JPS58204974A - Controlling method of ignition timing for internal-combustion engine - Google Patents

Controlling method of ignition timing for internal-combustion engine

Info

Publication number
JPS58204974A
JPS58204974A JP57088287A JP8828782A JPS58204974A JP S58204974 A JPS58204974 A JP S58204974A JP 57088287 A JP57088287 A JP 57088287A JP 8828782 A JP8828782 A JP 8828782A JP S58204974 A JPS58204974 A JP S58204974A
Authority
JP
Japan
Prior art keywords
ignition timing
engine
value
acceleration
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57088287A
Other languages
Japanese (ja)
Inventor
Toshimi Matsumura
敏美 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57088287A priority Critical patent/JPS58204974A/en
Publication of JPS58204974A publication Critical patent/JPS58204974A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To aim at an improvement in the property of acceleration, by limiting the ignition timing so as not to lag more than the specified one. CONSTITUTION:A suction air quantity (DELTAQ/N) per unit revolution is compared with the specified value with a step 307. If it is above the specified one, setting the value down to a state of acceleration, the step 307 moves forward to a step 312 after a plug is set by a step 308. At the step 312, in order to prevent an excessive lag timing, a fixed value theta (for example, ignition timing at the time of idling) is set down to the output ignition timing. With this, the excessive lag timing due to a large variation in the suction air quantity in time of acceleration is made to be nothing so that deterioration in the property of acceleration can be prevented.

Description

【発明の詳細な説明】 本発明は内燃機関の加速時における点火時期の制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling ignition timing during acceleration of an internal combustion engine.

従来の電子式点火時期制御方法に於て、点火時5期を機
関単位回転当りの吸入空気量と機関回転数の2次元マツ
プから決めるようにしたものがある。
Among the conventional electronic ignition timing control methods, there is one in which the ignition timing is determined from a two-dimensional map of the amount of intake air per unit rotation of the engine and the engine rotation speed.

ところが加速時の過渡状態に於て吸入空気量を検出する
エアフロメータがオーバシュートする事により瞬間的に
該機関単位回転当りの吸入空気量が大きくなり、低回転
数高負荷の遅角領域に入り、要求点火時期は機関アイド
ル時の点火時期より遅角する為、機関出力が低下して加
速性が損われるという問題があった。
However, in the transient state during acceleration, the air flow meter that detects the amount of intake air overshoots, causing the amount of intake air per unit revolution of the engine to momentarily increase, entering the retardation region of low rotation speed and high load. Since the required ignition timing is retarded from the ignition timing when the engine is idling, there is a problem in that the engine output decreases and acceleration performance is impaired.

本発明はこの様な加速性の悪化を無くすること(2) を目的とし、このために加速状態を検知して所定時間例
えばアイドル点火時期のような所定の点火時期より遅角
されないように点火時期を遅角側で制限するようにして
いる。
The purpose of the present invention is to eliminate (2) such deterioration of acceleration performance, and for this purpose, the acceleration state is detected and the ignition is controlled for a predetermined period of time so as not to be delayed from a predetermined ignition timing, such as the idle ignition timing. The timing is limited on the retarded side.

