JPH0571964B2 - - Google Patents

Info

Publication number
JPH0571964B2
JPH0571964B2 JP57081865A JP8186582A JPH0571964B2 JP H0571964 B2 JPH0571964 B2 JP H0571964B2 JP 57081865 A JP57081865 A JP 57081865A JP 8186582 A JP8186582 A JP 8186582A JP H0571964 B2 JPH0571964 B2 JP H0571964B2
Authority
JP
Japan
Prior art keywords
time
over
overresistance
value
head loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57081865A
Other languages
Japanese (ja)
Other versions
JPS58197503A (en
Inventor
Toshiaki Kobayashi
Junichiro Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57081865A priority Critical patent/JPS58197503A/en
Publication of JPS58197503A publication Critical patent/JPS58197503A/en
Publication of JPH0571964B2 publication Critical patent/JPH0571964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Filtration Of Liquid (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば損失水頭計などの過抵抗
測定器を備えた過池の制御方法に関し、特に
過操作から洗浄操作に移行する時刻の予測方法等
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling an overflow pond equipped with an overresistance measuring device such as a water head loss meter, and in particular to a method for predicting the time when overoperation shifts to cleaning operation. This relates to methods, etc.

[従来の技術] 一般に、浄水場等の水処理施設において、原水
に含まれる懸濁物質を除去し原水を浄化するため
には、原水に凝集剤や凝集助剤を注入して凝集フ
ロツクを形成し、これを沈澱池で沈降させること
により処理水から分離し、更に水中に残存する少
量の固形分は急速過池で捕捉している。
[Prior Art] Generally, in water treatment facilities such as water treatment plants, in order to remove suspended solids contained in raw water and purify the raw water, a flocculant or flocculation aid is injected into the raw water to form flocs. This is then separated from the treated water by settling it in a sedimentation tank, and the small amount of solids remaining in the water is captured in a rapid filtration tank.

このような過プロセスにおいては、固形分の
粒子が砂層等の材の表面又は内部に収着される
ために、過を続けるに従つて過層の空隙率が
減少し、その結果、過抵抗、例えば損失水頭が
増大して過効率を低下させるよになる。従つ
て、このような過抵抗がある設定値を越えたな
らば、過操作を中止して洗浄操作に移行する必
要がある。
In such a filtration process, solid particles are sorbed onto the surface or inside of a material such as a sand layer, so as filtration continues, the porosity of the filtration layer decreases, resulting in increased resistance, For example, head loss increases and overefficiency decreases. Therefore, if such excessive resistance exceeds a certain set value, it is necessary to stop the excessive operation and proceed to the cleaning operation.

従来、このような過プロセスにおいて、過
操作の中止から洗浄操作への移行時期は、損失水
頭がある設定値に到達した時点、例えば全損失水
頭が1.5〜2.0m程度になつた時点とされている。
Conventionally, in such over-processing, the time to transition from stopping over-operation to cleaning operation is when the head loss reaches a certain set value, for example, when the total head loss reaches about 1.5 to 2.0 m. There is.

[発明が解決しようとする課題] しかし、過操作が新しく再開されてから損失
水頭が1.5〜2.0m程度になるまでの時間は、各
過池の特性や過池へ流入する被過物の濁度、
この濁度成分の質等によつて影響されるため、
過経過時間と損失水頭との関係を定量的に示すこ
とは困難であつた。このため、従来は、洗浄操作
への移行時刻、即ち洗浄予定時刻を精度良く予見
することができず、また過池の配置場所による
過池特性や、季節、原水の水質、薬品注入条件
等による過性能の評価を詳細かつ定量的に行う
こともできず、従つて最適配置や過性能の向上
等の処理もとれないという問題点があつた。
[Problem to be solved by the invention] However, the time from when the overoperation is restarted until the head loss reaches approximately 1.5 to 2.0 m depends on the characteristics of each overflow pond and the turbidity of the overflow material flowing into the overflow pond. Every time,
Because it is affected by the quality of this turbidity component,
It has been difficult to quantitatively demonstrate the relationship between elapsed time and head loss. For this reason, in the past, it was not possible to accurately predict the time to transition to cleaning operation, that is, the scheduled time for cleaning, and it also depended on over-pond characteristics depending on the location of the over-pond, the season, the quality of raw water, chemical injection conditions, etc. There was a problem in that it was not possible to evaluate overperformance in detail and quantitatively, and therefore it was impossible to take measures such as optimal placement or improvement of overperformance.

