JPS58206320A - Discharge machining method - Google Patents

Discharge machining method

Info

Publication number
JPS58206320A
JPS58206320A JP8827682A JP8827682A JPS58206320A JP S58206320 A JPS58206320 A JP S58206320A JP 8827682 A JP8827682 A JP 8827682A JP 8827682 A JP8827682 A JP 8827682A JP S58206320 A JPS58206320 A JP S58206320A
Authority
JP
Japan
Prior art keywords
discharge machining
electrical discharge
oil
dimethylpolysiloxane
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8827682A
Other languages
Japanese (ja)
Other versions
JPH0347967B2 (en
Inventor
Yoshiji Aoyama
青山 好次
Naomi Takahashi
直美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Ibigawa Electric Industry Co Ltd
Original Assignee
Ibiden Co Ltd
Ibigawa Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd, Ibigawa Electric Industry Co Ltd filed Critical Ibiden Co Ltd
Priority to JP8827682A priority Critical patent/JPS58206320A/en
Publication of JPS58206320A publication Critical patent/JPS58206320A/en
Publication of JPH0347967B2 publication Critical patent/JPH0347967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/08Working media

Abstract

PURPOSE:To increase a discharge machining speed, to make the surface roughness finer, and to reduce the consumption of an electrode by using a discharge machining oil having substituted part of methyl group of dimethylpolysiloxane with an aromatic compound. CONSTITUTION:By using a discharge machining oil having substituted part of methyl group of dimethylpolysiloxane with an aromatic compound, the electrode consumption rate can be largely reduced without decreasing a machining speed, the discharge machining surface roughness can be made finer, and stable discharge can be continued at peak currents of 3A, 1A.

Description

【発明の詳細な説明】 本発明は)l!l電加−り方法1tCvAす、特に本発
明は電極消耗率を減少させ、また加工面粗度を細かくし
、さらに放電加工能率を向上することのできる放電加工
油を使用する放電加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is) l! In particular, the present invention relates to an electric discharge machining method using an electric discharge machining oil that can reduce the electrode wear rate, improve the machined surface roughness, and further improve the electric discharge machining efficiency.

近年、放電加工方法によりプラスチック、ゴム、ダイキ
ャスト、粉末冶金、鍛造、アルミ用及びプレス用金型又
は部品加工などの広い分野で多植の加工が行われている
In recent years, multi-plant processing has been carried out using electric discharge machining in a wide range of fields such as plastics, rubber, die casting, powder metallurgy, forging, aluminum and press molds or parts processing.

しかも前記金型加工は年々高い加工精度が要求されると
共に加工面粗度を改善することが望まれている。
Moreover, the mold processing is required to have higher processing accuracy year by year, and it is desired to improve the processed surface roughness.

しかしながら、Vリコン油を単に使用する従来の放電加
工において、放電加工用電極の消耗を極力減少させる目
的で加工電流の時間幅(以下、この時間幅をオンパルス
幅という)は!極材料の種類又は消耗特性に応じて選定
されているのが通例である。
However, in conventional electrical discharge machining that simply uses V-recon oil, the time width of the machining current (hereinafter referred to as the on-pulse width) is set in order to reduce the wear of the electrical discharge machining electrode as much as possible. The selection is usually based on the type of electrode material or its wear characteristics.

一般に、電極材料としては黒鉛、鋼、銅タングステンな
どが使用されているが、これらいずれのvl、極材料も
無消耗加工領域はオンパルス幅が150μ式以り必要で
ある。
Generally, graphite, steel, copper tungsten, etc. are used as electrode materials, but any of these VL and electrode materials require an on-pulse width of 150 μm or more in the non-consumable processing region.

その結果、放電加工により供給される単位当りの供給エ
ネルギーは大きくなり、1回毎のオンパルスにより生成
する放電痕は、同一のピーク電流における短かいオンパ
ルス幅により生成する放電痕より大きくなるので、放電
加工粗度も粗くなりかつ多くなるものと考えられる。
As a result, the energy supplied per unit by electrical discharge machining increases, and the discharge scars generated by each on-pulse are larger than those generated by a short on-pulse width at the same peak current. It is thought that the machining roughness also becomes rougher and increases.

しかるに、放電加工に消費されるエネルギーはオンパル
ス幅が100μ式以下の場合においては高い効率が得ら
れることが知られている。これは単位時間内の放電オン
パルスの繰り返し数が増す結果、放電加工面粗度が細か
くなると共に、置い放電加工速度が得られるためである
と考えられるからである。
However, it is known that the energy consumed in electrical discharge machining is highly efficient when the on-pulse width is 100 μm or less. This is thought to be because the number of repetitions of discharge on-pulses within a unit time increases, resulting in finer surface roughness due to discharge machining and a higher discharge machining speed.