以下添付図面を参照して本発明の詳細な説明する。第1
図は本発明における一実施例を示す構成図である。1は
多気筒、例えば6気筒内燃機関、2はエアクリーナ、3
は吸気量を測定する吸気量センサ、4はスロットル弁4
1が設けられたスロットルボディ、5はスロットルボデ
ィ4に取り付けられたスロットル弁開度検出センサ、6
は吸気マニホルドである。7は内燃機関の回転速度を検
出する回転センサを収納したディストリビュータで点火
エネルギーを各気筒に配分する働きも兼ねる。8は吸気
マニホルド6の各気筒吸気ボート近傍に取り付けられ加
熱燃料を噴射する電磁作動式の燃料噴射弁、9は内燃機
関の排気マニホルド、10は機関の冷却水温を検出する
水温センサであ6゜10、内燃、□制ヮ□電7制御装w
7、前記吸気量センサ3の信号aとディストリビュータ
(3) 7の回転速度4tt号Cとスロットル弁開度検出センサ
の信号すと水温センサ10の信号dとにより、燃料蹟射
弁8の開弁時間を表わす燃料噴射パルス信号0を演算し
出力すると同時に、燃料噴射パルス信号と同8悄軸に基
づいて点火時期信号fを演算し出力するものである。
The present invention will be described in detail below with reference to the accompanying drawings. 1st
The figure is a configuration diagram showing one embodiment of the present invention. 1 is a multi-cylinder, for example, a 6-cylinder internal combustion engine; 2 is an air cleaner; 3
4 is the intake air amount sensor that measures the intake air amount, and 4 is the throttle valve 4.
1 is a throttle body, 5 is a throttle valve opening detection sensor attached to the throttle body 4, and 6 is a throttle body.
is the intake manifold. A distributor 7 houses a rotation sensor that detects the rotational speed of the internal combustion engine, and also serves to distribute ignition energy to each cylinder. Numeral 8 is an electromagnetically actuated fuel injection valve that is installed near each cylinder intake boat of the intake manifold 6 and injects heated fuel, 9 is an exhaust manifold of the internal combustion engine, and 10 is a water temperature sensor that detects the engine cooling water temperature. 10. Internal combustion, □Control □Electric 7 control system w
7. The fuel injection valve 8 is opened by the signal a of the intake air amount sensor 3, the rotational speed 4tt of the distributor (3) 7, the signal of the throttle valve opening detection sensor, and the signal d of the water temperature sensor 10. At the same time as the fuel injection pulse signal 0 representing time is calculated and outputted, the ignition timing signal f is calculated and outputted based on the fuel injection pulse signal and the same 8 torsion axis.

第2図は、第1図における内燃機関制御用電子制御袋f
illの内部ブロック図である。110はマイクロプロ
セッサ、111はメモリで内燃機関の制御プログラムを
格納し、マイクロプロセッサ110とメモリ111の間
の情報伝達はコモンバスllaを通じて行なって制御プ
ログラムを作動させる。112は内燃機関の回転数を計
測するカウンタで12ビットバイナリカウンタで構成さ
れており、ディストリビュータ7からの回転速度信号C
が入力され、コモンバスllaを通してマイクロプロセ
ラ−IJ110に取り込まれる。113はアナログ情報
をディジタル量に変換するA/D変[1,114はアナ
ロ、グマルチプレクサで吸気量セン慢3の吸気隈信号a
と水温センサ10の水温(4) 信号dとをA/D変換器113に供給する。マイクロプ
ロセッサ110はメモリ111に格納されている制御プ
ログラムに基づきカウンタ112の回転情報(N)とA
/D変換器113の吸気量情報(Q)とを主情報として
機関の回転に同期して燃料噴射量を演算し、A/D変換
器113からの水温情報による補正項も加えてディジタ
ル信号を出力する。115はディジタル入力回路でスロ
ットル弁開度検出センサ5の信号すが入力され、スロッ
トル弁開度検出信号をマイクロプロセッサ11Oへ出力
する。
Figure 2 shows the internal combustion engine control electronic control bag f in Figure 1.
FIG. 2 is an internal block diagram of ill. Reference numeral 110 is a microprocessor, and 111 is a memory that stores a control program for the internal combustion engine. Information is transmitted between the microprocessor 110 and the memory 111 via a common bus lla to operate the control program. 112 is a counter for measuring the rotation speed of the internal combustion engine, which is composed of a 12-bit binary counter, and receives the rotation speed signal C from the distributor 7.
is input and taken into the microprocessor IJ110 through the common bus lla. 113 is an A/D converter that converts analog information into a digital quantity [1, 114 is an analog multiplexer and an intake space signal a of intake air amount sensor 3]
and the water temperature (4) signal d from the water temperature sensor 10 are supplied to the A/D converter 113. The microprocessor 110 calculates rotation information (N) and A of the counter 112 based on the control program stored in the memory 111.
The fuel injection amount is calculated in synchronization with the rotation of the engine using the intake air amount information (Q) from the A/D converter 113 as main information, and a correction term based on the water temperature information from the A/D converter 113 is also added to generate a digital signal. Output. A digital input circuit 115 receives the signal from the throttle valve opening detection sensor 5 and outputs the throttle valve opening detection signal to the microprocessor 11O.

