JPS58206833A - Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine - Google Patents

Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine

Info

Publication number
JPS58206833A
JPS58206833A JP57089397A JP8939782A JPS58206833A JP S58206833 A JPS58206833 A JP S58206833A JP 57089397 A JP57089397 A JP 57089397A JP 8939782 A JP8939782 A JP 8939782A JP S58206833 A JPS58206833 A JP S58206833A
Authority
JP
Japan
Prior art keywords
fuel injection
engine
throttle valve
intake pipe
pipe inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57089397A
Other languages
Japanese (ja)
Other versions
JPH0223698B2 (en
Inventor
Kazuo Inoue
和雄 井上
Masatake Suzuki
正剛 鈴木
Tetsuo Yamagata
哲雄 山形
Toshihiko Sato
俊彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP57089397A priority Critical patent/JPS58206833A/en
Publication of JPS58206833A publication Critical patent/JPS58206833A/en
Publication of JPH0223698B2 publication Critical patent/JPH0223698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make it unnecessary to provide a suction air pipe inner pressure detecting sensor on the compressor downstream side to lower the cost of the titled device by obtain a suction air density correction coefficient as a function of the suction pipe inner pressure on the upsteram side of a compressor of a supercharger, the temperature of suction air, and a suction pipe inner pressure on the downstream side of a throttle valve. CONSTITUTION:The titled controlling device determines a basic fuel injection quantity Ti in a basic fuel injection quantity calculating circuit 13 from a rotational speed Ne obtained in a rotational speed sensor 6 from output signals from rotation sensors 1 and 2 which detect the standard position of a cam shaft C of the engine, the suction pipe inner pressure PB due to a pressure sensor 7 or a throttle valve opening degree thetaTH due to a throttle valve opening degree sensor 8 in a basic fuel injection quantity calculating circuit 13. This injection quantity Ti is corrected in a multiplying circuit 30 by a suction air density correcting coefficient etaA corresponding to the driving condition of the engine, to thereby control injection valves 35 and 36, respectiely. In this case, the above described correction coefficient gammaA is obtained in a suction air density correction coefficient memory circuit 26 from the suction pipe inner pressure PB, the suction air temperature T1 due to the suction air temperature sensor 9 and the suction pipe inner pressure P1 on the upstream side of the compressure of the supercharger.

Description

【発明の詳細な説明】 本発明は内燃エンジンの電子式燃料噴射制御装置の噴射
量補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an injection amount correction method for an electronic fuel injection control device for an internal combustion engine.

内燃エンジンの電子式燃料噴射制御装置においてはエン
ジンの吸気管に設けたスロットル弁下流の吸気管内圧又
はスロットル弁開度のいずれか一方と回転数とを用いて
燃料噴射の基本量を決定する方式がある。このような基
本噴射量を決定する方法とし−Cmは、エンジンの比較
的低負荷領域ではエンジン回転数Neとスロットル弁下
流の吸気管内圧PRとをパラメータとしたマトリックス
メモ!J(PR−Neマツプ)を用いて又比較的高負荷
領域ではエンジン回転数Neとスロットル弁開度θth
とをパラメータとしたマトリックスメモリ(θth −
Neマツプ)を用いて基本燃料噴射量Tiを決定するハ
イブリッド方式がある。
In an electronic fuel injection control device for an internal combustion engine, the basic amount of fuel injection is determined using either the intake pipe internal pressure downstream of a throttle valve installed in the engine's intake pipe or the throttle valve opening and the rotational speed. There is. As a method for determining such a basic injection amount, -Cm is a matrix memo using the engine speed Ne and the intake pipe internal pressure PR downstream of the throttle valve as parameters in a relatively low load region of the engine. Using J (PR-Ne map), engine speed Ne and throttle valve opening θth are calculated in a relatively high load region.
A matrix memory (θth −
There is a hybrid method in which the basic fuel injection amount Ti is determined using the Ne map.

