JPS58200083A - Propeller type wind turbine with air stabilizing vane - Google Patents

Propeller type wind turbine with air stabilizing vane

Info

Publication number
JPS58200083A
JPS58200083A JP57082384A JP8238482A JPS58200083A JP S58200083 A JPS58200083 A JP S58200083A JP 57082384 A JP57082384 A JP 57082384A JP 8238482 A JP8238482 A JP 8238482A JP S58200083 A JPS58200083 A JP S58200083A
Authority
JP
Japan
Prior art keywords
wind
angle
blade
blades
attack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57082384A
Other languages
Japanese (ja)
Other versions
JPH0118269B2 (en
Inventor
Atsushi Ozaki
篤志 尾崎
Takeshi Sakohata
迫畑 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP57082384A priority Critical patent/JPS58200083A/en
Publication of JPS58200083A publication Critical patent/JPS58200083A/en
Publication of JPH0118269B2 publication Critical patent/JPH0118269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To enable to operate a wind turbine at the maximum efficiency as against a given speed of wind, by supporting blades in a freely rotatable manner at the boss of a propeller type wind turbine, and changing the pitch angle of the blades by the aerodynamic force acted to an air stabilizing vane fixed to the blades. CONSTITUTION:Support rods 6 are fixed to each blade 5 to project backward with respect to the direction of rotation of the blades 5, i.e., toward the downstream side of wind, and the air stabilizing vane 7 is fixed to the tops of the support rods 6. These vane 7 function like a tail unit of an airplane to the direction W of air flow to hold the assembly of the blade 5 and the vane 7 in a required positional relationship. Here, since arrangement is such that the angle made by the chord line of the blade 5 to the direction W of air flow, i.e., the angle alpha of incidence is equal to an angle alpham at which the lift/drag ratio of the blade becomes maximum, the blade 5 is always turned around the axis O to a position where the efficiency is the maximum.

Description

【発明の詳細な説明】 この発明は風速変動によりプロペラピッチを自動的に震
える風向板付きプロペラ型風単に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a propeller-type wind turbine with a wind direction plate that automatically changes the propeller pitch according to wind speed fluctuations.

近年省エネルギの見地から風車が見直されて各種風車が
建造されつつあるが、構造の簡易さ、効率の嵐さ等から
プロペラ型風車がその主流を占めている。
In recent years, wind turbines have been reconsidered from the standpoint of energy conservation, and various types of wind turbines are being built, but propeller-type wind turbines are the mainstream because of their simple structure and high efficiency.

このプロペラ型風車には周速比によって効率が最良とな
るピッチ角があり、この最良ピッチ角は周速比によって
変化する。したがって、プロペラ型風車では周速比によ
ってブレードのピッチ角管制御するピッチ可変型が好ま
しいが、小形風車では、一般に複雑なピッチ制御機構を
さけてピッチ固定型のものを使用するのが普通であり、
その場合、設計標準風速以外の風速のときは低効率状態
で使用されているのが実情である。−万大形風車はその
使用効果からピッチ制御機構を設けるのが普通であり、
ピッチ制御機構として社、大別して遠心力等管利用した
機械的調速機構を用いたものと、風速及び風車回転数を
検知してサーボ機構によりピッチ角を変える電子的制御
方式のものとがある。しかしながら、前者は構造が複雑
で、風車全体の慣性能率が大きいために調速機構と風車
の回転数との適合が難しく、そのため回転むらt生じた
り、甚しくは過回転をして事故を起す例も少くないとい
う欠点がめる。また後者は種々の受感素子や計算機等を
必要とするため高価となる欠点がめる。
This propeller-type wind turbine has a pitch angle at which efficiency is best depending on the circumferential speed ratio, and this best pitch angle changes depending on the circumferential speed ratio. Therefore, for propeller-type wind turbines, it is preferable to use a variable pitch type that controls the pitch angle of the blades depending on the circumferential speed ratio, but for small wind turbines, it is common to avoid complicated pitch control mechanisms and use fixed pitch types. ,
In this case, the actual situation is that the system is used in a low efficiency state when the wind speed is other than the design standard wind speed. - Large-scale wind turbines are usually equipped with a pitch control mechanism due to their effectiveness.
There are two main types of pitch control mechanisms: those that use a mechanical regulating mechanism that utilizes centrifugal force, and those that use an electronic control mechanism that detects wind speed and wind turbine rotation speed and changes the pitch angle using a servo mechanism. . However, the former has a complicated structure and the inertia of the entire wind turbine is high, making it difficult to match the speed governing mechanism with the wind turbine's rotation speed, resulting in uneven rotation or even excessive rotation, which can lead to accidents. The drawback is that there are many examples. Furthermore, the latter method requires various sensing elements, computers, etc., and therefore has the disadvantage of being expensive.