116はマイクロプロセッサ110のディジタル信号が
供給されるレジスタで、このディジタル信号を燃料噴射
弁8の噴射時間(開弁時間)に変換し、この噴射時間を
表わす噴射パルス信号を出力する。117はレジスタ1
16のパルス信号を増幅して、燃料噴射弁8を開弁させ
る駆動回路である。更に118はマイクロプロセッサ1
10のディジタル信号が供給されるレジスタでこのディ
ジタル信号をイグナイタ12への点火時期(1次(5) 電流0FFL)111)に変換し、この点火時期を表わ
す点火時期信号を出力する。119はレジスタ118の
パルス信号を増幅して、イグナイタ12を駆動する駆動
回路である。
A register 116 is supplied with a digital signal from the microprocessor 110, converts this digital signal into an injection time (valve opening time) of the fuel injection valve 8, and outputs an injection pulse signal representing this injection time. 117 is register 1
This is a drive circuit that amplifies the pulse signal No. 16 and opens the fuel injection valve 8. Furthermore, 118 is the microprocessor 1
A register to which the digital signal No. 10 is supplied converts this digital signal into an ignition timing for the igniter 12 (primary (5) current 0FFL) 111), and outputs an ignition timing signal representing this ignition timing. A drive circuit 119 amplifies the pulse signal of the register 118 and drives the igniter 12.

第3図は上記構成における処理手順を示す概略のフロー
チャー1・である。制御回11811に電源が投入され
機関lが始動し始めるとステップ301で初期化の処理
が行なわれて初期値がセットされる。ステップ302で
は機関パラメータ(吸入空気量Q、機関回転速度N、水
温、スロットル信号)が読み込まれる。ステップ303
では、これら読み込んだ値から単位回転当りの吸入空気
量(Q/N)を1[算する。
FIG. 3 is a schematic flowchart 1 showing the processing procedure in the above configuration. When the control circuit 11811 is powered on and the engine 1 starts to start, initialization processing is performed in step 301 and initial values are set. In step 302, engine parameters (intake air amount Q, engine rotational speed N, water temperature, throttle signal) are read. Step 303
Now, calculate the amount of intake air per unit rotation (Q/N) from these read values.

点火時期処理の要求が割り込んだ時はステップ304の
割り込み処理を行なうが、通常はステップ320.32
1の処理を行う。ステップ304では単位回転当りの吸
入空気i (Q/N)と機関回転速度Nのマツプ(第4
図参照)、及びスロットル信号< r、 r、信号)と
水温信号とから要求値(θ)を求めて、ステップ305
へ進む。ステラ(6) プ305では単位回転当りの吸入空気量(Q/N)の変
化(八〇/N)を求めて、単位回転当りの吸入空気it
変化(八〇/N)が所定値(1)以下かどうかを判別し
、所定値(1)以下の場合は減速状態と判断してステッ
プ312に進むが、所定値(1)より大きい場合は減速
状態ではないとしてステップ306に進む。このステッ
プ306ではスロットル弁が閉から開(LL信号0N−
OFF)になった直後かどうかを判断し、直後の場合は
ステップ308に、その他の場合はステップ307に進
む。ステップ307では加速状態かどうかを判定する為
、△Q/Nと所定(2)とを比較し、所定値(2)以上
の場合は加速状態としてステップ308に進むが、ステ
ップ308では一旦加速状態が有った事を示す為にフラ
グをセットして、ステップ312に進む。
When a request for ignition timing processing interrupts, the interrupt processing in step 304 is performed, but normally the processing is performed in step 320.32.
Perform processing 1. In step 304, a map (fourth
Step 305
Proceed to. Stella (6) In step 305, find the change (80/N) in the amount of intake air per unit revolution (Q/N), and calculate the intake air per unit revolution.
It is determined whether the change (80/N) is less than or equal to a predetermined value (1), and if it is less than or equal to the predetermined value (1), it is determined that it is in a deceleration state and the process proceeds to step 312, but if it is greater than the predetermined value (1), the process proceeds to step 312. It is determined that the vehicle is not in a deceleration state, and the process proceeds to step 306. In this step 306, the throttle valve changes from closed to open (LL signal 0N-
OFF), and if it is immediately after, the process proceeds to step 308; otherwise, the process proceeds to step 307. In step 307, ΔQ/N is compared with a predetermined value (2) in order to determine whether or not the acceleration state is present. If it is equal to or greater than the predetermined value (2), the process proceeds to step 308 as an acceleration state. A flag is set to indicate that there was a problem, and the process proceeds to step 312.