更にターボチャージャ付エンジンにおいては、コンプレ
ッサ上流側の吸気管内圧(吸気圧)Pt及び吸気温度T
l並びにコンプレッサ下流側の吸気管内圧すなわちコン
プレッサ出口とスロットル弁との中間における過給され
た吸気圧力(過給圧) P2を夫々検出し、これらの各
検出値P1.T、 、P、をパラメータとして吸気密度
補正係数iAを求め、該補正係数γ人によシ前記基本燃
料噴射量Tiを補正し、運転状態の変化による吸気の温
度及び圧力すなわち密度の変化に応じて燃料噴射量の補
正を行なうようにしている。
Furthermore, in a turbocharged engine, the intake pipe internal pressure (intake pressure) Pt on the upstream side of the compressor and the intake air temperature T
1 and the intake pipe internal pressure on the downstream side of the compressor, that is, the supercharged intake pressure (supercharging pressure) P2 between the compressor outlet and the throttle valve, and these detected values P1. An intake air density correction coefficient iA is obtained using T, , P, as parameters, and the correction coefficient γ is manually corrected to the basic fuel injection amount Ti in response to changes in intake air temperature and pressure, that is, density due to changes in operating conditions. The fuel injection amount is corrected based on this.

しかしながら、吸気密度補正のための前記コンプレッサ
の下流側の吸気管内圧P2を検出する過給圧センサは検
出精度が高く且つ応答性の速いものが要求される。この
ような圧力センサとしてはダイヤプラム式半導体圧力セ
ンナが使用されているが、かかる圧力センサは高価であ
り、これに伴ないシステムが高価となる。
However, the boost pressure sensor for detecting the intake pipe internal pressure P2 on the downstream side of the compressor for intake air density correction is required to have high detection accuracy and quick response. A diaphragm type semiconductor pressure sensor is used as such a pressure sensor, but such a pressure sensor is expensive, and the system accordingly becomes expensive.

本発明は上述の点に鑑みてなされたもので、コンプレッ
サ下流側の吸気閂圧P、を他のパラメータによってシミ
ュレートすることにより必要な吸気密度補正を行ない、
前記コンプレッサ下流側の吸気管内圧P2検出用圧カセ
ンサを省略したシステムを提供することを目的とする。
The present invention has been made in view of the above points, and performs necessary intake air density correction by simulating the intake bolt pressure P on the downstream side of the compressor using other parameters.
It is an object of the present invention to provide a system in which the pressure sensor for detecting the intake pipe internal pressure P2 on the downstream side of the compressor is omitted.

この目的を達成するために本発明においては、ターボチ
ャージャ等のコンプレッサとエアクリーナとエンジンの
吸気ボートとが連なる吸気管を有する燃料噴射式エンジ
ンの回転数Neと、前記吸気管に設けたスロットル弁下
流の吸気管内圧PB又はスロットル弁開度0thのパラ
メータによシ基本燃料噴射量を決定し、前記エンジンの
運転状態に応じた吸気wry補正係数を求めて前記基本
燃料噴射量を補正する内燃エンジンの電子式燃料噴射制
御装置の噴射量補正方法に2いて、前記コンプレッサの
上流側の吸気管内圧Plとその吸気温度T1のパラメー
タ及び前記スロットル弁下流の吸気管内圧PRのパラメ
ータの関数として前記吸気密度補正係数を求めるように
した内燃エンジンの電子式燃料17Jj射制御装置の噴
射量補正方法を提供するものである。
In order to achieve this object, the present invention has developed a system for controlling the rotational speed Ne of a fuel injection engine having an intake pipe in which a compressor such as a turbocharger, an air cleaner, and an intake boat of the engine are connected, and a throttle valve provided downstream of the intake pipe. The basic fuel injection amount is determined based on the parameters of the intake pipe internal pressure PB or the throttle valve opening 0th, and the basic fuel injection amount is corrected by determining an intake air correction coefficient according to the operating state of the engine. In the injection amount correction method of the electronic fuel injection control device, the intake air density is determined as a function of the parameters of the intake pipe internal pressure Pl on the upstream side of the compressor and its intake air temperature T1, and the parameters of the intake pipe internal pressure PR downstream of the throttle valve. The present invention provides an injection amount correction method for an electronic fuel injection control device for an internal combustion engine, which calculates a correction coefficient.

以下本発明の一実:施例を添付図面に基づいて詳\ 述する。Hereinafter, one embodiment of the present invention will be described in detail based on the attached drawings. Describe.

先ず、本発明の燃料噴射量の補正方法の原理について説
明する。
First, the principle of the fuel injection amount correction method of the present invention will be explained.

基本燃料噴射量Tiを補正する吸気密度補正係数γAは
次式で表わされる。
The intake air density correction coefficient γA for correcting the basic fuel injection amount Ti is expressed by the following equation.