それゆえ、放電加工条件としては短かいオンパルス幅に
よる放電加工が得策であると考えられる。
Therefore, it is considered that electric discharge machining with a short on-pulse width is a good idea as the electric discharge machining conditions.

しかしながら、各檜の!FM材料において1[極が無消
耗となる放電オンパルス幅は、一般に黒鉛電極を使用す
る場合には150μ式以上、並びに銅電極を使用する場
合においては300μ式以上が必要であるとされている
However, each cypress! In FM materials, it is generally said that the discharge on-pulse width at which the electrode becomes non-consumable is 150μ or more when graphite electrodes are used, and 300μ or more when copper electrodes are used.

このような4μ情を8慮して従来は、放電加工速度が速
くなる゛オンパルス幅が+100μ富以下の放電オンパ
ルス幅を使用する放電加工が行われているが、この従来
法においては[+M材料の消耗が大きくなると共に、金
型として要求されている形状の精度が、余り高いものが
得られないという欠点がある。
Taking these 4 μ factors into account, electrical discharge machining is conventionally performed using a discharge on-pulse width of +100 μ or less, which increases the discharge machining speed, but in this conventional method, [+M material There are disadvantages in that the wear and tear of the metal mold increases, and that the precision of the shape required for the mold cannot be obtained.

本発明者らは、上記従来法の欠、壱を解消し改善すべく
知かいオンパルス幅において電気材料が消耗しない放電
加工条件を見い出すための研究開発をして、放電加工油
の組成と電極材料の消耗との関連について新規な知見を
得て本発明を完成するに螢った。
The present inventors have conducted research and development to find electrical discharge machining conditions in which electrical materials are not consumed during the known on-pulse width in order to solve and improve the above-mentioned deficiencies and defects in the conventional method. The present invention was completed by obtaining new knowledge regarding the relationship between consumption and consumption.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

一般VC放電加工電極の無消耗状典は放電エネルギーに
より加熱分解されて放電加工油から生成される粒子匝の
細かいススが放を電極と被加工物との極11A1に生成
し、電極表向に吸着される結果Kmの無消耗状態が持続
されるものと考えられる。また、放”Iに4ンバルス1
l11!を短かくするとIlcFMの消耗が増大する埋
山は、供給されたエネルギーのうちで被加工物を加工す
るエネルギー分が多くなり、放電加工油を加熱分解して
粒子径の細かいススの発生蓋が少なくなる結果、vt、
fMの消耗が少なくなるものと考えられる。
The non-consumable condition of general VC electrical discharge machining electrodes is that fine soot particles generated from electrical discharge machining oil are thermally decomposed by electrical discharge energy, and a discharge is generated at the pole 11A1 between the electrode and the workpiece, and the surface of the electrode is It is thought that as a result of being adsorbed, Km remains in a non-consumable state. Also, there are 4 bars and 1
l11! The reason why the consumption of IlcFM increases when the time is shortened is that the amount of energy for machining the workpiece out of the supplied energy increases, and the electric discharge machining oil is thermally decomposed and soot with fine particle size is generated. As a result, vt,
It is thought that fM consumption is reduced.

ところで、従来仕上げ放電加工面粗度を改良する手段と
してはシリコン油、すなわちジメチルポリシロキサンが
放電加工油として使用されている。
By the way, silicone oil, ie, dimethylpolysiloxane, has conventionally been used as a discharge machining oil as a means for improving the roughness of a finished electrical discharge machining surface.

ここでシリコン油を放電加工油として使用する場合の放
電加工特性を知るために、従来一般に使用されている白
灯油と比較して放電加工を行なった。その結果を第1表
に示す。
Here, in order to understand the electrical discharge machining characteristics when using silicone oil as the electrical discharge machining oil, electrical discharge machining was performed in comparison with white kerosene, which has been commonly used in the past. The results are shown in Table 1.

なお、この場合の放電加工条件は次の通りである。Note that the electrical discharge machining conditions in this case are as follows.

外径が2011で内径が51111の黒鉛電gAを使用
して、′dt、極極情e、放電ピーク電流5A、オンパ
ルス幅100μ式、オフパルス幅60μ%、放電加工油
#′i電極中心から0.054#の圧力で噴出し、被加
工物として5KI)−11を1回加工した。
Using a graphite electrode gA with an outer diameter of 2011 and an inner diameter of 51111, 'dt, polarity e, discharge peak current 5A, on-pulse width 100μ, off-pulse width 60μ%, electrical discharge machining oil #'i 0.0% from the electrode center. It was ejected at a pressure of 054#, and 5KI)-11 was processed once as a workpiece.