この発明は、上記のような問題点を解決するた
めになされたものであり、許容される過抵抗値
に到達するまでの時間を予測し到達時刻を予見し
て以降の操作に計画性を与え、これによつて効率
の良い過池運用を行い得るような過池の制御
方法を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it predicts the time until the permissible overresistance value is reached, predicts the arrival time, and gives planning to subsequent operations. The purpose of this invention is to obtain a control method for overwatering that enables efficient overwatering operation.

[課題を解決するための手段] この発明に係る過池の制御方法は、過経過
時間及び同時刻における過抵抗値を所定時間間
隔ごとに実測する実測工程と、この実測工程で得
られた過経過時間及び過抵抗値と時間による
二次関数式とにより、各過池の過経過時間に
対する過抵抗値の変化を各過池ごとに回帰分
析し、経時変化に基づく過抵抗値の近似式を求
める近似式策定工程と、この近似式策定工程によ
り得られた近似式に設定過抵抗値を投入して、
設定過抵抗値に到達する時刻を計算予測する
過停止時刻予測工程とを有するものである。
[Means for Solving the Problem] The method for controlling an overflow pond according to the present invention includes an actual measurement step of actually measuring the elapsed time and the overresistance value at the same time at predetermined time intervals, and an overflow resistance value obtained in this actual measurement step. Using the elapsed time, the overresistance value, and the quadratic function equation based on time, regression analysis of the change in the overresistance value with respect to the elapsed time of each overload is performed for each overload, and an approximate formula for the overresistance value based on the change over time is calculated. Input the setting overresistance value into the approximate formula obtained by the approximate formula formulating process and this approximate formula formulating process.
The method includes an overstop time prediction step of calculating and predicting the time at which the set overresistance value is reached.

[作用] この発明においては、設定過抵抗値に到達す
る時刻を計算予測することにより、過池を計画
的に運用する。
[Operation] In the present invention, the over-resistance is operated in a planned manner by calculating and predicting the time when the set over-resistance value is reached.

[実施例] 以下、この発明の一実施例について説明する。
まず、清浄砂層において、閉塞のない砂層での損
失水頭hI(m)は、Levaの式を用いると次のように
表される。
[Example] An example of the present invention will be described below.
First, in a clean sand layer, the head loss h I (m) in a sand layer without blockage is expressed as follows using Leva's equation.

hI=kI・u ……(1) kI=200・L・μ/ρF・gC・φ2・D2・(1−ε)2
ε3 ……(2) 但し、u:過速度(m/sec) L:砂層厚さ(m) μ:水の粘性係数(Kg/m・sec) ρF:水の単位重量(Kg/m3) gC:重力換算係数(Kg・m/Kg・sec2) φ:砂の形状係数 D:砂粒径(m) ε:砂の空隙率 また、砂利層の損失水頭は、砂利の粒径が砂粒
径に比較して遥かに大きいために、通常の過速
度では無視することができる。
h I =k I・u ……(1) k I =200・L・μ/ρ F・g C・φ 2・D 2・(1−ε) 2 /
ε 3 ...(2) However, u: Overspeed (m/sec) L: Sand layer thickness (m) μ: Viscosity coefficient of water (Kg/m・sec) ρ F : Unit weight of water (Kg/m 3 ) g C : Gravity conversion factor (Kg・m/Kg・sec 2 ) φ: Shape factor of sand D: Sand grain size (m) ε: Porosity of sand Also, the head loss in the gravel layer is calculated by the grain size of the gravel. Since the diameter is much larger compared to the sand grain size, it can be ignored at normal overspeeds.