7A =ら×−・・・・・・・・・・・・(1)PoT
7A = ra×−・・・・・・・・・・・・(1) PoT
.

ここに、値Poは標準大気圧(760wnHg)、To
は標準温度(25℃)、P2はコンプレッサ下流側の吸
気管内圧s T2はコンプレッサ下流側の吸気温度を表
わす。この吸気温度T、はエンジンの運転条件変化によ
る温匿質化が犬きく又早いために、検出精度及び応答性
の点から温度センサにより直接検出することは高価な温
度センサ装置を用いる必要が有るので演算により算出し
ている。
Here, the value Po is standard atmospheric pressure (760wnHg), To
is the standard temperature (25° C.), P2 is the intake pipe internal pressure s on the downstream side of the compressor, and T2 is the intake air temperature on the downstream side of the compressor. This intake air temperature T changes rapidly due to changes in engine operating conditions, so direct detection with a temperature sensor requires the use of an expensive temperature sensor device in terms of detection accuracy and responsiveness. Therefore, it is calculated by calculation.

エンジンのスロットル弁下流の吸気管内圧、コンプレッ
サ上流側の吸気管内圧を夫々PR,PI、それらの吸気
温度を夫々TB、T、とすると(TB/TI)と(PR
/F、)との関係は第1図に示すような1次関数で近似
され、次式の関係式で表わすことができる。
Let the intake pipe internal pressure downstream of the engine throttle valve and the intake pipe internal pressure upstream of the compressor be PR and PI, respectively, and their intake air temperatures TB and T, respectively. (TB/TI) and (PR
/F, ) is approximated by a linear function as shown in FIG. 1, and can be expressed by the following relational expression.

TB     PB −= ai (−) + bi       ・・・・
・・・・・・・・(2)T i    P+ (ai、biは定数) よって、 また、吸気密度補正係数γAは次式で表わされる。
TB PB −= ai (−) + bi ・・・・
(2) T i P+ (ai and bi are constants) Therefore, the intake air density correction coefficient γA is expressed by the following formula.

(nはポリトロープ指数) 従って、この(4)式に前記(3)式を代入すると、係
数γAは次式で与えられる。
(n is a polytropic index) Therefore, by substituting the above equation (3) into this equation (4), the coefficient γA is given by the following equation.

・・・・・・・・・・・・(5) この式(4)において、値”Or%は前述したように定
数であり、吸気管内圧P1は圧力センサで検出し吸気温
度T1は温度センサで検出する。従って、上式によれば
値P2をPBで近似的に算出することができ、吸気管内
圧P2を検出することなく補正係数γAを求めることが
可能である。
・・・・・・・・・・・・(5) In this formula (4), the value "Or%" is a constant as mentioned above, the intake pipe internal pressure P1 is detected by the pressure sensor, and the intake air temperature T1 is the temperature Therefore, according to the above equation, the value P2 can be approximately calculated by PB, and the correction coefficient γA can be obtained without detecting the intake pipe internal pressure P2.

第2図は本発明の2気筒エンジンにおける一実施例を示
すブロック図である。図において、符号1及び2は夫々
第1及び第2の可変レラクタンス式軸回転センサを示し
、これらの各センサ1,2は第3図に示すエンジンEの
カム軸CAの基準位置を検出するもので、本実施例にお
いては、互いに180度位相を異にするパルスを出力す
るように配されている。これらの各センサ1,2は夫々
波形整形回路3,4の入力側に接続され、後者の出力側
はエンジン回転数カウンタ6及び噴射時間カウンタ31
,32の入力側に接続されている。
FIG. 2 is a block diagram showing an embodiment of a two-cylinder engine according to the present invention. In the figure, numerals 1 and 2 indicate first and second variable reluctance shaft rotation sensors, respectively, and these sensors 1 and 2 detect the reference position of the camshaft CA of the engine E shown in FIG. 3. In this embodiment, they are arranged so as to output pulses having a phase difference of 180 degrees from each other. These sensors 1 and 2 are connected to the input sides of waveform shaping circuits 3 and 4, respectively, and the output side of the latter is connected to an engine rotation number counter 6 and an injection time counter 31.
, 32.