本発明は上記現状を改善するためになされたもので、空
力的原理によりピッチ角を制御し、或は自動的に最良の
ピッチ角を与えうる風向板付きプロペラ型風車を提供す
ることを目的とする0 本発明によれば、上記目的は、風車のブレードの後方に
飛行機の尾翼に相当する風向板を装着し、風向板の空力
により風と風車回転流との合成速度に対するブレードの
迎え角を制御し、或は風向板を風速もしくは風車回転数
に従い変化させて二次的に迎え角を制御することにより
達せられ゛る。
The present invention was made in order to improve the above-mentioned current situation, and an object of the present invention is to provide a propeller-type wind turbine with a wind direction plate that can control the pitch angle based on aerodynamic principles or automatically provide the best pitch angle. According to the present invention, the above object is achieved by installing a wind direction plate, which corresponds to the tail of an airplane, behind the wind turbine blades, and using the aerodynamic force of the wind direction plate to adjust the angle of attack of the blades relative to the combined speed of the wind and the wind turbine rotation flow. This can be achieved by controlling the angle of attack or by changing the wind direction plate according to the wind speed or wind turbine rotation speed to secondarily control the angle of attack.

以下本発明の実施例を図面に従って説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図において、風車回転軸1に結合するボス部2に放
射方向の軸受部3′t−設け、軸受部5に回動自由に支
持した軸4にブレード5を固定する。これと反対に、軸
4をボス部2に固定し、ブレード5會軸4に対して回動
自由に支持してもよい0 ブレード5が矢印ωの方向に回転する場合、本発明にお
いては、各ブレード5に回転方向後方で、且つ風下側へ
支柱6會突設し、その先端に風向板7を固定する。
In FIG. 1, a radial bearing part 3't- is provided on a boss part 2 connected to a wind turbine rotating shaft 1, and a blade 5 is fixed to a shaft 4 rotatably supported by the bearing part 5. On the contrary, the shaft 4 may be fixed to the boss portion 2, and the blade 5 may be freely rotatably supported with respect to the shaft 4. When the blade 5 rotates in the direction of the arrow ω, in the present invention, A support 6 is provided at the rear of each blade 5 in the rotational direction and projects toward the leeward side, and a wind direction plate 7 is fixed to the tip of the support.

風向板70作作用管2図について説明する。The operation pipe 2 diagram of the wind direction plate 70 will be explained.

ブレード50回動軸心0はブレード5のJIIL型の−
空力中心(通常のX型ではJii!前縁より翼弦長の約
25Nの位置)と、選定された迎え角αにおける風圧中
心との間に選定するのがよく、風向板7は回動軸心0と
平行する方向にある。
Blade 50 rotation axis 0 is - of blade 5 JIIL type.
It is best to select between the aerodynamic center (in the normal X type, the position is about 25N of the chord length from the Jii! leading edge) and the wind pressure center at the selected angle of attack α, and the wind direction plate 7 is located at the rotation axis. It is in the direction parallel to center 0.

第2図において、ブレード5が左方から風速VVO風を
受けて上方へ速度Uで動いているとすると、ブレード5
は風速U′の風を上方からも受けていることになるから
、結局ブレード5はVw(1−a)とu(1+b)の合
成速度Wの風を受けていることになる。ここにa、bは
それぞれ軸流干渉係数、回転流干渉係数といわれるもの
で、プロペラ理論より計算しうるものでめる0風向板7
はWの空気流の方向に対してあたかも飛行機の尾翼と同
様の作用をしてブレード5と風向板7との組立体を一定
姿勢に保つ作用管する。このときのブレード5の翼弦線
とWとのなす角、即ち迎え角αが翼臘の揚抗比最大とな
る角αmになれば、風車効率が最良になることが風車理
論により知られているので、迎え角αmとなるように風
向板7の形状、姿勢等會定めれは、風車がいかなる方向
の合速度Wt受けても、ブレード5扛軸心0に対して常
に最良効率となる回動位置に追従回動する0すなわち、
変化する風速に対し最良効率となるようブレードピッチ
を自動的に変えることができる。
In FIG. 2, if the blade 5 is moving upward at a speed U while receiving wind speed VVO from the left, then the blade 5
Since the blade 5 is also receiving the wind from above at the wind speed U', the blade 5 is receiving the wind at the combined speed W of Vw(1-a) and u(1+b). Here, a and b are respectively called axial flow interference coefficient and rotational flow interference coefficient, which can be calculated from propeller theory.
acts like the tail of an airplane in the direction of the airflow W to keep the assembly of the blades 5 and the wind direction plate 7 in a constant posture. It is known from wind turbine theory that the wind turbine efficiency will be optimal if the angle between the chord line of the blade 5 and W at this time, that is, the angle of attack α, becomes the angle αm that maximizes the lift-drag ratio of the blade base. Therefore, the shape, posture, etc. of the wind direction plate 7 are determined so that the angle of attack is αm, so that no matter what direction the wind turbine receives the combined speed Wt, the rotation that always provides the best efficiency with respect to the blade 5 axis 0 is determined. 0 that rotates following the moving position, that is,
Blade pitch can be automatically changed for best efficiency with changing wind speeds.

