JPS58197503A - Controlling method of filter pond - Google Patents

Controlling method of filter pond

Info

Publication number
JPS58197503A
JPS58197503A JP57081865A JP8186582A JPS58197503A JP S58197503 A JPS58197503 A JP S58197503A JP 57081865 A JP57081865 A JP 57081865A JP 8186582 A JP8186582 A JP 8186582A JP S58197503 A JPS58197503 A JP S58197503A
Authority
JP
Japan
Prior art keywords
time
filtration
formula
value
overresistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57081865A
Other languages
Japanese (ja)
Other versions
JPH0571964B2 (en
Inventor
Toshiaki Kobayashi
小林 敏昭
Junichiro Ozawa
小沢 純一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57081865A priority Critical patent/JPS58197503A/en
Publication of JPS58197503A publication Critical patent/JPS58197503A/en
Publication of JPH0571964B2 publication Critical patent/JPH0571964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Filtration Of Liquid (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve filtration performance by making a regression analysis from a relation based upon an actual filtration time and a filtration resistance value, and finding a precise time that it takes to obtain a set filtration resistance value from the approximate expression of the filtration resistance value based upon a found change in the lapse of time. CONSTITUTION:For example, (n) actual loss head values h(t) between new filtration start time t=0 and t=t after a flushing process are measured at intervals of five minutes. Those (n) actual values are used to make the regression analysis by using a secondary function, and coefficients (a), (b), and (c) of the approximate equation h(t)=at<2>+bt+c are found according to Cramer's rule by applying the method of least squares. An upper-limit filtration loss head value (hmax) for the operation of the filter pond is set and inserted in the approximate equation to find a maximum filtration resistance arrival time, e.g. maximum loss head arrival time (t) corresponding to the upper-limit value of the upper-limit filtration resistance. This value is added to the filtration start time to calculate a flushing process transition time.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、t″′′過池御方法、特に、濾過抵抗測定4
、例えば、水頭損失計を備えたlJ4過池過電御1例え
ば、主に、損失水頭が所定値に達して濾過操作を中1ト
し、洗浄操作に移行する時刻の予測方法等に関するもの
である。 一般に、浄水場等水処理施設において、原水に含まtす
る懸濁物質を除去するためには、原水に・凝集剤JP凝
集助剤を注入して、;凝集フロックを形成17、これを
沈澱池で沈降させることにより、処理水から分離17“
′、更に水中に残存する少量の固形分」゛ は急速!lJ過池過電捉して水な浄化している。 このような濾過プロセスにおいては、固形分の粒子が砂
1−等P材の表面又は内部に収着さねるたぬに 52通
を続けるに従って1過層の空隙率が減少
The present invention provides a t'''' filter control method, particularly a filtration resistance measurement method.
For example, the lJ4 overvoltage control 1 equipped with a water head loss meter mainly relates to a method of predicting the time when the water head loss reaches a predetermined value, the filtration operation is stopped, and the cleaning operation is started. be. Generally, in water treatment facilities such as water purification plants, in order to remove suspended solids contained in raw water, a flocculant JP flocculation aid is injected into the raw water to form flocculation flocs17, which are then sent to a sedimentation tank. Separated from the treated water by sedimentation at 17"
′, and a small amount of solids remaining in the water” ′′ is rapidly! The water is purified by trapping the lJ overcharge. In such a filtration process, the porosity of the filtration layer decreases as the solid particles are sorbed onto the surface or inside of the P material, such as sand.