クロック発信回路はカウンタ6.23,31.32及び
アナログスイッチ11の入力側に接続されており、カウ
ンタ6.23,31.32にクロックパルスCPを、ア
ナログスイッチ11に制御パルスφを供給する。
The clock generation circuit is connected to the input sides of the counters 6.23, 31.32 and the analog switch 11, and supplies the counters 6.23, 31.32 with a clock pulse CP and the analog switch 11 with a control pulse φ.

第3図は本発明に係るターボチャージャ付エンジンの模
式図で、エンジンEの排気ガスは排気管Exを通してタ
ーボチャージャTBのタービンTに供給され、このター
ビンTを駆動した後マフラMから排出され、エアクリー
ナACから送出された仝気はタービンTに直結されたコ
ンプレッサCにより圧縮され吸気管Inを通じてエンジ
ンEの吸入弁側に供給される。また、符号Rはレゾナン
スチャンバ、符号Sはサージタンクを示す。
FIG. 3 is a schematic diagram of an engine with a turbocharger according to the present invention, in which exhaust gas from the engine E is supplied to the turbine T of the turbocharger TB through the exhaust pipe Ex, and after driving the turbine T, is discharged from the muffler M. Air sent out from the air cleaner AC is compressed by a compressor C directly connected to a turbine T, and is supplied to the intake valve side of the engine E through an intake pipe In. Further, the symbol R indicates a resonance chamber, and the symbol S indicates a surge tank.

圧力センサ7はエンジンの吸気管の第3図に示す様にス
ロットル弁m下流側の圧力PBを検出するもので、例え
ばダイヤプラムと半導体で構成されている。スロットル
弁開度センサ8は前記エンジンの吸気管内に配されたス
ロットル弁TLの開度θthを検出するもので1例えば
ポテンショメータで構成されている。温度センサ9はタ
ーボチャージャ付コンプレッサの入口の吸気温度Tlを
検出するものである。圧力センサ10はコンプレッサの
上流側すなわち、コンプレッサCの入口の吸気管内圧P
lを検出するものである。これらの圧力センサ7、スロ
ットル弁開度センサ8、温度センサ9及び圧力センサ1
0はアナログスイッチ11の各入力側に接続され、該ア
ナログスイッチ11の出力側はアナログ−デジタル変換
器(以下A−D変換器という)12の入力11111に
接続されている。
The pressure sensor 7 detects the pressure PB on the downstream side of the throttle valve m as shown in FIG. 3 in the intake pipe of the engine, and is composed of, for example, a diaphragm and a semiconductor. The throttle valve opening sensor 8 detects the opening θth of the throttle valve TL arranged in the intake pipe of the engine, and is composed of, for example, a potentiometer. The temperature sensor 9 detects the intake air temperature Tl at the inlet of the turbocharged compressor. The pressure sensor 10 detects the intake pipe internal pressure P at the upstream side of the compressor, that is, at the inlet of the compressor C.
This is to detect l. These pressure sensor 7, throttle valve opening sensor 8, temperature sensor 9, and pressure sensor 1
0 is connected to each input side of an analog switch 11, and the output side of the analog switch 11 is connected to an input 11111 of an analog-to-digital converter (hereinafter referred to as an AD converter) 12.

A−D変侠器12の出力側は、基本燃料噴射量算出回路
13の比較回路14、基本燃料ll!Jt@量記憶回路
(PB−・Neマツプ)15、基本燃料噴射量記憶回路
(θth −Neマツプ)16及び吸気密度補正係数記
憶回路26の各入力側に接続されて 、いる。基本燃料
噴射量記憶回路15.16の各入力側には前記エンジン
回転数カウンタ6の出力側が接続されている。
The output side of the A-D converter 12 is the comparison circuit 14 of the basic fuel injection amount calculation circuit 13, and the basic fuel ll! It is connected to each input side of the Jt@ amount storage circuit (PB-/Ne map) 15, the basic fuel injection amount storage circuit (θth-Ne map) 16, and the intake air density correction coefficient storage circuit 26. The output side of the engine revolution counter 6 is connected to each input side of the basic fuel injection amount storage circuit 15,16.