ステップ312では過遅角防止の為、固定値θcons
t  (例えば、アイドル時の点火時期)を出力点火時
期(θ)とする。ステップ309では過去に加速状態が
有ったかどうかを示すフラグの判別(7) を行い、次のステップ310へ進む。このステップ31
0で加速後の経過時間を計測する為のカウンタを更新し
て、次のステップ311に進む。ステップ311では加
速後に所定時間が経過したかどうかを判別して、所定時
間に満たない場合は前述のステップ312へ、所定時間
経過後はステップ313へ進む。ステップ313では次
の加速状態検出用にフラグをクリアし、ステップ314
では加速後の時間カウンタをクリアしてステップ315
へ進む。ステップ315ではステップ304で算出した
要求値が前回の出力値より大か小かを判定し、要求値が
前回の出力値と同一のときはステップ316へ、要求値
が前回の出力値より大きい場合はステップ317へ、要
求値が前回の出力値より小さい場合はステップ318へ
進む。
In step 312, a fixed value θcons is set to prevent excessive retardation.
Let t (for example, the ignition timing at idle) be the output ignition timing (θ). In step 309, a flag indicating whether there was an acceleration state in the past is determined (7), and the process proceeds to the next step 310. This step 31
A counter for measuring the elapsed time after acceleration is updated with 0, and the process proceeds to the next step 311. In step 311, it is determined whether a predetermined time has elapsed after the acceleration. If the predetermined time has not been reached, the process proceeds to step 312, described above, and after the predetermined time has elapsed, the process proceeds to step 313. In step 313, the flag is cleared for the next acceleration state detection, and in step 314
Then, clear the time counter after acceleration and proceed to step 315.
Proceed to. In step 315, it is determined whether the required value calculated in step 304 is larger or smaller than the previous output value. If the required value is the same as the previous output value, the process proceeds to step 316; if the required value is greater than the previous output value, the process proceeds to step 316. If the requested value is smaller than the previous output value, the process proceeds to step 318.

ステップ316では要求値をそのまま出力値とするが、
ステップ317では要求値に近づけるべく前回の出力値
(θ)に所定値(△θ)だけ加えた値を出力値とし)、
17テソブ317ではステ・プ316とは逆に前回の出
力値(θ)に所定値(△(8) θ)だけ減じた値を出力値として、ステップ319へ進
む。ステップ319では出力点火時期(θ)を出力する
In step 316, the requested value is used as the output value, but
In step 317, the output value is set as a value obtained by adding a predetermined value (△θ) to the previous output value (θ) in order to get closer to the required value),
In step 317, contrary to step 316, a value obtained by subtracting a predetermined value (Δ(8) θ) from the previous output value (θ) is set as the output value, and the process proceeds to step 319. In step 319, the output ignition timing (θ) is output.

割り込み処理が終ったら再び通常処理に戻り、ステップ
320で燃料調量用の電磁弁8への燃料噴射時間(Tp
)の演算をステップ302.303での情報に基づいて
行ない、ステップ321では該噴射時間(Tp)を出力
レジスタにセットする。
When the interrupt processing is finished, the process returns to normal processing, and in step 320, the fuel injection time (Tp
) is performed based on the information in steps 302 and 303, and in step 321 the injection time (Tp) is set in the output register.

Tp出力後はもとのステップ302に戻り再び前述の処
理を繰り返す。
After outputting Tp, the process returns to the original step 302 and the above-described process is repeated again.

第5図(1)〜(5)は加速状態でのスロットル(L 
L)信号、単位回転当りの吸入空気量(Q/N) 、点
火時期(θ)、機関回転速度(N)、単位回転当りの吸
入空気量の変化(△Q/N)の様子をそれぞれ示す。(
3)及び(4)において破線(C)は本発明にかかわる
制御がない場合、実線(a)は本発明に係る制御が有る
場合を示す。更に(2)における一点鎖線(b)は要求
点火時期の基準となる吸気マニホルド圧力の挙動を示す
。スロットル弁が閉から開になった直後機関回転速度は
慣性の為にすぐ(9) には応答出来ずアイドル回転速度を維持する。また空気
量センサ3で測定した吸気大空気量もセンサの慣性の為
、定時間アイドル空気量を指示する。
Figure 5 (1) to (5) show the throttle (L) in the acceleration state.
L) Signal, showing the change in intake air amount per unit revolution (Q/N), ignition timing (θ), engine rotation speed (N), and change in intake air amount per unit revolution (△Q/N), respectively. . (
In 3) and (4), the broken line (C) indicates the case where there is no control related to the present invention, and the solid line (a) indicates the case where there is control related to the present invention. Furthermore, the dashed-dotted line (b) in (2) shows the behavior of the intake manifold pressure, which serves as a reference for the required ignition timing. Immediately after the throttle valve changes from closed to open, the engine rotation speed cannot respond immediately (9) due to inertia and maintains the idle rotation speed. Further, the large intake air amount measured by the air amount sensor 3 also indicates the idle air amount for a fixed period of time due to the inertia of the sensor.