なお、風向板7の横断向の形状は、風向板7による回転
抵抗の増加會少なくするために興型とするのがよい。
Note that the shape of the wind direction plate 7 in the transverse direction is preferably a rectangular shape in order to reduce the increase in rotational resistance due to the wind direction plate 7.

上記説明から明らかなように、ブレード5に対する風向
板7の相対角度βはブレード5の迎え角αを左右するか
ら、相対角度βを可変ならしめれに迎え角αを制御する
ことが可能である。
As is clear from the above explanation, the relative angle β of the wind direction plate 7 with respect to the blade 5 influences the angle of attack α of the blade 5, so it is possible to control the angle of attack α by varying the relative angle β. .

一般に、風力エネルギ変換装置である発電機や熱発生機
等はその能力に限界がある上に、構造、強度上からも最
高制限回転数を定めておくのが普通である。第6図、第
4図に示す実施例は風車がかかる最高制限回転数を超え
ないように風向板7の回動位*1−遠心力によって制御
する過回転防止装置i11を示す。第6図は第2図と同
様の、ブレード5及び風向板7の組立体の断面形状を示
し、風向板7會ブレード5に固定した支柱6の先端にP
点において一動自由に枢支すると共に、風向板7に突設
したアーム8とブレード5から突出するロッド9と′k
Q点にて連結する。
In general, generators, heat generators, and the like that are wind energy conversion devices have limited capabilities, and a maximum rotational speed limit is usually set based on their structure and strength. The embodiment shown in FIGS. 6 and 4 shows an over-rotation prevention device i11 that controls the rotational position *1 of the wind direction plate 7 by centrifugal force so that the wind turbine does not exceed the maximum rotational speed limit. FIG. 6 shows a cross-sectional shape of the assembly of the blade 5 and the wind direction plate 7, which is similar to that shown in FIG.
An arm 8 that is freely pivoted at a point and that projects from the wind direction plate 7 and a rod 9 that projects from the blade 5 'k
Connect at point Q.

各ブレード5内にはロッド9を進退させて風向板7をブ
レード5に対し、て回動させる風向板回動制御装置とし
て遠心力弐″過回転防止装@10を設ける。即ち、ブレ
ード5に固定したプラタン) 11&、11bにワンド
12會軸方向に摺動可能に案内支持し、ロッド12の外
端に重錘13會取付け、ロッド12の内端をベルクラン
ク14ヲ介してロッド9に連結し、ロッド12に固定し
たストッパ15aとプラタン) 11aとの間に圧縮ば
ね16ヲ介装して、常時はストッパ15I!LtPブラ
ケツ) 11bの上面に当接せしめておく。しかるとき
、風車回転数が上昇し、重錘16の生ずる遠心力がはね
16の初期圧縮力?に達するまではロッド12は不動で
あるから、ロッド9、したがって風向板7の回動位置は
不変であり、このときのブレード5の迎え角を例えばα
mに定めておく。重錘16の遠心力が前記初期圧縮力F
に等しくなる風車回転数を制限開始回転数とすれば、該
回転数を超えたときpラド12はストッパ15mがはね
16ヲ圧縮しつつ上動し、ロッド9t−左方に移動させ
る。
Inside each blade 5, a centrifugal force 2'' over-rotation prevention device @10 is provided as a wind direction plate rotation control device that rotates the wind direction plate 7 with respect to the blade 5 by moving the rod 9 forward and backward. A wand 12 is slidably guided and supported in the axial direction by the fixed platen) 11&, 11b, a weight 13 is attached to the outer end of the rod 12, and the inner end of the rod 12 is connected to the rod 9 via a bell crank 14. A compression spring 16 is interposed between the stopper 15a fixed to the rod 12 and the platen 11a, and is normally brought into contact with the top surface of the stopper 15I!LtP bracket 11b. Since the rod 12 remains stationary until the centrifugal force generated by the weight 16 reaches the initial compressive force of the spring 16, the rotational position of the rod 9 and therefore the wind direction plate 7 remains unchanged. For example, if the angle of attack of the blade 5 is α
Set it to m. The centrifugal force of the weight 16 is the initial compressive force F
If the wind turbine rotation speed that is equal to the rotation speed is set as the limit start rotation speed, when the rotation speed is exceeded, the p-rad 12 moves upward while the stopper 15m compresses the spring 16, and moves the rod 9t to the left.