乗算回路30の一方の入力側には基本燃料噴射量記憶回
路15及び16の出力側が、他方の入力側には吸気密度
補正係数記憶回路26の出力側が接続されており、出力
側は噴射時間カウンタ31゜32の入力側に接続されて
いる。これらの各カウンタ31.32の出力側は夫々噴
射弁駆動回路・33.34の入力側に接続され、後者の
出力側1は燃料噴射弁35.36に接続されている。
The output sides of the basic fuel injection amount storage circuits 15 and 16 are connected to one input side of the multiplication circuit 30, and the output side of the intake air density correction coefficient storage circuit 26 is connected to the other input side, and the output side is connected to an injection time counter. It is connected to the input side of 31°32. The output side of each of these counters 31.32 is respectively connected to the input side of an injector drive circuit 33.34, and the output side 1 of the latter is connected to a fuel injection valve 35.36.

次に第2図の構成の作動を説明する。Next, the operation of the configuration shown in FIG. 2 will be explained.

第1、第2の軸回転センサ1,2はカム軸CAの基準位
置を検出し、互いに180度位相を異にするパルスが夫
々波形整形回路3,4に供給され、そこで波形整形され
、パルスPa  、Pb として出力される。カウンタ
6はパルスPaが入力された時刻からパルスpbが入力
された時刻までの間にクロック発振回路5から入力され
るクロックツくパルスCPをカウントして軸回転センサ
1,2の基準位置間の周期を計測し、周期の逆数すなわ
ち、エンジン回転数Neに比例した2進コ一ド信号を出
力する。
The first and second shaft rotation sensors 1 and 2 detect the reference position of the camshaft CA, and pulses having a phase difference of 180 degrees from each other are supplied to waveform shaping circuits 3 and 4, respectively, where the waveforms are shaped and the pulses are It is output as Pa and Pb. The counter 6 counts the clock pulse CP input from the clock oscillation circuit 5 from the time when the pulse Pa is input to the time when the pulse pb is input, and calculates the period between the reference positions of the shaft rotation sensors 1 and 2. , and outputs a binary code signal proportional to the reciprocal of the period, that is, the engine rotation speed Ne.

エンジンのスロットル弁下流側の吸気管内圧PRを圧力
センサ7により、スロットル弁開度θthはスロットル
弁開度センサ8により、コンプレッサCの上流側の吸気
温iTtは温度センサ9により、コンプレッサの上流側
の吸気管内圧P1は圧力センサ10により夫々検出され
、検出された各アナログ信号はクロック発振回路5から
所定のタイミングで加えられる制酋パルスφにより切換
作動するアナログスイッチ11を通して順次A−D変換
器12に送られ、夫々相当する2進コ一ド信号に変換さ
れ必要な信号を各回路に出力する。
The intake pipe internal pressure PR on the downstream side of the throttle valve of the engine is measured by the pressure sensor 7, the throttle valve opening θth is measured by the throttle valve opening sensor 8, and the intake air temperature iTt on the upstream side of the compressor C is measured by the temperature sensor 9. The intake pipe internal pressure P1 is detected by a pressure sensor 10, and each detected analog signal is sequentially sent to an A-D converter through an analog switch 11 which is switched by a suppressing pulse φ applied from a clock oscillation circuit 5 at a predetermined timing. 12, the signals are converted into corresponding binary code signals, and the necessary signals are output to each circuit.