この為従来は単位回転当りの吸入空気量(Q/N)も破
線(’C)の如く定時間アイドルと同一値で推移し、過
進角の値となる。次に一旦空気量センサが動き始めると
空気量センサのオーバシュートにより過遅角の値となる
為、機関回転速度が落ち込むという問題が有った。しか
し、第5図(3)の(a)に示す本発明の如くスロット
ルが閉から開になって以降の所定時間内アイドル点火時
期を維持し、単位回転当りの空気l!変化(△Q/N)
で加速を判別してアイドル点火時期から要求値に逐次近
づれる方法を採れば、機関回転速度の落ち込みのない制
御が可能となる。
For this reason, conventionally, the amount of intake air per unit rotation (Q/N) also changes at the same value as at constant time idling, as shown by the broken line ('C), and becomes an overadvanced angle value. Next, once the air amount sensor starts moving, the overshoot of the air amount sensor results in an over-retarded value, which causes the problem that the engine rotational speed drops. However, according to the present invention shown in FIG. 5(3)(a), the idle ignition timing is maintained within a predetermined period of time after the throttle is changed from closed to open, and the air l! Change (△Q/N)
If a method is adopted in which the acceleration is determined by the idling ignition timing and the required value is gradually approached from the idle ignition timing, it is possible to control the engine speed without dropping it.

また、単位回転当りの吸入空気量Q/Nのなましを行い
、この値を点火時期(θ)計算に使用して本発明の効果
をより大きなものとすることもできる。例えば今回Il
l算したQ/N値と過去のQ/N値とを所定比率で加え
合・UたちのをQ/Nのなま(10) し値とし、このQ/Hのなまし値を点火時期算出用に使
用する。
Further, the effect of the present invention can be further enhanced by annealing the intake air amount Q/N per unit rotation and using this value for calculating the ignition timing (θ). For example, this time Il
Add the calculated Q/N value and the past Q/N value at a predetermined ratio and use the sum as the Q/N value (10), and use this Q/H value as the ignition timing. Used for calculation.

以上述べたように本発明は、機関の加速状態を検出して
、その場合、回転速度と単位回転当りの吸入空気量とに
応じて演算された点火時期が所定の点火時期よりも遅角
されないように、所定機関この点火時期を遅角側で制限
するようにしているので、加速時の吸入空気量の大きな
変動による過度の遅角を無くし、加速性の悪化を防止す
ることができる。
As described above, the present invention detects the acceleration state of the engine, and in that case, the ignition timing calculated according to the rotational speed and the amount of intake air per unit rotation is not retarded beyond the predetermined ignition timing. Since the ignition timing of a given engine is limited to the retard side, excessive retardation due to large fluctuations in the amount of intake air during acceleration can be eliminated, and deterioration of acceleration performance can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、第2図は
第1図中の1lilJ御装置の詳細構成図、第3図は本
発明における演算処理手順を示すフローチャート、第4
図はメモリ内の点火時期マツプの模式図、第5図は加速
時の機関状態を説明するための状態図である。 1・・・内燃機関、3・・・吸気量センサ、5・・・ス
ロットル弁開度検出センサ、7・・・デンストリピユー
タ、11・・・制御装置、41・・・スロットル弁、1
10・・・マイクロプロセッサ、111・・・メモリ。 代理人弁理士 岡 部   隆 ]1
FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, FIG. 2 is a detailed configuration diagram of the 1lilJ control device in FIG.
The figure is a schematic diagram of the ignition timing map in the memory, and FIG. 5 is a state diagram for explaining the engine state during acceleration. DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 3... Intake amount sensor, 5... Throttle valve opening detection sensor, 7... Density repeater, 11... Control device, 41... Throttle valve, 1
10...Microprocessor, 111...Memory. Representative Patent Attorney Takashi Okabe] 1

Claims (1)