これにより風向板7はブレード5の迎え角αが小となる
方向に回動する。
As a result, the wind direction plate 7 rotates in the direction in which the angle of attack α of the blade 5 becomes smaller.

更に回転数が上昇・し、ストッパ15bがプラタン) 
11bの下面に当接するとロッド12の上動は    
□1止み、迎え角ヰ最小となる。この最小迎え角管ブレ
ードの揚力が零となる値αOに設定すれば、風車はこれ
以上増速することはなく、この回転数が最高制限回転数
となる。
The rotation speed further increases, and the stopper 15b is closed)
When it comes into contact with the lower surface of rod 11b, the upward movement of rod 12 is
□1 stop, angle of attack becomes minimum. If the minimum angle of attack is set to a value αO at which the lift force of the tube blade is zero, the wind turbine speed will not increase any further, and this rotation speed will become the maximum rotation speed limit.

通常の翼型においては、揚力が零になる迎え角αOと揚
抗比最大の迎え角αmとの差は数置であるから、この間
のロッド12の移動量は僅かであって、制限開始回転数
と最高制限回転数との差は比較的小さく設定され得るの
である。このことは風車回転数の上限を実質的に一定な
らしめるに好都合である。
In a normal airfoil, the difference between the angle of attack αO at which the lift force is zero and the angle of attack αm at which the lift-drag ratio is maximum is several orders of magnitude, so the amount of movement of the rod 12 during this period is small, and the limit starting rotation is The difference between the number and the maximum rotational speed limit can be set relatively small. This is advantageous in keeping the upper limit of the wind turbine rotation speed substantially constant.

一般に、台風を含めて風速変動時の最大風速【予知し得
る場合には、該最大風速により増大する風車回転数が風
力エネルギ変換装置等から定まる許容最高回転数以下と
なるように最小迎え角を選定してもよく、この場合、グ
レード5の揚力は一般に零ではないが、最大風速の予知
は困難な場合が多いから、上記の如く揚力が零となる迎
え角α0に設定しておけば無難である。
In general, the maximum wind speed during wind speed fluctuations, including typhoons (if foreseeable, the minimum angle of attack should be set so that the wind turbine rotation speed that increases due to the maximum wind speed is less than the allowable maximum rotation speed determined by the wind energy conversion device, etc.) In this case, the lift force in grade 5 is generally not zero, but since it is often difficult to predict the maximum wind speed, it is safe to set the angle of attack α0 at which the lift force is zero as described above. It is.

なお、応答を早くする意味で最4・迎え角t−揚力が負
となる値に設定することも可能でるるか、その場合はハ
ンティングを生じ易いので好ましくない。
Incidentally, in order to speed up the response, it is possible to set the maximum angle of attack t to a negative value, but in that case it is not preferable because hunting is likely to occur.

風向板7會第5図のようにブレード5の後縁に直接枢支
することもできるが、これではピッチ操作力が大となる
Although the wind direction plate 7 can be directly pivoted to the trailing edge of the blade 5 as shown in FIG. 5, this requires a large pitch control force.

第4図のように、過回転防止装置10會各ブレード5に
設けた場合は、重錘1′5の自重が遠心力に重畳してブ
レードの上下位置により迎え角が変動すること、ストッ
パ15a、 15bの位置調整、ばね16の特性のばら
つき等から、各ブレード5の迎え角αが不揃いになって
、有害な振動音発生するおそれがるる。このような事態
を防止するためには、各ブレード5に対し迎え角連動機
構會設けるのがよい。
As shown in FIG. 4, when the over-rotation prevention device 10 is provided on each blade 5, the dead weight of the weight 1'5 is superimposed on the centrifugal force and the angle of attack changes depending on the vertical position of the blade, and the stopper 15a , 15b, variations in the characteristics of the springs 16, etc., the attack angles α of the blades 5 may become uneven, which may cause harmful vibration noise. In order to prevent such a situation, it is preferable to provide each blade 5 with an attack angle interlocking mechanism.