次に、集水装置の損失水頭hCは次式により表さ
れる。
Next, the water head loss h C of the water collection device is expressed by the following formula.

hC=1/2g・V2/C2 ……(3) 但し、V:集水装置を通るときの流速(m/
sec) C:流量係数 ここで、集水装置の開口比、即ち(集水装置の
開口面積/過面積)をβとすると、流速Vは、 V=u/β ……(4) となり、式(4)を式(3)に代入すると、集水装置の損
失水頭hCは、次のように表される。
h C = 1/2g・V 2 /C 2 ...(3) However, V: flow velocity when passing through the water collection device (m/
sec) C: Flow rate coefficient Here, if the opening ratio of the water collection device, that is, (opening area/excess area of the water collection device) is β, the flow velocity V is as follows: V=u/β …(4), and the formula Substituting (4) into equation (3), the water head loss h C of the water collection device is expressed as follows.

hC=K2・u2 ……(5) k2=1/2g・1/C2・β2 ……(6) 以上の結果から、過池の総損失水頭h(t)は、
次のように表される。
h C =K 2・u 2 ……(5) k 2 = 1/2g・1/C 2・β 2 ……(6) From the above results, the total head loss h(t) of the pond is:
It is expressed as follows.

h(t)=hI(t)+hC=kI(t)・u+k2・u2……(7) ここで、式(2)のkIは、過の進行によつて砂の
空隙率εや砂の形状係数φが変化するために、こ
れを時間tの関数として表した。
h(t)=h I (t)+h C =k I (t)・u+k 2・u 2 ……(7) Here, k I in equation (2) is the pore space in the sand due to the progress of the filtration. Since the rate ε and the sand shape factor φ change, this is expressed as a function of time t.

各過池における総損失水頭の経時変化は、上
記の式(7)によつて示すことができるが、これとと
もに式(7)の総損失水頭h(t)は、実測データについ
て二次関数で同定できることが判明した。即ち、 h(t)=at2+bt+c ……(8) によつても表すことができる。
The change over time in the total head loss in each pond can be expressed by the above equation (7), and the total head loss h(t) in equation (7) is a quadratic function with respect to the measured data. It turned out that it could be identified. That is, it can also be expressed by h(t)=at 2 +bt+c (8).

なお、ここで上記二次関数で同定できることに
ついて説明しておく。
Here, we will explain what can be identified using the quadratic function.

添付図面第1図及び第2図に示すものは、実際
の浄水場のいくつかの過池について計測したも
ののうちの2過池A,Bにおける損失水頭の経
時変化を示したものであつて、設定された損失水
頭(HS)に達する時間を過池AについてはT1
T2で、また過池BについてはT3,T4で示して
おり、さらにそれぞれが到達する終了時刻を、
TF1,TF2,TF3(但し、過池Bの2回目の過
は紙面の都合上省略した。)で示している。そし
て、実線で示した曲線は二次関数によるもので、
破線で示したものは実測値によるものである。
What is shown in the attached drawings, Figures 1 and 2, shows the change over time in the head loss in two over ponds A and B, which were measured for several over ponds in an actual water purification plant. The time to reach the set head loss ( HS ) is T 1 for overwater pond A,
T 2 , and T 3 and T 4 for Ogaike B, and the end time reached by each is shown as
T F1 , T F2 , and T F3 (however, the second pass of Kasuike B has been omitted due to space limitations). The curve shown by the solid line is due to a quadratic function,
The values indicated by broken lines are actually measured values.

図で明らかなように、損失水頭の経時変化は、
二次関数式による曲線と非常によく一致すること
がわかる。
As is clear from the figure, the change in head loss over time is
It can be seen that the curve matches the curve derived from the quadratic function equation very well.

このように、二次関数式で表すことができるの
で、各過池の特性を表すkI(t)は、式(7)及び式(8)
から、次のように表される。
In this way, since it can be expressed by a quadratic function equation, k
Therefore, it is expressed as follows.

kI(t)=(a/u)t2+(b/u)t+(c−k2u2
u) =a′t2+b′t+c′ ……(9) ここで、係数a′,b′,c′は、過特性を表す指
標である。
k I (t)=(a/u)t 2 +(b/u)t+(c−k 2 u 2 /
u) = a′t 2 +b′t+c′ ……(9) Here, the coefficients a′, b′, and c′ are indicators representing overcharacteristics.