第   1   表 上記第1表からも明らかなように、従来一般に使用され
ている白灯油に比較して、ジメチルポリシロキサンを主
成分とするシリコン油を放電加工油として使用した場合
、得られる放電加工面粗度は約3分の2と細かくなり、
かつ放電加工速度は2倍に近くなることが明らかである
。一方、電極の消耗が約8倍と大きくなり、金型の形状
精度を艮好な状態に保つことは困難であるという欠点が
あることも判明した。
Table 1 As is clear from Table 1 above, the electrical discharge machining obtained when silicone oil containing dimethylpolysiloxane as the main component is used as the electrical discharge machining oil is better than the white kerosene that has been commonly used in the past. The surface roughness is approximately two-thirds finer,
Moreover, it is clear that the electrical discharge machining speed is nearly doubled. On the other hand, it has also been found that there are disadvantages in that the wear of the electrodes is about 8 times greater and it is difficult to maintain the shape accuracy of the mold in a good condition.

そこで本発明者らは、放電加工用電極材料のうち11t
&I+消耗過程について詳しく研究し検討した結果、放
電加工油中に含有される芳香族化合物が多いほど電極の
消耗が少くなることを新規に知見した。これは、ViL
極と被加工物との極間において、放電エネルギーにより
熱分解されて放電加工油から生成するススの発生量が多
くなるためであると考えられる。
Therefore, the present inventors discovered that 11t of the electrode material for electrical discharge machining was
As a result of detailed research and examination of the &I+ consumption process, we newly found that the more aromatic compounds contained in the electrical discharge machining oil, the less the electrode wears out. This is ViL
This is thought to be because the amount of soot generated from the electrical discharge machining oil thermally decomposed by the electrical discharge energy increases in the gap between the pole and the workpiece.

一方、芳香族化合物以外の放電加工油の成分は放電エネ
ルギーによる熱分解で発生するガスとなり、極間から逸
散するために電極とa加工物との極間に存在するススの
絶対址が少なく、したがってジメチルポリシロキサンを
主成分とするシリコン油を放電加工油として使用した場
合は電極の消耗度が増大するものと考えられる。
On the other hand, the components of electrical discharge machining oil other than aromatic compounds become gases generated by thermal decomposition due to discharge energy, and because they escape from the gap between the electrodes, the absolute amount of soot that exists between the electrode and the workpiece a is reduced. Therefore, when silicone oil containing dimethylpolysiloxane as a main component is used as the electrical discharge machining oil, it is considered that the degree of wear of the electrode increases.

本発明は、上記のように従来一般に放電加工油として使
用されていた白灯油の欠点と、この白灯油の欠点を解消
するも電極消耗率が多くなるという欠点を有するシリコ
ン油を放電加工油として使用する放電加工方法の欠点を
改善・除去することを目的とする放電加工方法を提案す
ることにより、枚゛ボ加工速度を早め、放電加工の面粗
度を細かくし、さらに’dt極の消耗を少なくするなど
の優れた効果を発揮するものである。
The present invention solves the disadvantages of white kerosene, which has been conventionally used as an electric discharge machining oil, as described above, and uses silicone oil as an electric discharge machining oil, which eliminates the disadvantages of white kerosene but has the disadvantage of high electrode wear rate. By proposing an electrical discharge machining method that aims to improve and eliminate the shortcomings of the electrical discharge machining method used, the speed of chip machining will be increased, the surface roughness of electrical discharge machining will be finer, and the wear of the 'dt pole will be reduced. It has excellent effects such as reducing

LU F、本発明f実権例に基づき具体的に説明する。The present invention will be specifically explained based on an actual example.