【7.その結果
、e過抵抗例えば損失水頭が増大してlj過効率を低下
させるようになる。従って。 このような1過抵抗がある設定値を越えたならば。 1過操作を中止して洗浄操作に移行する必要がある。 従来、このような11過プロセスにおいて、r過操作の
中止から洗浄操作への移行時期は、濾過抵抗すなわち損
失水頭がある設定値に到達した時点、例えば、全損失水
頭が/S−二〇m程度になった時点とされている、そし
て、ifj過が新しく再開さねてから損失水頭が上記設
定値1例えば、上記の全損失水頭が/S−ユθm程度に
なるまでの時間は、各1過池の特性やrj−1iM池へ
流入する被1過物の濁度、上記濁度成分の質等によって
影響され。 その結果、上記f55過間と損失水頭との関係を定量的
に示すことは困難であった。従って、洗浄操作への移行
時刻すなわち洗浄予定時刻を精度よく予見することがで
きず、史にまた、1過池の配置場所による1過池特性や
、季節、原水の水質、薬品注入条件等によるe過性能の
評価を詳細且つ定量的に行なうこともできず、従って、
最適配置や+1−4過性能の向上等の処理もとねないと
いう欠点がル、つた。 本発明方法は、上記のような従来方法における欠点を除
去し2、許容されるP遺抵抗値に到達するまでの時間を
予測して到達時刻を予見して以後の操作に計画性を4大
ると共に 1過池特性やf5過性能を示す諸係数な、上
記到達時間の予測過程における諸数値を用いて策定し、
これによって効率の良いfI過電池運用行ない得るよう
な1過池の制御方法を得ることを、その目的とするもの
である。 本発明は、この目的を達成するために、濾過抵抗測定器
を備えた1過池の制御方法において、P瀞経逼時間及び
同時刻における1過抵抗を所定時間ごとに実測する実測
工程と、上記実測工程によって得らねた実測e適時間及
び1過抵抗値により各if−’m池の1過時間に対する
r過抵抗の変化を時間による関数式により回帰分析を行
ない、軽時変化に基づ< t’過低抵抗値近似式を求め
る近似式策定工程と、上記近似式策定工程により得られ
た近似式に設定53過抵抗値を投入して許容dJA抵抗
に到達する時刻を計算予測する1過停止時刻予測工程と
を有することを特徴とするものである。 次に近似式策定工程について説明する。 まず、清浄砂層において、閉塞のない砂層での損失水頭
h 工pn)は、 L’evaの式を用いると次のよう
に表わさ才する。すなわち。 h■ = kl 11 u          (ハた
だし、u : it’過速度(m/就)L:砂層厚さく
trL) μ :2j<a)  才占中生4先数(ドさ/。2,1
゜)ρF:水の単位型1t(kρ/m″) gc:重力換算係数(kg・1勺m式’ )ψ:砂の形
状係数 D=砂粒径(In ε:砂の空隙率 また、砂利層の損失水頭は、砂利の粒径が砂粒径に比較
して遥かに大といために、通常の1過速度では無視する
ことができる。 次に、央水装置の損失水頭hcは次式により表わさハる
。 ただし、v二集水装置を通るととの流速(ff+/減) C:流量係数 ここで、集水装置の開口比、すなわち、(集水装置の開
口面積/?濾過面積)をβとすると、流速Vは。 v−u/β        (す) となり1式(り)を式〈3ノに代入すると、集水装置の
損失水頭hCは1次のように表わさする、すなわち。 hc = kコ ・ Uコ          15)
以上の結果から、濾過池の総損失水頭h(t)は。 次のように表わさねる。すなわち fit) =J(t)+hc = kI (t)・u十k −・uλ        
          (ワ)ここで、(式12のkIは
、I濾過の進行によって砂の空隙率εや砂の形状系数ψ
が変化するために。 こねを時間tの関数として表わした。 各1過池における総4i失水頭の経時変化は、上記の式
(7)VCよって示すことができるが、これと共に1式
(72の総損失水頭h (t)は、実測データについて
二次関数で同定できることが判明した。すなわち、 h(t) = at2+bt+ c       (f
)によっても表わすことができる。 従って、各e過電の特性を表わすJ(t)は、式7及び
弐gから1次のように表わさハる。 ここで、係数a’ 、 b’ 、 c’はPi池時特性
表わす指標である。 次に、実測値データによる弐lの係数a、b。 Cの求め方について示す。 いま、t4通継続時間をX、損失水頭をYとすると、近
似式は次のように表示される。すなわち。 Y =  f(X)=aXコ+bX −1−C(10)
この係数a 、b 、cを、最小二乗法を用い、クフー
メルの公式によって求めると 次のようになる。すなわ
ち。 r: (yt −r(xt))λ=ε    (//)
−7 式(/ /+VC16いて、eを零に近似するようなf
(x)ケ求めればよい。従って、式//を展開すると。 ここで、 と置き換えると、 となり、lTl\Oの条件で。 TI TI で表わすことができ、こねによって、a、b、cな求め
ると、このa、b、cが1式(/θうにおける各係数a
 、b 、Cとなる。 以ト述べた手順により、1過経過時間と損失水頭の実測
値とを用いて1式(rlの係数a、b、cを求めること
ができ、従って1式(g)を特定することができる。 今、この操作によって、P逼操作を中小し洗浄操作に移
行するため釦は1例えば、添付図面第1図に示すとおり
、洗浄工程が終って新たにf濾過を開始すると、濾過開
始時間なt−θとし7、その開始時刻から所定の時刻t
=t、4での間の損失水頭実測値h(t)を1例えば、
!r分毎に、n個実測する1、次いで、このn個の実測
値を用いて二次関数Kする回帰分析を行ない、近似式+
1)の係数a、b。 Cを求め、近似式Tflを特定する。一方、f濾過池運
用土から設定された濾過抵抗士限値1例えば、損失水頭
上限値hmaXが設定さねる。この1過抵抗1限値h]
1]axを特定された弐(flに代入することによって
、1過抵抗十限値り。8工に対応する最大濾過抵抗到達
時間1例えば最大損失水頭到達時間tを求める、なお1
式(fflは二次関数であるために。 酵大、1=過抵抗到達時間tは2個求めらねるが、大ぎ
い方の解が求めるべき最大f′i過抵抗抵抗到達時間る
。 このようにして求めらねた最大1過抵抗到達時間tは、
e過開始時刻に加算されてe過操作?中上記手順を繰り
返す。 このようにして1時刻が算出された洗浄工程時刻になっ
たならば、洗浄工程へ移行する。 また、一方において、上記のようにして算出された係数
a、b、cと、式(6)によって計算された集水装置係
数に、及びI濾過速度Uとを用いて1式<9)ICより
、I濾過値特性係数a’ 、 b’ 、 c’をそれぞ
れ求める31式デのJ(t)は、各濾過池における集水
部の形状特性及び流速特性を除いた各l” 4池の特性
式を示すものであり、この特性式に基づいて。 各nI禰池ごとのf11過の状態比較又は1過池の配m
%性などの検討を行なうことができ、また、同−i1.
t:4池における特性式の経年変化等長期データの【】
ギングによって、濾過池特性と薬品注入プロせスとの関
係、水温や有機分含有量、原水に含まj+る微生物の種
類及び濃度など1過プロセスに関すする諸因子と1過プ
ロススとの相関性を捉えることができる。 従−〕で、このようなt−I過池ごとの1過層の状態比
較、配置特性の検討、及び、r過プロセス関連因子と濾
過プロセスとの相関性から1種々の対策。 例えば、薬品注入率の修正等の処置をとる。 以上のように、本発明によねば、濾過抵抗が設定1’−
2過抵抗値に到達する時刻な積電よく求めるこ1 とができると共に、濾過値特性を示す諸係数も算出し得
てこねにより、e過性能を同士させるようVC対策をと
ることができ、従って、洗浄操作等。 fj過操作以後の操作に計画性が付与できると共に段効
率の1過池運用が可能となるという効果を有している。 なお、上記実施例においては、浄水場の砂層濾過の場合
の1過抵抗変化1例えば、損失水頭変化を1式(7)に
よって示すように、二次関数でよく同定できたが1式(
λ)において変化する砂の空隙率さなどの変動パターン
によっては、二次関数以外の関数式で回帰した方が良い
場合も考えられ、この場合においては1式<f)以降の
式の一部が変更されるも、最大4i失水頭到達時間の求
め方等は、上記実施例と同様である。 また、上記実施例では、P材として砂層を用いた浄水場
等の狗速1過池について述べたが、これに限るものでは
なく、iFi抵抗が時間と共に変化する他の種類の1過
池についても同様の方法を適用することが可能で、その
効果も上記実施例のそれと何ら変るものではない。