次に、実測データによる式(8)の係数a,b,c
の求め方について示す。
Next, the coefficients a, b, c of equation (8) based on the measured data
We will show you how to find it.

今、過経過時間をX、損失水頭をYとする
と、近似式は次のように表される。
Now, assuming that the elapsed time is X and the loss head is Y, the approximate expression is expressed as follows.

Y=f(X)=aX2+bX+c ……(10) この係数a,b,cを、最小二乗法を用い、ク
ラメールの公式によつて求めると、次のようにな
る。oi=1 (Yi−f(Xi))2=ε ……(11) この式(11)において、εを零に近似するようなf
(X)を求めればよい。従つて、式(11)を次のように展
開する。
Y = f (X) = aX 2 + b oi=1 (Yi−f(Xi)) 2 = ε ...(11) In this equation (11), f such that ε approximates zero
Just find (X). Therefore, equation (11) is expanded as follows.

oi=1 Xi4+boi=1 Xi3+coi=1 Xi2oi=1 YiXi2 ……(12) aoi=1 Xi3+boi=1 Xi2+coi=1 Xi=oi=1 YiXi ……(13) aoi=1 Xi2+boi=1 Xi+nc=oi=1 Yi ……(14) そこで、oi=1 Xi4=T4oi=1 Xi3=T3oi=1 Xi2=T2oi=1 Xi=T1、n=T0oi=1 YiXi2=H2、 ……(15)oi=1 YiXi=H1oi=1 =H0 と置き換えると、式(12)〜(14)は次の3元連立方程式
となる。
a oi=1 Xi 4 +b oi=1 Xi 3 +c oi=1 Xi 2 = oi=1 YiXi 2 ……(12) a oi=1 Xi 3 +b oi= 1 Xi 2 +c oi=1 Xi= oi=1 YiXi ……(13) a oi=1 Xi 2 +b oi=1 Xi+nc= oi=1 Yi ……(14) So , oi=1 Xi 4 =T 4 , oi=1 Xi 3 =T 3 , oi=1 Xi 2 =T 2 , oi=1 Xi=T 1 , n=T 0 , oi=1 YiXi 2 =H 2 , ...(15) oi=1 YiXi=H 1 , oi=1 =H If replaced with 0 , equations (12) to (14) become the following three elements. It becomes a simultaneous equation.

aT4+bT3+cT2=H2…… aT3+bT2+cT1=H1…… ……(16) aT2+bT1+cT0=H0…… ここで、実数μ1,μ2,μ3を適当にとり、式 ×μ1+×μ2+×μ3 ……(17) でb,cを消去する。即ち、 T3μ1+T2μ2+T1μ3=0 T2μ1+T1μ2+T0μ3=0 ……(18) が成り立つようにμ1,μ2,μ3をとる。すると、式
(17)は、 (T4μ1+T3μ2+T2μ3)a =H2μ1+H1μ2+H0μ3 ……(19) となる。
aT 4 + bT 3 + cT 2 = H 2 ... aT 3 + bT 2 + cT 1 = H 1 ... ... (16) aT 2 + bT 1 + cT 0 = H 0 ... Here, real numbers μ 1 , μ 2 , μ 3 Take a suitable value and eliminate b and c using the formula ×μ 1 + ×μ 2 + ×μ 3 (17). That is, μ 1 , μ 2 , μ 3 are set so that T 3 μ 1 + T 2 μ 2 +T 1 μ 3 =0 T 2 μ 1 + T 1 μ 2 +T 0 μ 3 = 0 (18) holds. Then, the expression
(17) becomes (T 4 μ 1 +T 3 μ 2 +T 2 μ 3 )a = H 2 μ 1 +H 1 μ 2 +H 0 μ 3 (19).