比較回路14はA−D変換されたスロットル弁開度θt
hに相当する信号と設定値θth1とを比較し、θth
<θthtの場合には基本燃料噴射量記憶回路15全、
θth>θth1の場合には基本燃料噴射量記憶回路1
6を選択する。基本燃料噴射量記憶回路15はカウンタ
6から出力されるエンジン回転数Neに相当する信号と
、A−D変換器12から出力されるスロットル弁下流側
の吸気管内圧PRに相当する信号とを入力とし、予めス
ロットル弁下流側の吸気管内圧PB及びエンジン回転数
Neの関数として記憶されている基本燃料噴射量Tiに
相当する2進コ一ド信号を出力する。基本燃料噴射量記
憶回路16はカウンタ6から出力されるエンジン回転数
Neに相当する信号と、A−D変換器12から出力され
るスロットル弁7H#thに相当する信号とを入力とし
、予めスロットル弁開度θth及びエンジン回転iNe
の関数として記憶されている基本燃料噴射量Tiに相当
する2運コ一ド信号を出力する。すなわち、Uth<θ
thlのときには基本燃料噴射量記憶回路15から、U
th>Uth1のときには基本燃料噴射量記憶回路16
から所要の基本燃料噴射量Tiに相当す為2進コ一ド信
号を出力する。
The comparison circuit 14 receives the A-D converted throttle valve opening θt.
The signal corresponding to h and the set value θth1 are compared, and θth
<θtht, all basic fuel injection amount storage circuits 15,
If θth>θth1, the basic fuel injection amount storage circuit 1
Select 6. The basic fuel injection amount storage circuit 15 receives a signal corresponding to the engine speed Ne output from the counter 6 and a signal corresponding to the intake pipe internal pressure PR on the downstream side of the throttle valve output from the A-D converter 12. Then, a binary code signal corresponding to the basic fuel injection amount Ti, which is stored in advance as a function of the intake pipe internal pressure PB on the downstream side of the throttle valve and the engine speed Ne, is output. The basic fuel injection amount storage circuit 16 inputs a signal corresponding to the engine rotation speed Ne output from the counter 6 and a signal corresponding to the throttle valve 7H#th output from the A-D converter 12, and Valve opening θth and engine rotation iNe
A two-way code signal corresponding to the basic fuel injection amount Ti stored as a function of is output. That is, Uth<θ
thl, the basic fuel injection amount storage circuit 15 outputs U
When th>Uth1, the basic fuel injection amount storage circuit 16
Since this corresponds to the required basic fuel injection amount Ti, a binary code signal is output.

吸気密度補正係数記憶回路26はA−D変換器12から
出力されるスロットル弁下流側の吸気管内圧PB1コン
プレッサ入口の吸気温度Tl及びコンプレッサ上流側の
吸気管内圧Plに相当する信号とを入力とし、予め圧力
PR,PI及び温度T1の関数として記憶されている吸
気密度補正係数γムに相当する2進コ一ド信号を出力す
る。
The intake air density correction coefficient storage circuit 26 receives as input signals corresponding to the intake pipe internal pressure PB on the downstream side of the throttle valve, the intake air temperature Tl at the compressor inlet, and the intake pipe internal pressure Pl on the upstream side of the compressor, which are output from the A-D converter 12. , outputs a binary code signal corresponding to an intake air density correction coefficient γm stored in advance as a function of pressures PR, PI and temperature T1.

この吸気rPi度補正補正係数により前記基本燃料噴射
量Tiを補正する。すなわち、乗算回路30により基本
w5科噴射量記憶回路15又は16から出力される基本
燃料噴射量Tiに相当する信号に吸気密度補正係数γ^
に相当する信号を乗算して実際の噴射量T(=Tixγ
人)を算出する。この乗算回路30は算出した噴射量T
に相当する2進コ一ド信号を出力する。
The basic fuel injection amount Ti is corrected by this intake rPi degree correction coefficient. That is, the multiplication circuit 30 adds the intake air density correction coefficient γ^ to the signal corresponding to the basic fuel injection amount Ti output from the basic w5 injection amount storage circuit 15 or 16.
The actual injection amount T (= Tixγ
people). This multiplier circuit 30 calculates the calculated injection amount T
Outputs a binary code signal corresponding to .

この乗算回路30出力は波形整形回路3,4から出力さ
れ噴射開始のタイミングを指定する基準位置パルス信号
Pa 、Pbが噴射時間カウンタ31゜32に加えられ
たとき、にこれらの各カウンタ31゜32にプリセット
される。これらの各カウンタ31゜32はクロック発振
回路5から入力されるクロックパルスCPによりプリセ
ットされた値から0になるまでダウンカウントし、この
ダウンカウントしている期間噴射信号を出力する。噴射
弁駆動回路33.34は入力する噴射信号を電流増幅し
て噴射弁35.36を駆動し、燃料を噴射させる。
The output of this multiplier circuit 30 is outputted from the waveform shaping circuits 3 and 4 when the reference position pulse signals Pa and Pb specifying the injection start timing are applied to the injection time counters 31 and 32 respectively. is preset to . Each of these counters 31 and 32 counts down from a preset value to 0 by a clock pulse CP inputted from the clock oscillation circuit 5, and outputs an injection signal during this down-counting period. The injection valve drive circuits 33 and 34 amplify the input injection signals to drive the injection valves 35 and 36 to inject fuel.

このようにして噴射量Tに相当する燃料が噴射弁35.
36から噴射される。
In this way, fuel corresponding to the injection amount T is delivered to the injection valve 35.
It is injected from 36.