[7. As a result, e overresistance, such as head loss, increases and lj overefficiency decreases. Therefore. If such one over-resistance exceeds a certain set value. It is necessary to stop the 1-pass operation and move on to the cleaning operation. Conventionally, in such an 11-filtration process, the timing of transition from stopping the r-filtration operation to the cleaning operation is determined when the filtration resistance or head loss reaches a certain set value, for example, when the total head loss reaches /S-20 m. The time it takes for the head loss to reach the above set value 1, for example, after the ifj flow is restarted, is approximately It is influenced by the characteristics of the first filtrate pond, the turbidity of the first filtrate flowing into the rj-1iM pond, the quality of the above-mentioned turbidity components, etc. As a result, it has been difficult to quantitatively demonstrate the relationship between the above f55 time and head loss. Therefore, the time to transition to cleaning operation, that is, the scheduled time for cleaning, cannot be predicted with high accuracy, and may vary depending on the characteristics of the first over-pond depending on the location of the first over-pond, the season, the quality of raw water, chemical injection conditions, etc. It is not possible to evaluate e-overperformance in detail and quantitatively, and therefore,
The drawback is that it does not require processing such as optimal placement or improvement of +1-4 performance. The method of the present invention eliminates the drawbacks of the conventional method as described above, and improves planning in subsequent operations by predicting the time required to reach the allowable P resistance value and predicting the arrival time. At the same time, it is formulated using various values in the process of predicting the arrival time, such as coefficients indicating the 1 overtime characteristic and f5 overperformance,
The purpose of this invention is to obtain a control method for a single overcell battery that enables efficient fI overbattery operation. In order to achieve this object, the present invention provides a method for controlling a 1-pass pond equipped with a filtration resistance measuring device, including an actual measuring step of actually measuring the 1-pass resistance at predetermined time intervals and the same time; Based on the actual e-appropriate time and 1-overresistance value that were not obtained in the above-mentioned measurement process, a regression analysis was performed on the change in r-overresistance for each if-'m pond with respect to 1 overtime using a functional formula depending on time, and based on the change in light time. zu <t' Approximate formula formulating step to obtain an approximation formula for excessively low resistance value, and setting 53 overresistance value is input into the approximate formula obtained by the above approximate formula formulating step to calculate and predict the time when the allowable dJA resistance is reached. The present invention is characterized by having one overstop time prediction step. Next, the approximate formula formulation process will be explained. First, in a clean sand layer, the head loss in an unoccluded sand layer can be expressed as follows using L'eva's equation. Namely. h■ = kl 11 u (However, u: it' overspeed (m/in) L: sand layer thickness trL) μ: 2j<a)
゜) ρF: Water unit type 1t (kρ/m'') gc: Gravity conversion coefficient (kg・1tm formula') ψ: Shape factor of sand D = Sand grain diameter (In ε: Porosity of sand The head loss in the gravel layer can be ignored at one normal overspeed because the grain size of gravel is much larger than that of sand.Next, the head loss hc of the central water system is as follows: It is expressed by the formula. However, v2: Flow rate through the water collection device (ff+/decrease) C: Flow rate coefficient Here, the opening ratio of the water collection device, that is, (opening area of the water collection device/?filtration) If the area) is β, then the flow velocity V is v-u/β (su), and by substituting equation 1 (ri) into equation (3), the water head loss hC of the water collection device is expressed as linear: In other words, hc = k ・ U 15)
From the above results, the total head loss h(t) of the filtration basin is: It is expressed as follows. i.e. fit) = J (t) + hc = kI (t)・u×k −・uλ
(W) Here, (kI in Equation 12 is determined by the porosity ε of the sand and the shape series ψ of the sand depending on the progress of I filtration.
To change. The kneading was expressed as a function of time t. The change over time of the total 4i head loss in each pond can be expressed by the above equation (7) VC, but in addition to this, the total head loss h (t) of equation 1 (72) can be expressed as It turns out that it can be identified by the function h(t) = at2+bt+ c (f