(μ1,μ2,μ3)=T2T1 T1T0,T1T3 T0T2,T3T2 T2T1 は、それが零ベクトルでないかぎり、式(18)の解を
与える。それに対し、式(19)は T4T2T1 T1T0+T3T1T3 T0T2+T2T3T2 T2T1a=H2T2T1 T1T0+H1T1T3 T0T2+H0T3T2 T2T1 ……(20) のかたちとなる。
1 , μ 2 , μ 3 )=T 2 T 1 T 1 T 0 , T 1 T 3 T 0 T 2 , T 3 T 2 T 2 T 1 is expressed as Equation (18) unless it is a zero vector. give the solution. On the other hand, equation (19) is T 4 T 2 T 1 T 1 T 0 +T 3 T 1 T 3 T 0 T 2 +T 2 T 3 T 2 T 2 T 1 a=H 2 T 2 T 1 T 1 T 0 +H 1 T 1 T 3 T 0 T 2 +H 0 T 3 T 2 T 2 T 1 ...(20) It becomes the form.

そこで、3行3列の行列 T=T4T3T2 T3T2T1 T2T1T0 の行列式|T|を |T|=T4T3T2 T3T2T1 T2T1T0 ……(21) とすると、式(20)は |T|a=H2T3T2 H1T2T1 H0T1T0 ……(22) となり、|T|≠0の条件で、 H2T3T2 H1T2T1 H0T1T0 a=―――――― ……(23) |T| となる。上記と同様にb,cを求めると、 T4H2T2 T3H1T1 T2H0T0 b=―――――― ……(24) |T| T4T3H2 T3T2H1 T2T1H0 c=―――――― ……(25) |T| が得られる。このようにしてa,b,cを求める
方法は、例えば『科学の事典 第3版』(1985年
岩波書店発行)1203〜1204ページなどに示されて
いる。
Therefore, the determinant |T| of the matrix T=T 4 T 3 T 2 T 3 T 2 T 1 T 2 T 1 T 0 with 3 rows and 3 columns is |T|=T 4 T 3 T 2 T 3 T 2 T 1 T 2 T 1 T 0 ...(21), then equation (20) becomes |T|a=H 2 T 3 T 2 H 1 T 2 T 1 H 0 T 1 T 0 ... (22), Under the condition of |T|≠0, H 2 T 3 T 2 H 1 T 2 T 1 H 0 T 1 T 0 a=―――――― ......(23) |T| Calculating b and c in the same way as above, T 4 H 2 T 2 T 3 H 1 T 1 T 2 H 0 T 0 b=―――――― ……(24) |T| T 4 T 3 H 2 T 3 T 2 H 1 T 2 T 1 H 0 c=―――――― ……(25) |T| is obtained. A method for determining a, b, and c in this manner is shown, for example, in "Science Encyclopedia, Third Edition" (published by Iwanami Shoten, 1985), pages 1203-1204.

以上述べた手順により、過経過時間及び損失
水頭の実測値を用いて、式(8)の係数a,b,cを
求めることができ、従つて式(8)を特定することが
できる。
According to the procedure described above, the coefficients a, b, and c of equation (8) can be obtained using the elapsed time and the measured values of head loss, and therefore equation (8) can be specified.

今、この操作によつて、過操作を中止し洗浄
操作に移行するためには、例えば第3図に示すと
おり、洗浄操作が終わつて新たに過を開始する
時刻をt=0とし、その開始時刻から所定の時刻
t=tまでの間の損失水頭実測値h(t)をn個実測
する。
Now, in order to stop the over-operation and move on to the cleaning operation by this operation, for example, as shown in FIG. n actual measured head loss values h(t) from time to predetermined time t=t are measured.

例えば、5分毎に損失水頭を実測すると、30分
を経過した時点においては、0,5,10,15,
20,25,30分の7つのデータが得られ、近似式(8)
を得る回帰分析を行うことができる。従つて、所
定の時刻tは、回帰分析を行うのに必要なデータ
数を取得した後の任意の時刻であり、実際の運用
としては、例えば30分或は1時間程度以上過を
経過した後の任意の時刻と考えられる。
For example, if you actually measure the head loss every 5 minutes, at the end of 30 minutes it will be 0, 5, 10, 15,
Seven data of 20, 25, and 30 minutes were obtained, and approximate formula (8)
Regression analysis can be performed to obtain . Therefore, the predetermined time t is an arbitrary time after acquiring the necessary number of data to perform regression analysis, and in actual operation, for example, after approximately 30 minutes or an hour has passed. It can be considered as any time of the year.