aI6図は迎え角運動機構の一例を示すCブレード5は
ボス部2に固着した管軸4に軸受17によって回動自由
に支持され、ブレード5内に社第4図におけると同様に
ブラケット11 a、 11 bsストツバ15a、 
15b及びばね16がeけられる。ロッド12ムは外端
がプラタン) 11a又は11bに軸方向摺動可能に案
内支持され、内端はボス部2内に設けたリンク18に連
結される。
Figure aI6 shows an example of an angle of attack movement mechanism.The blade 5 is rotatably supported by a bearing 17 on a tube shaft 4 fixed to the boss portion 2, and there is a bracket 11 in the blade 5 as in Figure 4. , 11 bs strike 15a,
15b and spring 16 are removed. The outer end of the rod 12m is guided and supported by the platen 11a or 11b so as to be slidable in the axial direction, and the inner end is connected to a link 18 provided within the boss portion 2.

ボス部2内には、ボス部基板19に回転軸1と同心に固
定した円筒20に短軸21が滑動自由に嵌入し、短軸2
1の先端部とボス部2内の先端に設けた円形連結座22
との間に、各ブレードごとにリンク機構25が設けられ
ており、また各ブレードごとに先端がボスs2の外面に
連結し、後端に重錘241に取付けたレバー25が設け
られる。リンク機構26とレバー25とはロッド12A
と同一面内に設けられる。リンク機構26は、先端が円
形連結座22に連結し中間部がロッド120内端と連結
するリンク18と、ボス51t−貫通し外縁がレバー2
5に、また中間部がリンク18の後端と連結するリンク
26と、リンク26の内端を短軸21の先端外周部に連
結するリンク27とからなる。リンク26は回転軸1と
itは直交する方向にあり、リンク27は回転軸1とほ
ぼ平行する方向にめる。
Inside the boss part 2, a short shaft 21 is slidably fitted into a cylinder 20 fixed to a boss part base plate 19 concentrically with the rotating shaft 1.
1 and the circular connecting seat 22 provided at the tip inside the boss part 2.
A link mechanism 25 is provided between each blade, and each blade has a tip connected to the outer surface of the boss s2 and a lever 25 attached to a weight 241 at the rear end. The link mechanism 26 and the lever 25 are the rod 12A.
is installed in the same plane as the The link mechanism 26 includes a link 18 whose tip is connected to the circular connecting seat 22 and whose middle portion is connected to the inner end of the rod 120, and a boss 51t that passes through the link 18 and whose outer edge is connected to the lever 2.
5, a link 26 whose intermediate portion is connected to the rear end of the link 18, and a link 27 which connects the inner end of the link 26 to the outer peripheral portion of the tip of the short shaft 21. The link 26 is arranged in a direction perpendicular to the rotation axis 1, and the link 27 is arranged in a direction substantially parallel to the rotation axis 1.

重錘24が遠心力に工9矢叩方向に移動すると、リンク
26.18 ’&−介してロッド12Aが上動δれ、角
α全小ならしめるが、この場合、リンク26の内端がリ
ンク27t−介して短軸21ヲ矢印方向に移動させる。
When the weight 24 moves in the striking direction due to centrifugal force, the rod 12A moves upward through the links 26, 18' and -, thereby making the angle α completely small. The short axis 21 is moved in the direction of the arrow via the link 27t.

短軸21は他のブレード5のリンク機構25とも連結し
ているので、各ブレード5は短軸21の前記移動の長さ
に相当する角度だけ迎え角が一斉に変化し、迎え角の不
揃いは起らない。
Since the short shaft 21 is also connected to the link mechanism 25 of the other blades 5, the angle of attack of each blade 5 changes simultaneously by an angle corresponding to the length of the movement of the short shaft 21, and the unevenness of the attack angles is eliminated. It doesn't happen.