) can also be represented. Therefore, J(t) representing the characteristics of each e overcurrent can be expressed as linear from Equation 7 and 2g. Here, the coefficients a', b', and c' are indicators representing the Pi cell characteristics. Next, the coefficients a and b of 2 based on the actual measurement data. We will show how to obtain C. Now, assuming that the t4 communication duration is X and the water loss head is Y, the approximate expression is expressed as follows. Namely. Y = f(X) = aX + bX -1-C (10)
When these coefficients a, b, and c are calculated using Kuhumel's formula using the method of least squares, they are as follows. Namely. r: (yt −r(xt))λ=ε (//)
-7 Formula (/ /+VC16, f such that e approximates zero
Just find (x). Therefore, if we expand the expression //. Here, if we replace with , we get , under the condition of lTl\O. It can be expressed as TI TI , and when a, b, and c are determined by kneading, these a, b, and c become one equation (each coefficient a in /θ
,b,C. According to the procedure described above, the coefficients a, b, and c of Equation 1 (rl) can be determined using the elapsed time and the measured value of head loss, and therefore Equation 1 (g) can be specified. Now, by this operation, the button 1 is pressed to reduce the P operation to medium and small and move on to the cleaning operation.For example, as shown in Figure 1 of the attached drawings, when the cleaning process is finished and f filtration is started anew, the filtration start time etc. t-θ7, and a predetermined time t from the start time
For example, the actual measured head loss value h(t) between = t and 4 is 1,
! Every r minutes, n actual measurements are performed, and then regression analysis is performed using a quadratic function K using these n actual measurements, and the approximation formula +
1) coefficients a and b. Find C and specify the approximate expression Tfl. On the other hand, the filtration resistance limit value 1, for example, the upper limit value of water head loss hmaX, which is set from the filtration pond operating soil, is not set. This 1 overresistance 1 limit value h]
1] By substituting ax into the specified 2 (fl), the maximum filtration resistance reaching time 1 corresponding to the 8th filtration resistance is determined.
Since the formula (ffl is a quadratic function), two 1 = overresistance arrival time t cannot be found, but the larger solution is the maximum f′i overresistance arrival time that should be found. The time t to reach the maximum one overresistance calculated in this way is:
Is it added to the e-excess start time and e-excessive operation? Repeat the above steps. When one time reaches the cleaning process time calculated in this way, the process moves to the cleaning process. On the other hand, using the coefficients a, b, c calculated as above, the water collection device coefficient calculated by equation (6), and I filtration rate U, 1 equation < 9) IC Therefore, J(t) of Equation 31 to obtain the I filtration value characteristic coefficients a', b', and c' is calculated as follows: This shows the characteristic formula, and based on this characteristic formula. Comparison of the state of f11 for each nl pond or the arrangement of one over pond
%, etc., and also -i1.
t: Long-term data such as secular changes in characteristic equations for 4 ponds []
Through logging, it is possible to determine the relationship between filtration characteristics and chemical injection process, and the correlation between various factors related to the 1-filtration process, such as water temperature, organic content, and the type and concentration of microorganisms contained in raw water, and the 1-filtration process. can be captured. In this section, various countermeasures are taken based on the comparison of the state of one layer in each t-I filter, examination of arrangement characteristics, and correlation between factors related to the r-filtration process and the filtration process. For example, take measures such as correcting the chemical injection rate. As described above, according to the present invention, the filtration resistance is set to 1'-
It is possible to accurately determine the time at which the 2-pass resistance value is reached, and also calculate the various coefficients that indicate the filtration value characteristics. Therefore, cleaning operations etc. This has the effect that it is possible to give planning to the operations after the fj over-operation, and to enable one-over-stage operation with high stage efficiency. In the above example, in the case of sand layer filtration at a water purification plant, the change in resistance (1), for example, the head loss change (1) could be well identified using a quadratic function as shown by equation (7), but equation (1)