そこで、n個の実測値を用いて二次関数による
回帰分析を行い、近似式(8)の係数a,b,cを求
め、近似式(8)を特定する。一方、過池運用上か
ら設定された設定過抵抗値、即ちこの実施例で
は損失水頭上限値hnaxが設定される。この損失水
頭上限値hnaaxを式(8)に代入することによつて、
損失水頭上限値hnaxに対応する最大損失水頭到達
時間tを求める。なお、式(8)は二次関数であるた
め、解である最大損失水頭到達時間tが2個求め
られるが、大きい方の解が求めるべきものとな
る。
Therefore, a regression analysis using a quadratic function is performed using the n actual measured values, coefficients a, b, and c of the approximate equation (8) are determined, and the approximate equation (8) is specified. On the other hand, the set overresistance value set from the viewpoint of overwatering operation, that is, in this embodiment, the upper limit value of head loss h nax is set. By substituting this upper limit value of head loss h naax into equation (8),
The maximum head loss arrival time t corresponding to the head loss upper limit value h nax is determined. Note that since equation (8) is a quadratic function, two maximum head loss arrival times t, which are solutions, are obtained, but the larger solution is the one that should be obtained.

このようにして求められた最大損失水頭到達時
間tを過開始時刻に加算することにより、過
操作を中止して洗浄操作に移行すべき洗浄操作移
行時刻が算出される。上記の手順を繰り返し、洗
浄操作移行時刻になつたときに洗浄操作へ移行す
る。
By adding the maximum water head loss arrival time t determined in this way to the over-start time, the cleaning operation transition time at which the over-operation should be stopped and the cleaning operation should be started is calculated. The above procedure is repeated, and when the cleaning operation transition time comes, the cleaning operation is started.

また、一方において、上記のようにして算出さ
れた係数a,b,cと、式(6)によつて計算された
集水装置係数k2及び過速度uとを用いて、式(9)
により、過特性係数a′,b′,c′をそれぞれ求め
る。式(9)のkI(t)は、各過池における集水装置の
形状特性及び流速特性を除いた特性式を示すもの
であり、この特性式に基づいて、各過池ごとの
過層の状態比較又は過池の配置特性などの検
討を行うことができる。
On the other hand, using the coefficients a, b, and c calculated as described above, the water collection device coefficient k 2 and the overspeed u calculated by the formula (6), the formula (9)
The overcharacteristic coefficients a′, b′, and c′ are obtained respectively. k I (t) in Equation (9) represents a characteristic equation excluding the shape characteristics and flow velocity characteristics of the water collection device in each over-pond, and based on this characteristic equation, the over-stratification for each over-pond is It is possible to compare the conditions of the ponds and consider the characteristics of the arrangement of over-ponds.

さらに、同一過池における特性式の経年変化
等長期データのロギングによつて、過特性と薬
品注入プロセスとの関係、水温や有機分含有量、
原水に含まれる微生物の種類及び濃度など過プ
ロセスに関する諸因子と過プロセスとの相関性
を捉えることができる。
Furthermore, by logging long-term data such as changes in characteristic formulas over time in the same pond, we will be able to clarify the relationship between overcharacteristics and chemical injection processes, water temperature and organic content, etc.
It is possible to understand the correlation between overprocessing and various factors related to overprocessing, such as the type and concentration of microorganisms contained in raw water.

このような過池ごとの過層の状態比較、配
置特性の検討、及び過プロセス関連因子と過
プロセスとの相関性から、例えば薬品注入率の修
正等の種々の対策をとることができる。
Based on the comparison of the state of the overlayer in each overlayer, the examination of the arrangement characteristics, and the correlation between overprocessing-related factors and overprocessing, various measures can be taken, such as, for example, modifying the chemical injection rate.