”4O/dieA11はジメチルポリシロキサンのメチ
ル基の一部をアルキル基とフェニル基で置換した変性ジ
メチルポリシロキサンを使用し、実施例2.3.4はジ
メチルポリシロキサンのメチル基の一部をフェニル基で
置換した耐寒ジメチルポリシロキサンを放電加工油とし
て用いた。また、実施例5.6.7は、ジメチルポリシ
ロキサン−00重量部に対し、キノリン5重量部、アン
トラセン1ffijt部、ナフタレン2重量部をそれぞ
れ混合した放電加工油を使用し、比較例1としてジメチ
ルポリシロキサン、比較例2として白灯油のみをそれぞ
れ放電加工油として使用した場合と比較して放電加工を
行なった。その結果を第2表に示す。
"4O/dieA11 uses a modified dimethylpolysiloxane in which some of the methyl groups of dimethylpolysiloxane are replaced with alkyl groups and phenyl groups, and in Example 2.3.4, some of the methyl groups of dimethylpolysiloxane are replaced with phenyl groups. A cold-resistant dimethyl polysiloxane substituted with a group was used as the electrical discharge machining oil.In addition, in Example 5.6.7, 5 parts by weight of quinoline, 1 ffijt part of anthracene, and 2 parts by weight of naphthalene were added to 00 parts by weight of dimethyl polysiloxane. Electric discharge machining was carried out using electric discharge machining oils mixed with each of the following: Comparative Example 1 was dimethylpolysiloxane, and Comparative Example 2 was white kerosene alone. Shown in the table.

(1 なお、この場合の放電加工条件は次の通りである。(1 Note that the electrical discharge machining conditions in this case are as follows.

外径2011gで内径が5鱈の黒鉛電極を使用して、を
−極性…、放電ピーク[流は実施例3・4はそれぞれ3
AとIAでそれ以外は5A、オンパルス幅はオフパルス
1嘔−60μ冠、放電加工油は電極中心から0.05 
#/dの圧力で噴出し、被加工物として8KD−111
r1u加工した。
Using a graphite electrode with an outer diameter of 2011 g and an inner diameter of 5, the - polarity..., discharge peak [flow is 3 for Examples 3 and 4, respectively]
A and IA, otherwise 5A, on-pulse width is off-pulse 1 - 60μ, electrical discharge machining oil is 0.05A from the center of the electrode.
Ejected with pressure of #/d, 8KD-111 as workpiece
r1u processed.

第2表の実施例1〜4より明らかなように、ジメチルポ
リシロキサンのメチル基の一部を芳香族化合物で置換し
た放電加工油を使用することにより、従来ジメチルポリ
シロキサンのみを放電加工油として使用した場合の欠点
であった。
As is clear from Examples 1 to 4 in Table 2, by using electrical discharge machining oil in which some of the methyl groups of dimethylpolysiloxane are replaced with aromatic compounds, it is possible to replace only dimethylpolysiloxane with conventional electrical discharge machining oil. This was a drawback when used.

電極消耗率を加工速度の低下をきたすことなく大幅に減
少させることができた。更に放電加工面粗度も従来から
使用されている白灯油に比べ細かくなりつるばかり 第  2  表 でなく、また白灯油を使用する放電加工においては、従
来ピーク電流5八以下の放電加工条件では安定し7九放
電が継続しなかったが、本発明のジメチルポリシロキサ
ンのメチル域の一部を芳香族化合物で置換した放電加工
油を使用することにより、ピーク電流3A、IAにおい
ても安定した放電を継続することができ、従来黒鉛″#
を極では放電加工面粗度I Q7zRntax以丁をW
極熱消耗で放°ゼ加工することは不可能とされていた欠
点を本発明により改善することが可能となった。
The electrode wear rate could be significantly reduced without reducing machining speed. Furthermore, the surface roughness of the electrical discharge machining surface is finer than that of the conventionally used white kerosene (see Table 2), and in electrical discharge machining using white kerosene, it is stable under the conventional electrical discharge machining conditions of 58 or less peak current. However, by using an electrical discharge machining oil in which part of the methyl region of the dimethylpolysiloxane of the present invention was replaced with an aromatic compound, stable electrical discharge was achieved even at peak currents of 3 A and IA. Conventional graphite that can be continued''#
The electrical discharge machining surface roughness I Q7zRntax and W
The present invention has made it possible to improve the drawback that it was impossible to perform thermal processing using extreme heat consumption.

しかもジメチルポリシロキサンと芳香族化合物との混合
油を使用した実施例5〜7からもジメチルポリシロキサ
ンのみを使用した場合と比較すると明らかに電極消耗率
を大幅に改善し、また白灯油を使用した時の加工速度、
加工面粗度を大幅に七まわった結果が得られた。
Furthermore, from Examples 5 to 7 in which a mixed oil of dimethylpolysiloxane and an aromatic compound was used, it was clear that the electrode wear rate was significantly improved compared to the case where only dimethylpolysiloxane was used, and white kerosene was used. Machining speed in hours,
The results showed that the machined surface roughness was significantly improved by seven times.