Depending on the pattern of fluctuations such as the porosity of the sand that changes at However, the method of determining the time to reach the maximum 4i head loss is the same as in the above embodiment. In addition, in the above embodiment, a case of a water purification plant or the like using a sand layer as the P material was described, but the invention is not limited to this, and other types of case ponds in which the iFi resistance changes over time are described. It is also possible to apply a similar method, and the effect is no different from that of the above embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法の一実施例の制御方法を示すフローチャ
ート図である。 代理人  葛  野  信  − 手続補正占(自尭) 2. 5と明の名称 一過亀O餉御方妹 3、   P+Ihl’、を 4−る者東件との関係 
  特許出願人 住 所     東京都千代田区丸の内爪j−目2番3
号名 称(601)   三菱電機株式会社代表者片由
仁八部 1代理人 5、 補正の対象 (1)  明細書の特許請求の範囲の欄(2)  明細
書の発明の詳細な説明の−6、補正の内容 (11明細書の[特許請求の範囲[を別紙のとおり補正
する。 (2)  同書第一ページ第7行「水験損失針」を[損
失水顧計]と補正する0 (3)同書第3ページ第19行「評価jを「評価」と補
正する。 (4)同書第7ページ第1−〜/J行「式り及び弐t」
を「式(7)及び式(8)]と、また、第1を行「式S
」を「式(8)」と補正する0 (5)  同書#!tページ第1第10武r/Jを「式
■」と補正する。 (6)  同書@/2ページ第1行「式り」を「式(9
)」と補正する。 (7)  同書第1コページ第io行]プロスス」を「
プロセス」と補正する。 (別 紙) 特許請求の範囲 (1)PM抵抗#]定器を備えた濾過池の制御装置にお
い°〔、濾過軽過時間及び同時刻における濾過抵抗を所
定時間間隔ごとに実測する奥側工程と、上記奥側工程に
よって得られた実測濾過時間及び濾過抵抗値により各濾
過池の濾過時間に対する濾過抵抗の変化を時間による関
数式により刷−轡野F)l’iを行ない、経時変化に基
づく濾過抵抗値の近似式を求める近似式策定工程と、上
記近似式策定工程により得られた近似式に設f濾過抵抗
値を投入し°【許容濾過抵抗に到達する時刻を計算予測
する濾過停止時刻予測1模とを有することを特徴とする
濾過池の制御方法。 (2)近似式策定工程が、求められた近似式の係数に基
づいて、濾過特性係数を策定して濾過池の効率のよい運
用を行なうようにした濾過特性策定這用工根を有してい
る特許請求の範囲第1項記載の濾過池の制御方法。 (3)濾過抵抗測定器が損失水i計であり、関数式が二
次関数式である特許請求の範囲第1項又は第2項記載の
濾過池の制御方法。
The figure is a flowchart showing a control method according to an embodiment of the method of the present invention. Agent Makoto Kuzuno - Procedural correction divination (Jiyan) 2. 5 and the name of the Ming Dynasty 3.
Patent applicant address: 2-3, Marunouchi Tsume, Chiyoda-ku, Tokyo
Title (601) Mitsubishi Electric Corporation Representative Katayuni Kata 8 Department 1 Agent 5 Subject of amendment (1) Scope of claims in the specification (2) Detailed description of the invention in the specification -6 , the contents of the amendment ([Claims] of the 11th specification are amended as shown in the attached sheet. (2) "Water test loss needle" in the 7th line of the first page of the same book is amended to read "Water test loss needle" 0 ( 3) Page 3 of the same book, line 19 “Evaluation j is corrected to “evaluation”. (4) Page 7 of the same book, lines 1-~/J “Ceremony and 2t”
``Equation (7) and Equation (8)], and also the first line ``Equation S
” is corrected with “Equation (8)” 0 (5) Ibid #! Correct page 1, 10, r/J to "Formula ■". (6) Same book@/Page 2, 1st line “Shikiri” is changed to “Shiki (9
)” is corrected. (7) Ibid., Copage 1, Line io]
"Process" is corrected. (Attachment) Claims (1) In a control device for a filtration basin equipped with PM resistance Then, using the measured filtration time and filtration resistance value obtained in the above back step, the change in filtration resistance with respect to the filtration time of each filtration basin is calculated using a function equation with time, and the change over time is calculated. The process of formulating an approximation formula to obtain an approximate formula for the filtration resistance value based on the formula and inputting the filtration resistance value into the approximate formula obtained by the process of formulating the approximation formula described above. 1. A control method for a filtration pond, comprising: time prediction. (2) The approximation formula formulation step has a filtration characteristic formulation mechanism that formulates filtration characteristic coefficients based on the coefficients of the obtained approximate formula to ensure efficient operation of the filtration basin. A method for controlling a filtration pond according to claim 1. (3) The method for controlling a filtration basin according to claim 1 or 2, wherein the filtration resistance measuring device is a water loss i meter and the functional expression is a quadratic function expression.

