする
ra理相和1’回路または素子とを付加して成ることを
特徴とする欠陥検査装置。
[Scope of Claims] 1. A coherent light source section with a base beam bond diameter of km having a constant fj1 thickness, a scanning section that vertically scans the beam on a sample surface having a #&horizontal circuit pattern, and a sample A plurality of detectors are mounted on each head of a spatial region of a number of values that the reflected and diffracted light generated in a normal circuit pattern does not reach when the circuit pattern is scanned by a light beam. In a defect inspection device comprising a 1d1 synthesizing means for converting the output signal of the detector into one signal in a 16 log record area, the wandering signal synthesizing means detects a positive or negative polarity defect f8.
An absolute value circuit for converting the signal pulse into a fixed-polarity defect signal pulse, and an output signal from the absolute value circuit are branched into two signals, one signal and the other signal, and one of the signals is wrapped.
li! A means for creating a reference signal by applying a DC pressure of variable value through a detection box, and a means for adding the reference signal and the other signal of the two branches to a comparator to extract a defective signal pulse with binary values. A defect inspection device that detects t% of defects. 2. A coherent light source section with a light beam spot diameter of a predetermined thickness of 44, a scanning section that directly scans the original beam on the surface of the sample having an integrated circuit pattern, and a scanning section that scans the sample surface with the light beam. In a defect inspection system consisting of a group of detectors, each of which has a plurality of detectors located in a plurality of spatial regions where the reflected and diffracted light generated in a normal circuit pattern does not normally reach, each output signal of each detector is detected. 1. A defect inspection device comprising: extracting and binarizing defect No. 16 pulses from the image forming apparatus; and adding an RA summation 1' circuit or element which uses a plurality of the binarized pulses as input signals.
JP57089932A 1982-05-28 1982-05-28 Inspecting device of defect Pending JPS58206949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089932A JPS58206949A (en) 1982-05-28 1982-05-28 Inspecting device of defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089932A JPS58206949A (en) 1982-05-28 1982-05-28 Inspecting device of defect

Publications (1)

Publication Number Publication Date
JPS58206949A true JPS58206949A (en) 1983-12-02

Family

ID=13984464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089932A Pending JPS58206949A (en) 1982-05-28 1982-05-28 Inspecting device of defect

Country Status (1)

Country Link
JP (1) JPS58206949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586058A (en) * 1990-12-04 1996-12-17 Orbot Instruments Ltd. Apparatus and method for inspection of a patterned object by comparison thereof to a reference
US5619429A (en) * 1990-12-04 1997-04-08 Orbot Instruments Ltd. Apparatus and method for inspection of a patterned object by comparison thereof to a reference
EP0803903A2 (en) * 1996-04-25 1997-10-29 Nec Corporation Automatic visual inspection and failure categorization system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586058A (en) * 1990-12-04 1996-12-17 Orbot Instruments Ltd. Apparatus and method for inspection of a patterned object by comparison thereof to a reference
US5619429A (en) * 1990-12-04 1997-04-08 Orbot Instruments Ltd. Apparatus and method for inspection of a patterned object by comparison thereof to a reference
US6360005B1 (en) 1990-12-04 2002-03-19 Applied Materials, Inc. Apparatus and method for microscopic inspection of articles
EP0803903A2 (en) * 1996-04-25 1997-10-29 Nec Corporation Automatic visual inspection and failure categorization system
EP0803903A3 (en) * 1996-04-25 1998-11-25 Nec Corporation Automatic visual inspection and failure categorization system

Similar Documents

Publication Publication Date Title
KR101700319B1 (en) Systems and methods for detecting defects on a wafer
US6597446B2 (en) Holographic scatterometer for detection and analysis of wafer surface deposits
US20010013936A1 (en) Detection system for nanometer scale topographic measurements of reflective surfaces
JP5425494B2 (en) Improvement of defect detection system
KR20210034699A (en) Detecting defects on a wafer
JP2008096430A (en) Method and apparatus for detecting defect
US6208750B1 (en) Method for detecting particles using illumination with several wavelengths
JP2014137229A (en) Inspection system and defect inspection method
JPS58206949A (en) Inspecting device of defect
JP2822937B2 (en) Semiconductor device manufacturing system and defect inspection method
JP3047881B2 (en) Semiconductor device manufacturing system and semiconductor device manufacturing method
JPH05142156A (en) Foreign matter inspecting device
JPS59135353A (en) Surface flaw detecting apparatus
JPS596537A (en) Defect inspector
JPS61189406A (en) Pattern binarization method and its device
JP2001091451A (en) Crystal defect analyzer
JP2898669B2 (en) Defect inspection equipment
JPS63284455A (en) Surface defect inspection device
US6992773B1 (en) Dual-differential interferometry for silicon device damage detection
JP3338118B2 (en) Method for manufacturing semiconductor device
JP3201396B2 (en) Method for manufacturing semiconductor device
JPS5961142A (en) Inspecting device of defect
JPH07159333A (en) Apparatus and method for inspection of appearance
JPS61132845A (en) Surface detect inspecting device
JP2657856B2 (en) Foreign matter inspection data map display method