第7図は風速上直接検知する迎え角運動式過回転防止装
置の他の実施例を示す。ブレード5は第6図におけると
同様に管軸4に回動自在に支持されており、管軸4内を
挿通するロッド12Bは、外端がブレード5内のブラケ
ットに支持され、且つベルクランク14ヲ介してロッド
9と連結する。ボス部2に支持された中心軸方向の摺動
軸28の先端に抵抗円板29′に固着し、摺動軸28と
ロッド12Bの内端とを軸28に対し斜め方向會もつリ
ンク60にて連結すると共に、ロッド12Bの後rjj
Jtローラ5.・1(て案内支持する0摺動軸28には
ボス部2に固定した円筒32内のばね66に当接するス
トッパ54aと、ばね36に初期圧縮力Fを与えるよう
摺動軸28の前進位置を定めるストッパ55bとを固着
する。
FIG. 7 shows another embodiment of the angle-of-attack type over-rotation prevention device that directly detects the wind speed. The blade 5 is rotatably supported by the tube shaft 4 in the same way as in FIG. It is connected to the rod 9 through. A link 60 is fixed to the resistance disk 29' at the tip of the sliding shaft 28 in the direction of the central axis supported by the boss part 2, and the sliding shaft 28 and the inner end of the rod 12B are diagonally aligned with respect to the shaft 28. and the rear rjj of the rod 12B.
Jt roller 5.・The sliding shaft 28 guided and supported by 1 (0) has a stopper 54a that comes into contact with a spring 66 in a cylinder 32 fixed to the boss part 2, and a stopper 54a that contacts the spring 66 in the cylinder 32 fixed to the boss part 2, and a forward position of the sliding shaft 28 so as to apply an initial compressive force F to the spring 36. A stopper 55b that defines the distance is fixed.

抵抗日板29に作用する風圧が前記初期圧縮力Fに達す
るまでは摺動軸28は不動であり、このときのブレード
迎え角倉αmに定めておくo風速が増大して抵抗円板2
9の風圧が初期圧縮力Ff超えると摺動軸2Bは後退し
、リンク60會介してロッド12B を上動させ、迎え
角を小ならしめる。
The sliding shaft 28 remains stationary until the wind pressure acting on the resistance disk 29 reaches the initial compressive force F, and at this time the blade angle of attack αm is set as the wind speed increases and the resistance disk 2
When the wind pressure of 9 exceeds the initial compressive force Ff, the sliding shaft 2B retreats and moves the rod 12B upward through the link 60, thereby reducing the angle of attack.

更に風速が増大し、ストッパ54aが円筒52に当接し
たとき、ブレード5に揚力零の迎え角α0又はこれに近
い設定迎え角となり、風車回転数ケ設定上限値に制限す
る。
When the wind speed further increases and the stopper 54a comes into contact with the cylinder 52, the angle of attack becomes α0 at which the lift force on the blade 5 is zero or a set angle of attack close to this, and the number of rotations of the wind turbine is limited to the set upper limit value.

なお各ブレードの迎え角連動機構としては、上記実施例
の#よか、摺動軸28の移動tカムVCより親歯車の回
転に変え、各ロッド12A、 12B等に取付けた子歯
車會親歯単に噛合させて、全ブレードの迎え角管一括制
御することもできる(%願昭55158185 ) 。
The angle of attack interlocking mechanism for each blade is similar to # in the above embodiment, but instead of rotating the main gear from the moving t-cam VC of the sliding shaft 28, the main gear of the child gear is attached to each rod 12A, 12B, etc. It is also possible to control the angle of attack of all the blades at once by simply meshing them together (Reference No. 5,515,8185).

本発明は上記のように、プロペラ型風車のボスs4Cブ
レードを回動可能に支持し、各ブレードに取付けた風向
板の空力によりブレードピッチ角を変えて風車の効率的
運転を可能にしたので、風車のピッチ角制御に複雑高価
な機械的調速機構やサーボ機構を有する電子的制御装置
が不要で、安価にピッチ角を制御することができ、しか
も変化する風速に対して風車を最良の効率tもって運転
することができるので、風車を経済的に利用し得る効果
がある。また風向板を回動じて風車回転数を制御する場
合でも、風向板の回動を風速もしくは風車回転数に応動
する風向板囲動制御装置により行うことができるから、
制御装置を構造簡易且つ安価に構成しうる効果がめる。
As described above, the present invention rotatably supports the boss S4C blades of a propeller-type wind turbine, and changes the blade pitch angle by the aerodynamic force of the wind direction plate attached to each blade, thereby enabling efficient operation of the wind turbine. Controlling the pitch angle of a wind turbine does not require a complicated and expensive mechanical speed governing mechanism or an electronic control device with a servo mechanism, making it possible to control the pitch angle at low cost, and to maintain the best efficiency of the wind turbine in response to changing wind speeds. Since the wind turbine can be operated with 1000 yen, the wind turbine can be used economically. Furthermore, even when the wind turbine rotation speed is controlled by rotating the wind direction plate, the rotation of the wind direction plate can be performed by a wind direction plate surrounding control device that responds to the wind speed or the wind turbine rotation speed.
The advantage is that the control device can be constructed with a simple structure and at low cost.