Claims (2)

【特許請求の範囲】[Claims] (1)C過抵抗測定器を備えた1過池の制御装置におい
て、e過経過時間及び同時刻におけるr過抵抗を所定時
間間隔ごとに実測する実測工程と、上記実測工程によっ
て得らねた実測e適時間及び、+j過低抵抗値より各1
j1堝池の1過時間に対する1過抵抗の変化を時間によ
る関数式により回帰分析を行ない、経時変化に基づく1
過抵抗値の近1以式を求める近似式策定工程と、上記近
似式策定工程により得られた近似式に設定i濾過抵抗値
を投入して許容1過抵抗に到達する時刻を計算予測する
e[相]停止時刻予測工程とを有することを特徴とする
1過池の制御方法。
(1) In a control device for one overpass equipped with a C overresistance measuring device, there is an actual measurement step in which the e elapsed time and r overresistance at the same time are actually measured at predetermined time intervals, and the above actual measurement step is performed. 1 each from the actual measured e appropriate time and +j excessively low resistance value.
j1 Regression analysis is performed on the change in 1-time resistance with respect to 1-time of Goike using a functional formula depending on time, and 1 is calculated based on the change over time.
Step of formulating an approximation formula to find the nearest 1 or less formula for the overresistance value, and calculating and predicting the time when the permissible overresistance will be reached by inputting the filtration resistance value into the approximate formula obtained from the above step of formulating the approximate formulae. [Phase] A method for controlling a first-pass pond, characterized by comprising a step of predicting a stop time.
(2)近似式策定工程が、求められた近似式の係数に基
づいて、i+1迦特性係数を策定してe過電の効率のよ
い運用を行なうようにした1過特性策定運用工程を有し
ている特許請求の範囲第1項記載のd】通電の制御方法
。 (,7)  i1過抵抗測定器が損失水頭計であり、関
数式bt二次関数式である特許請求の範囲第1項又は第
2項記載のIt’過池過電御方法。
(2) The approximation formula formulation process includes a 1-overcharacteristic formulation operation process in which i+1 characteristic coefficients are formulated based on the coefficients of the obtained approximate formula to ensure efficient operation of e-overcharging. d) A method for controlling energization. (,7) The It' over-battery over-voltage control method according to claim 1 or 2, wherein the i1 over-resistance measuring device is a head loss meter, and the function equation is a bt quadratic function equation.
JP57081865A 1982-05-13 1982-05-13 Controlling method of filter pond Granted JPS58197503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081865A JPS58197503A (en) 1982-05-13 1982-05-13 Controlling method of filter pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081865A JPS58197503A (en) 1982-05-13 1982-05-13 Controlling method of filter pond