【特許請求の範囲】 (1)内燃機関の回転速度および単位回転当りの吸入空
気量に応じて、機関の点火時期を演算し、この演算値に
基づいて点火時期を制御する内燃機関用点火時期制御方
法において、機関の加速状態を検出し、この加速状態を
検出したとき前記演算された点火時期が所定の点火時期
よりも遅角されないように所定時間前記演算された点火
時期を遅角側で制限するようにしたことを特徴とする内
燃機関用点火時期制御方法。 (2)前記加速状態を前記単位回転当りの吸入空気量の
変化量の大きさにより検出することを特徴とする特許請
求の範囲第1項記載の点火時期制御方法。 (3)前記加速状態を機関のスロットル弁の開度変化に
より検出することを特徴とする特許請求の範囲第1項記
載の点火時期制御方法。 (1) (4)前記点火時期の制限は予め定めた固定値に点火時
期を設定することにより行い、この固定値を解除し、こ
の固定値から前記演算された点火時期への移行を徐々に
行なうようにしたことを特徴とする特許請求の範囲第1
項記載の点火時期制御方法。
[Claims] (1) Ignition timing for an internal combustion engine that calculates the ignition timing of the engine according to the rotational speed of the internal combustion engine and the amount of intake air per unit rotation, and controls the ignition timing based on this calculated value. In the control method, an acceleration state of the engine is detected, and when the acceleration state is detected, the calculated ignition timing is retarded for a predetermined period of time so that the calculated ignition timing is not retarded beyond a predetermined ignition timing. A method for controlling ignition timing for an internal combustion engine, characterized in that the ignition timing is restricted. (2) The ignition timing control method according to claim 1, wherein the acceleration state is detected based on the magnitude of change in the amount of intake air per unit revolution. (3) The ignition timing control method according to claim 1, wherein the acceleration state is detected by a change in opening of a throttle valve of the engine. (1) (4) The ignition timing is limited by setting the ignition timing to a predetermined fixed value, and then this fixed value is released and the ignition timing is gradually shifted from this fixed value to the calculated ignition timing. Claim 1 characterized in that
The ignition timing control method described in section.
JP57088287A 1982-05-24 1982-05-24 Controlling method of ignition timing for internal-combustion engine Pending JPS58204974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57088287A JPS58204974A (en) 1982-05-24 1982-05-24 Controlling method of ignition timing for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57088287A JPS58204974A (en) 1982-05-24 1982-05-24 Controlling method of ignition timing for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58204974A true JPS58204974A (en) 1983-11-29

Family

ID=13938688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57088287A Pending JPS58204974A (en) 1982-05-24 1982-05-24 Controlling method of ignition timing for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58204974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235077A (en) * 1985-08-07 1987-02-16 Toyota Motor Corp Ignition timing control device in internal combustion engine
JPS6264846U (en) * 1985-10-14 1987-04-22
JPH02305374A (en) * 1989-05-18 1990-12-18 Fuji Heavy Ind Ltd Method of ignition timing learning control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235077A (en) * 1985-08-07 1987-02-16 Toyota Motor Corp Ignition timing control device in internal combustion engine
JPH0359271B2 (en) * 1985-08-07 1991-09-10 Toyota Motor Co Ltd
JPS6264846U (en) * 1985-10-14 1987-04-22
JPH02305374A (en) * 1989-05-18 1990-12-18 Fuji Heavy Ind Ltd Method of ignition timing learning control

Similar Documents

Publication Publication Date Title
EP0065221B1 (en) Internal combustion engine control apparatus
JPS639093B2 (en)
JPH0250303B2 (en)
GB2202059A (en) Engine speed control method
JPS6347893B2 (en)
JPH0211729B2 (en)
JPS6149150A (en) Control device of fuel injection quantity in internal-combustion engine
JPH0385349A (en) Fuel injection device of internal combustion engine
JPS6088831A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPH0442547B2 (en)
JPS58204974A (en) Controlling method of ignition timing for internal-combustion engine
JPS5963330A (en) Method of controlling electrically controlled internal- combustion engine
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JPS60249651A (en) Electronic control type fuel injector
JP2590940B2 (en) Fuel injection amount control device for internal combustion engine
JPS5968530A (en) Control method of internal-combustion engine
JPH0238794B2 (en)
JP2905938B2 (en) Engine idle speed control device
JP2633829B2 (en) Control device for internal combustion engine
JPH03185247A (en) Fuel control device for engine
JPH0463933A (en) Fuel injection control device
JPS59200034A (en) Method of controlling fuel injection in internal- combustion engine
JPS5990729A (en) Control method for acceleration fuel of internal-combustion engine
JP2504036B2 (en) Knotting control device for internal combustion engine
JPS5830424A (en) Control method of electronically controlled fuel injection