ところで、各過池の洗浄操作移行時刻は、あ
る時刻の近傍に集中する可能性もある。このよう
に、損失水頭上限値に到達した過池がある時刻
に多数重なつた場合には、過操作を継続できる
過池が一時期に減少し、過プロセスに支障を
きたす恐れがある。
Incidentally, there is a possibility that the transition times for the cleaning operation of each filter basin are concentrated around a certain time. In this way, if a large number of overflows reach the upper limit of head loss at a certain time, the number of overflows that can continue overoperation will decrease over a period of time, and there is a risk that overprocessing will be hindered.

しかし、上記実施例によれば、多数の過池で
損失水頭上限値に達する時刻が重なることを予測
できるので、一部の過池を損失水頭上限値に到
達する前に洗浄操作に移行させることにより、洗
浄操作に移行する過池の急増を予め防ぐことが
でき、過池全体として安定した運用をすること
が可能となる。
However, according to the above embodiment, it is possible to predict that the times at which the head loss upper limit value is reached in a large number of over ponds will be the same, so it is possible to shift some of the over ponds to the cleaning operation before the head loss upper limit value is reached. As a result, it is possible to prevent a sudden increase in the number of overflow ponds that will be transferred to cleaning operations, and it is possible to operate the overflow ponds as a whole in a stable manner.

なお、上記実施例では、材として砂層を用い
た浄水場等の急速過池について述べたが、これ
に限るものではなく、過抵抗が時間とともに変
化する他の種類の過池についても同様の方法を
適用することが可能で、その効果も上記実施例の
それと何等変わるものではない。
In addition, in the above example, a rapid overflow basin such as a water purification plant using a sand layer as the material was described, but the method is not limited to this, and the same method can be applied to other types of overflow ponds whose overresistance changes over time. can be applied, and the effect is no different from that of the above embodiment.

[発明の効果] 以上説明したように、この発明の過池の制御
方法によれば、過抵抗値が設定過抵抗値に到
達する時間を精度良く求めることができるととも
に、過特性を示す緒係数も算出することがで
き、これにより過性能を向上させるように対策
をとることができ、従つて、過操作以後の洗浄
操作等に計画性を付与し、過池を効率良く運用
できるなどの効果が得られる。
[Effects of the Invention] As explained above, according to the over-resistance control method of the present invention, it is possible to accurately determine the time required for the over-resistance value to reach the set over-resistance value, and also to determine the over-resistance coefficient indicating the over-resistance value. This also allows for measures to be taken to improve over-performance, which has the effect of giving more planning to cleaning operations after over-operation, allowing efficient operation of over-water ponds, etc. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は実際の2基の過池におけ
る過時間と損失水頭との関係線図、第3図はこ
の発明の一実施例による制御方法を示すフローチ
ヤート図である。
1 and 2 are actual relationship diagrams between elapsed time and head loss in two overpass ponds, and FIG. 3 is a flowchart showing a control method according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 過抵抗測定器を備えた過池の制御装置に
おいて、 過経過時間及び同時刻における過抵抗値を
所定時間間隔ごとに実測する実測工程と、 この実測工程で得られた過経過時間及び過
抵抗値と時間による二次関数式とにより各過池
の過経過時間に対する過抵抗値の変化を各
過池ごとに回帰分析し、経時変化に基づく過抵
抗値の近似式を求める近似式策定工程と、 この近似式策定工程により得られた近似式に設
定過抵抗値を投入して、上記設定過抵抗値に
到達する時刻を計算予測する過停止時刻予測工
程と、 この過停止時刻予測工程の予測に基づき上記
過池の洗浄を行う洗浄工程と を有することを特徴とする過池の制御方法。 2 近似式策定工程が、求められた近似式の係数
に基づいて過性係数を策定する過性策定工程
を有している特許請求の範囲第1項記載の過池
の制御方法。 3 過抵抗測定器が損失水頭計である特許請求
の範囲第1項又は第2項記載の過池の制御方
法。
[Claims] 1. A control device for an over-resistance tank equipped with an over-resistance measuring device, comprising: an actual measurement step of actually measuring the elapsed time and the over-resistance value at the same time at predetermined time intervals; Using the elapsed time, the overresistance value, and a quadratic function equation based on time, regression analysis of the change in the overresistance value with respect to the elapsed time of each overflow chamber is performed for each overflow chamber, and an approximate formula for the overresistance value based on the change over time is calculated. an overstop time prediction step of calculating and predicting the time at which the set overresistance value will be reached by inputting the set overresistance value into the approximate formula obtained by this approximate formulae formulating step; A method for controlling an over pond, comprising: a cleaning step of cleaning the over pond based on the prediction in the stop time prediction step. 2. The method for controlling excessive ponding according to claim 1, wherein the approximation formula formulating step includes a hyperactivity formulating step of formulating a hyperactivity coefficient based on the coefficients of the obtained approximate formula. 3. The method for controlling an overflow pond according to claim 1 or 2, wherein the overresistance measuring device is a head loss meter.
JP57081865A 1982-05-13 1982-05-13 Controlling method of filter pond Granted JPS58197503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081865A JPS58197503A (en) 1982-05-13 1982-05-13 Controlling method of filter pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081865A JPS58197503A (en) 1982-05-13 1982-05-13 Controlling method of filter pond