Publications (2)

Publication Number Publication Date
JPS58197503A true JPS58197503A (en) 1983-11-17
JPH0571964B2 JPH0571964B2 (en) 1993-10-08

Family

ID=13758363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081865A Granted JPS58197503A (en) 1982-05-13 1982-05-13 Controlling method of filter pond

Country Status (1)

Country Link
JP (1) JPS58197503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150615A (en) * 1984-08-14 1986-03-12 Toshiba Corp Method for controlling washing cycle of rapid filter basin
JP2019118901A (en) * 2018-01-10 2019-07-22 株式会社川本製作所 Water purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977074A (en) * 1972-12-01 1974-07-25
JPS5575713A (en) * 1978-12-04 1980-06-07 Hitachi Ltd Controller for filtration flow rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977074A (en) * 1972-12-01 1974-07-25
JPS5575713A (en) * 1978-12-04 1980-06-07 Hitachi Ltd Controller for filtration flow rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150615A (en) * 1984-08-14 1986-03-12 Toshiba Corp Method for controlling washing cycle of rapid filter basin
JP2019118901A (en) * 2018-01-10 2019-07-22 株式会社川本製作所 Water purifier

Also Published As

Publication number Publication date
JPH0571964B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US5198116A (en) Method and apparatus for measuring the fouling potential of membrane system feeds
JPS58197503A (en) Controlling method of filter pond
CN1279356C (en) On-line soft measurement modeling method for 4-CBA content based on least square algorithm of restricted memory part
JP2000107796A (en) Sewage water treatment process simulator system
US20200024169A1 (en) Method to control a process variable
JP2003300071A (en) Water treatment method utilizing membrane filtration
JPH078711A (en) Filtration pond cleaning time controlling apparatus
Hasselblad et al. Solids separation parameters for secondary clarifiers
JPS58196816A (en) Control of filter basin group
JP3512384B2 (en) Method for obtaining raw water inflow and method for obtaining treated water discharge in extrusion flow type water treatment equipment
DE3004609C2 (en) Process for equalizing the pollution load of a wastewater flow that fluctuates greatly in terms of load and quantity
JPS6150615A (en) Method for controlling washing cycle of rapid filter basin
SU747826A1 (en) Device for automatic determination of biochemical oxygen consumption by waste water
US3827810A (en) Optical monitor
SU1627516A1 (en) Method of controlling circulating water treatment process
JP2004121952A (en) Water quality simulation apparatus
JPS5814837B2 (en) Predictive control method for mixed liquid suspended solids concentration in activated sludge method
JPS55139805A (en) Control system of sludge discharge model
JPS62121610A (en) Control method of sludge concentration meter in gravity type sludge condenser tank
JPS55127193A (en) Controlling method of returned sludge
JPH03224694A (en) Chlorine dosing control device in water purification plant
JPS5944885B2 (en) Method for controlling the amount of returned water in the water purification process
JP2000214915A (en) Plant monitor device
Flamang et al. A disposal-costing method for evaluating sludge dewatering chemicals
JPS55129118A (en) Controlling method for filter pond