風向板回動にサーボ機構を用いてもよいが、その場合も
ブレードピッチ角は風向板の空力が行うから、サーボ機
構社風向板を回動させるだけの小容量で足9、ブレード
ピッチ角を直接サーボ機構にて制御する場合罠比すれば
サーボ機構の容量は着るしく小となる。したがって本発
明によれば小形風車を広範門の用途に紅済的且つ簡易に
適合させる上に甚だ有益である。
A servo mechanism may be used to rotate the wind direction plate, but in that case, the blade pitch angle is determined by the aerodynamics of the wind direction plate, so Servo Mechanism Co., Ltd. can adjust the blade pitch angle by 9 feet with a small capacity that only rotates the wind direction plate. When controlling directly with a servo mechanism, the capacity of the servo mechanism is considerably smaller than that of a trap. Therefore, the present invention is extremely advantageous in adapting a small wind turbine to a wide gate application in a convenient and simple manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の立面図、第2図社第1図の
A−AM断面図、第6図は風向板の回動機構の概略を示
す側面図、第4図はブレードに設けた遠心力式過回転防
止装置の立面図、第5図は風向板の他の取付構造を示す
側面図、w、6図は迎え角運動機構の一実施例の縦断面
図、第7図は迎え角運動機構の他の実施例の部分縦断面
図である。 1・・・風車回転軸、2・・・ボス部、4・・・放射方
向軸、5・・・ブレード、7・・・風向板。 代理人 弁理士 祐 川 尉 −外1名第6図 第7図 452−
Fig. 1 is an elevational view of an embodiment of the present invention, Fig. 2 is a sectional view taken along the line A-AM in Fig. 1, Fig. 6 is a side view schematically showing the rotating mechanism of the wind direction plate, and Fig. 4 is An elevational view of the centrifugal over-rotation prevention device provided on the blade, Figure 5 is a side view showing another mounting structure for the wind direction plate, w, Figure 6 is a longitudinal sectional view of one embodiment of the angle of attack movement mechanism, FIG. 7 is a partial vertical sectional view of another embodiment of the angle of attack movement mechanism. DESCRIPTION OF SYMBOLS 1... Wind turbine rotating shaft, 2... Boss part, 4... Radial axis, 5... Blade, 7... Wind direction board. Agent Patent attorney Yugawa Satoshi - 1 other person Figure 6 Figure 7 452-

Claims (1)

【特許請求の範囲】 (1)風車回転軸に固着したボス部にブレードを放射方
向軸のまわりに回動自由に支持したプロペラ履風車にお
いて、各グレードにその回転方向後方に位置する風向板
を設け、風向板の空力によp風と回転流との合速度方向
に対するブレードの迎え角を制御することt4I黴とす
る風向板付きプロペラ型風車。 (2)  ブレードの述え角がブレードの揚抗比最大と
なる迎え角である特許請求の範囲i[1項記載の風向板
付きプロペラ型風車◇ (5)  風車回転軸に固着したボス部にブレード會放
射方向軸のまわりに回動自由に支持したプロペラ型風車
において、各ブレードにその回転方向後方に位置する風
向板を風単回転向に対して傾動可能に軸支し、風車回転
部に風速もしくは風車回転数に応動する風向板回動制御
装置を設け、風と回転流との合速度方向に対す゛るブレ
ードの迎え角會風車回転数に対して制御することを特徴
とする風向板付きプロペラ型風車◇ (4)  風向板傾動制御装置が風圧もしくは重錘の遠
心力により風向板の@直角f會制御する特許請求の範r
mtigs*記載の風向板付きプロペラ臘風軍。 (5)  風向板回動制御装置が、ブレードの迎え角を
所定回転数以下ではブレードの揚抗比最大となる値に保
持し、前記所定回転数を超えたとき線ブレード揚力が減
少するよう迎え角を制御する過回転防止装置である特許
請求の範MJ第3項又は第4項記載の風向板付きイロベ
    ′う臘風車。
[Scope of Claims] (1) In a propeller-equipped wind turbine in which the blades are rotatably supported around a radial axis on a boss fixed to the wind turbine rotation axis, each grade has a wind direction plate located at the rear in the rotation direction. A propeller-type wind turbine with a wind direction plate, in which the angle of attack of the blades with respect to the direction of the combined speed of the wind and the rotational flow is controlled by the aerodynamic force of the wind direction plate. (2) Claim i in which the predication angle of the blades is the angle of attack at which the lift-drag ratio of the blades is maximum In a propeller-type wind turbine in which the blades are rotatably supported around an axis in the radial direction, each blade has a wind direction plate located at the rear in the direction of rotation that is pivotally supported so as to be tiltable with respect to the direction of single rotation of the wind. A wind deflection plate equipped with a wind deflection plate rotation control device that responds to wind speed or wind turbine rotational speed, and controls the angle of attack of the blade with respect to the direction of the combined speed of the wind and rotational flow relative to the windmill rotational speed. Propeller-type windmill ◇ (4) Scope of patent claims in which the wind direction plate tilting control device controls the @ right angle f angle of the wind direction plate by wind pressure or centrifugal force of a weight.
Propeller Rinfugun with wind direction plate described in mtigs*. (5) The wind direction plate rotation control device maintains the angle of attack of the blade at a value that maximizes the lift-drag ratio of the blade when the number of rotations is below a predetermined number of rotations, and maintains the angle of attack of the blade at a value that maximizes the lift-drag ratio of the blade when the number of rotations exceeds the predetermined number of rotations. An over-rotation windmill with a wind direction plate according to claim 3 or 4, which is an over-rotation prevention device for controlling the angle.
JP57082384A 1982-05-18 1982-05-18 Propeller type wind turbine with air stabilizing vane Granted JPS58200083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57082384A JPS58200083A (en) 1982-05-18 1982-05-18 Propeller type wind turbine with air stabilizing vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082384A JPS58200083A (en) 1982-05-18 1982-05-18 Propeller type wind turbine with air stabilizing vane