以トの説明からも明らかなように、本発明は、被加工物
の精度および加工面粗度を改善するためにきわめて幼果
的に作用する放電加工油を使用することを特礒とする放
電加工方法を提供するものである。
As is clear from the following explanation, the present invention is an electric discharge machining oil that uses an electric discharge machining oil that acts extremely effectively in order to improve the accuracy and machined surface roughness of a workpiece. This provides a processing method.

特ifl:登録出願人 (l斐用′dt、気工業株式会社 代表者 多賀潤一部Special ifl: Registered applicant (I'dt, Ki Kogyo Co., Ltd. Representative Jun Taga

Claims (1)

【特許請求の範囲】 1、シリコン油を使用する放電加工方法において、シリ
コン油中に芳香族化合物を共存させた放電加工油を使用
することを特徴とする放電加工方法。 2、放電加工油がジメチルポリシロキサンのメチ/V基
の一部を芳香族化合物で置換した変性ジメチルポリシロ
キサン又は+nit寒ジメデジメチルポリシロキサンこ
とを特徴とする特tf請求の範囲第1項M己戦の放電加
工能率。 3、放電加工油がジメチルポリシロキサンと芳香族化合
物との混合物であることを特徴とする特許請求の範囲第
1項もしくは@2項記載の放電加工方法。
[Scope of Claims] 1. An electrical discharge machining method using silicone oil, characterized in that an electrical discharge machining oil in which an aromatic compound coexists in silicone oil is used. 2. The electrical discharge machining oil is a modified dimethylpolysiloxane in which a part of the methi/V group of dimethylpolysiloxane is substituted with an aromatic compound, or +nit cold dimedimethylpolysiloxane.Claim 1M Self-defeating electrical discharge machining efficiency. 3. The electrical discharge machining method according to claim 1 or @2, wherein the electrical discharge machining oil is a mixture of dimethylpolysiloxane and an aromatic compound.
JP8827682A 1982-05-25 1982-05-25 Discharge machining method Granted JPS58206320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8827682A JPS58206320A (en) 1982-05-25 1982-05-25 Discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8827682A JPS58206320A (en) 1982-05-25 1982-05-25 Discharge machining method

Publications (2)

Publication Number Publication Date
JPS58206320A true JPS58206320A (en) 1983-12-01
JPH0347967B2 JPH0347967B2 (en) 1991-07-23

Family

ID=13938377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8827682A Granted JPS58206320A (en) 1982-05-25 1982-05-25 Discharge machining method

Country Status (1)

Country Link
JP (1) JPS58206320A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256492A (en) * 1975-11-05 1977-05-09 Mitsubishi Heavy Ind Ltd Liquid for electrical discharge machining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256492A (en) * 1975-11-05 1977-05-09 Mitsubishi Heavy Ind Ltd Liquid for electrical discharge machining

Also Published As

Publication number Publication date
JPH0347967B2 (en) 1991-07-23

Similar Documents

Publication Publication Date Title
Mai et al. Advantages of carbon nanotubes in electrical discharge machining
Yan et al. Surface modification of SKD 61 during EDM with metal powder in the dielectric
Koenig et al. Aqueous solutions of organic compounds as dielectrics for EDM sinking
Kapoor et al. Recent developments in wire electrodes for high performance WEDM
US3887667A (en) Method for powder metal production
GB1501132A (en) Electroslag casting of a metal roll
US2378548A (en) Ferrous alloys containing bismuth
JPS58206320A (en) Discharge machining method
KR960000411B1 (en) Method of welding and product obtained therefrom
CN107365920B (en) It is a kind of for manufacturing the high zinc-aluminium manganese iron-copper of unidirectional wire wire electrode
US4937416A (en) Electrocontact discharge dressing method for grinding wheel
US4027134A (en) Electrode for electrical discharge machining
JP2018103349A (en) Low-consumable electrode for electrical discharge machining
Hamid et al. High performance in EDM machining of AISI D2 hardened steel
US1449338A (en) Alloy and process of making the same
Das et al. Attribute of SiC powder additive mixed EDM on machining performance and surface integrity aspects of inconel 625
US2863766A (en) Edm electrode material
RU2014181C1 (en) Electric discharge machining electrode-tool material
US3676310A (en) Process for electrochemical machining employing a die of a special alloy
JPS6017044A (en) Wire electrode for wire-cut electric spark machining
GB2116996A (en) Electrical machining fluid and method utilizing the same
RU1802827C (en) Electrode material for electrospark alloying and charge for its production
US1924384A (en) Tough tungsten carbide alloy
Kachhap et al. A Study of Material Removal during Electrical-Discharge Drilling of Hybrid Metal Matrix Composites
US2355581A (en) Process of making nickel-copper alloy castings