Publications (2)

Publication Number Publication Date
JPS58197503A JPS58197503A (en) 1983-11-17
JPH0571964B2 true JPH0571964B2 (en) 1993-10-08

Family

ID=13758363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081865A Granted JPS58197503A (en) 1982-05-13 1982-05-13 Controlling method of filter pond

Country Status (1)

Country Link
JP (1) JPS58197503A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150615A (en) * 1984-08-14 1986-03-12 Toshiba Corp Method for controlling washing cycle of rapid filter basin
JP7027172B2 (en) * 2018-01-10 2022-03-01 株式会社川本製作所 Water purification equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977074A (en) * 1972-12-01 1974-07-25
JPS5575713A (en) * 1978-12-04 1980-06-07 Hitachi Ltd Controller for filtration flow rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977074A (en) * 1972-12-01 1974-07-25
JPS5575713A (en) * 1978-12-04 1980-06-07 Hitachi Ltd Controller for filtration flow rate

Also Published As

Publication number Publication date
JPS58197503A (en) 1983-11-17

Similar Documents

Publication Publication Date Title
JP4366244B2 (en) Flocculant injection control system and alkaline agent injection control system for water purification plant
CN108645758A (en) A kind of pollutants in sediments dynamic release analysis method
CA1251279A (en) Determination of oxygen uptake rate in wastewater treatment plants
JPH0571964B2 (en)
DE2631825A1 (en) Biological sewage treatment control - by computer analysing all influent parameters to adjust aeration and sludge reflux
JPH0415002B2 (en)
JPH04256498A (en) Method and device for controlling water treatment
JPS6129793B2 (en)
Rutherford Deoxygenation in a mobile-bed river—II. Model calibration and post-audit
JPS5814837B2 (en) Predictive control method for mixed liquid suspended solids concentration in activated sludge method
JPH01135599A (en) Sludge discharge controller for sedimentation tank
JPH11300112A (en) Operation management and control device for filter basin and method therefor
US20230359893A1 (en) Filtering method for filtering measured values of a measurand
JP2000214915A (en) Plant monitor device
Reed et al. Similitude interpretation of jar test data
JPH0147237B2 (en)
Bridgeman et al. The Use and Application of Particle‐Count Data in Water Treatment
SU1001023A1 (en) Device for checking impurity concentration in rising baths
Watts et al. Process audit and asset assessment using on-line instrumentation
JPH026567B2 (en)
JPS6234407B2 (en)
JPH0141111B2 (en)
JPS57187086A (en) Controlling method for activated carbon filtering besin
JPS5845795A (en) Controlling means for purification of sewage
DE334408C (en) Purification system for individual houses, consisting of an Emscher well with a ring-shaped purification channel