以上説明したように本発明によれば、ターボチャージャ
等のコンプレッサとエアクリーナとエンジンの吸気ボー
トとが連なる吸気管を有する燃料噴射式エンジンの回転
数と、前記吸気管内に設けられたスロットル弁下流41
=I7)吸気管内圧又はスロットル弁開度のパラメータ
により基本燃料噴射量を決定し、前記エンジンの運転状
態に応じた吸気W=補正係数を求めて前記基本燃料噴射
量を補正する内燃エンジンの電子式燃料噴射制御装置の
噴射量補正方法において、前記コンプレッサの上流側の
吸気管内圧とその吸気温度のパラメータ及び前記スロッ
トル弁下流の吸気管内圧のパラメータの関数として前記
吸気密度補正係数を求めるようにしたので、コンプレッ
サ下流側の吸気管内圧検出用の圧力センサを省くことが
できる。
As explained above, according to the present invention, the rotation speed of a fuel injection engine having an intake pipe in which a compressor such as a turbocharger, an air cleaner, and an intake boat of the engine are connected, and the throttle valve downstream 41 provided in the intake pipe
= I7) Electronics of an internal combustion engine that determines the basic fuel injection amount based on parameters such as intake pipe internal pressure or throttle valve opening, and corrects the basic fuel injection amount by determining an intake W = correction coefficient according to the operating state of the engine. In the injection amount correction method of the formula fuel injection control device, the intake air density correction coefficient is determined as a function of parameters of intake pipe internal pressure and its intake air temperature on the upstream side of the compressor, and parameters of the intake pipe internal pressure downstream of the throttle valve. Therefore, a pressure sensor for detecting the internal pressure of the intake pipe on the downstream side of the compressor can be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエンジンの吸入負圧とコンプレッサの上流側の
吸気管内圧(PB/PI)と、各吸気温度(TB/T1
)との関係を示す特性図、第2図は本発明に係る内燃エ
ンジンの電子式燃料噴射制御装置の噴射量補正方法の一
実施例を示すブロック図、第3図は本発明に係るターボ
チャージャ付エンジン模式1.2・・・回転センサ、3
,4・・・波形整形回路、5°゛°クロック発低回路、
6,31.32・・・カウンタ、7.10・・・圧力セ
ンサ、8・・・スロットル弁開度センサ、9・・・温度
センサ、11・・・アナログスイッチ、12・・A−D
z換器、13・・・基本燃料噴射量算出回路、26・・
・吸気密度補正係数記憶回路。 33.34・・・噴射弁駆動回路、30・・・乗算回路
、35.36・・・噴射弁、AC・・・エアクリーナ、
C・・・コンプレッサ、T・・・タービン、R・・・レ
ゾナンスチャンバ、S・・・サージタンク、In・・・
吸気管、E・・・エンジン、M・・・マフラ、TL・・
・スロットル。 出願人 本田技研工業株式会社
Figure 1 shows the engine intake negative pressure, the intake pipe internal pressure on the upstream side of the compressor (PB/PI), and each intake air temperature (TB/T1).
), FIG. 2 is a block diagram showing an embodiment of the injection amount correction method of the electronic fuel injection control device for an internal combustion engine according to the present invention, and FIG. 3 is a characteristic diagram showing the relationship between Engine model with 1.2... Rotation sensor, 3
, 4... Waveform shaping circuit, 5°゛° clock generation/lowering circuit,
6, 31.32... Counter, 7.10... Pressure sensor, 8... Throttle valve opening sensor, 9... Temperature sensor, 11... Analog switch, 12... A-D
Z converter, 13... Basic fuel injection amount calculation circuit, 26...
-Intake air density correction coefficient memory circuit. 33.34... Injection valve drive circuit, 30... Multiplier circuit, 35.36... Injection valve, AC... Air cleaner,
C...Compressor, T...Turbine, R...Resonance chamber, S...Surge tank, In...
Intake pipe, E...engine, M...muffler, TL...
·throttle. Applicant Honda Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、 ターボチャージャの□コンプレッサとエアクリー
ナとエンジンの吸気ポートとが運なる吸気管を有する燃
料噴射式エンジンの回転数と、前記吸気管に設けられた
スロットル弁下流の吸気管内圧又はスロットル弁開度の
パラメータによシ基本燃料噴射1を決定し、前記エンジ
ンの運転状態に応じ九吸気密度補正係数を求めて前記基
本燃料噴射量を補正する内燃エンジンの電子式燃料噴射
制御装置の噴射量補正方法において、前記コンプレッサ
の上流側の吸気管内圧とその吸気温度のパラメータ及び
前記スロットル弁下流の吸気管内圧のパラメータの関数
として前記吸気密度補正係数を求めたことを特徴とする
内燃エンジンの電子式燃料噴射制御装置の噴射量補正方
法。
1. The rotational speed of a fuel injection engine that has an intake pipe that connects the compressor of the turbocharger, the air cleaner, and the intake port of the engine, and the intake pipe internal pressure or throttle valve opening downstream of the throttle valve provided in the intake pipe. An injection amount correction method for an electronic fuel injection control device for an internal combustion engine, wherein basic fuel injection 1 is determined based on parameters, and the basic fuel injection amount is corrected by determining an intake air density correction coefficient according to the operating state of the engine. Electronic fuel for an internal combustion engine, characterized in that the intake air density correction coefficient is determined as a function of parameters of intake pipe internal pressure and its intake air temperature on the upstream side of the compressor, and parameters of the intake pipe internal pressure downstream of the throttle valve. An injection amount correction method for an injection control device.
JP57089397A 1982-05-26 1982-05-26 Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine Granted JPS58206833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089397A JPS58206833A (en) 1982-05-26 1982-05-26 Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089397A JPS58206833A (en) 1982-05-26 1982-05-26 Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine

Publications (2)

Publication Number Publication Date
JPS58206833A true JPS58206833A (en) 1983-12-02
JPH0223698B2 JPH0223698B2 (en) 1990-05-25

Family

ID=13969509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089397A Granted JPS58206833A (en) 1982-05-26 1982-05-26 Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine

Country Status (1)

Country Link
JP (1) JPS58206833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394627B1 (en) * 2000-11-30 2003-08-14 현대자동차주식회사 Idle speed control method for electro-throttle engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534299U (en) * 1991-10-08 1993-05-07 小岩金網株式会社 Gate device
JPH071289U (en) * 1993-06-08 1995-01-10 久保熔接工業株式会社 Gate opening / closing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394627B1 (en) * 2000-11-30 2003-08-14 현대자동차주식회사 Idle speed control method for electro-throttle engine

Also Published As

Publication number Publication date
JPH0223698B2 (en) 1990-05-25

Similar Documents

Publication Publication Date Title
US7047740B2 (en) Boost pressure estimation apparatus for internal combustion engine with supercharger
US6318083B1 (en) Intake air control device of an engine with a charger and method thereof
US9010180B2 (en) Method and observer for determining the exhaust manifold temperature in a turbocharged engine
US7681442B2 (en) Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
US11002197B2 (en) Control device for internal combustion engine
JP4861915B2 (en) Control device for internal combustion engine
JP2602031B2 (en) Electronic control unit for internal combustion engine
US9938912B2 (en) Control device for internal combustion engine
CN108730055B (en) Control device for internal combustion engine
JPS6328212B2 (en)
CN105041496A (en) Estimation apparatus and method for cylinder intake air amount of internal combustion engine
JP2002180889A (en) Detection method of intake temperature after supercharging, operation controller and cooling abnormality detector for intercooler in supercharging internal combustion engine system
KR930002078B1 (en) Fuel injection device
JPS58206833A (en) Method of correcting injection quantity of electronic fuel injection controlling device of internal-conbustion engine
US5315979A (en) Electronic control apparatus for an internal combustion engine
JPH0256492B2 (en)
JP3358449B2 (en) Exhaust system pressure estimation device for internal combustion engine
GB2383649A (en) Method for characterizing an air flow within a boosted internal combustion engine.
JP2010133353A (en) Engine control device
JP5313847B2 (en) Air-fuel ratio control device for internal combustion engine
JP3629752B2 (en) Intake and exhaust system pressure estimation device for internal combustion engine
JP3395782B2 (en) Intake system pressure estimation device for internal combustion engine
JPH0226692B2 (en)
JPS58211535A (en) Correction method for quantity of injection of electronic fuel injection controller for internal-combustion engine
JP3599378B2 (en) Throttle valve control device for internal combustion engine