Publications (2)

Publication Number Publication Date
JPS58200083A true JPS58200083A (en) 1983-11-21
JPH0118269B2 JPH0118269B2 (en) 1989-04-05

Family

ID=13773082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082384A Granted JPS58200083A (en) 1982-05-18 1982-05-18 Propeller type wind turbine with air stabilizing vane

Country Status (1)

Country Link
JP (1) JPS58200083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918386A (en) * 2004-02-13 2007-02-21 艾劳埃斯·乌本 Rotor blade for a wind turbine
GB2459453A (en) * 2008-04-21 2009-10-28 Barry Robert Marshall Aerodynamic overspeed limitation for wind turbine rotor(s)
JP2009257310A (en) * 2008-03-21 2009-11-05 Muroran Institute Of Technology Propeller type turbine device for wind power generation
JP2014526652A (en) * 2011-09-21 2014-10-06 ヨンロク オ Horizontal axis wind power generator using airfoil blades of the same width and thickness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918386A (en) * 2004-02-13 2007-02-21 艾劳埃斯·乌本 Rotor blade for a wind turbine
JP2009257310A (en) * 2008-03-21 2009-11-05 Muroran Institute Of Technology Propeller type turbine device for wind power generation
GB2459453A (en) * 2008-04-21 2009-10-28 Barry Robert Marshall Aerodynamic overspeed limitation for wind turbine rotor(s)
GB2459453B (en) * 2008-04-21 2011-06-08 Barry Robert Marshall Energy output limiter for wind turbine rotor(s)
JP2014526652A (en) * 2011-09-21 2014-10-06 ヨンロク オ Horizontal axis wind power generator using airfoil blades of the same width and thickness
US10012210B2 (en) 2011-09-21 2018-07-03 Young-Lok Oh Horizontal-axis wind turbine using airfoil blades with uniform width and thickness

Also Published As

Publication number Publication date
JPH0118269B2 (en) 1989-04-05

Similar Documents

Publication Publication Date Title
US4105363A (en) Overspeed control arrangement for vertical axis wind turbines
JP3226279B2 (en) Self-controlled fluid energy turbine
US4082479A (en) Overspeed spoilers for vertical axis wind turbine
US4299537A (en) Interlinked variable-pitch blades for windmills and turbines
US4084921A (en) Windmill with cyclically feathering blades
US4710101A (en) Wind turbine
JP4690829B2 (en) Horizontal axis windmill
US4435124A (en) Vertical axis windmill
US4360315A (en) Vortex wind turbine
JP2006336505A (en) Horizontal shaft windmill
WO1990008895A1 (en) Wind motor
JP7140331B2 (en) Lift type vertical axis wind turbine
JP2007085182A (en) Vertical shaft type straight wing windmill having aerodynamic governor mechanism
JP2006152922A (en) Windmill
US4652206A (en) Wind turbine
JPH0380988B2 (en)
US4443154A (en) Windmill tower shadow eliminator
JP2001221145A (en) Passive active pitch flap mechanism
JP5685699B2 (en) Variable pitch device
JPS58200083A (en) Propeller type wind turbine with air stabilizing vane
GB2561926A (en) Wind turbine
JP4690800B2 (en) Horizontal axis windmill
RU2589569C2 (en) Method for conversion of kinetic flow energy into rotation of wing and apparatus for realising said method
JP4494813B2 (en) Horizontal axis wind turbine and control method thereof
US11486354B2 (en) Vertical axis wind turbine