JPS58192270A - Deterioration detector for lead-acid battery - Google Patents

Deterioration detector for lead-acid battery

Info

Publication number
JPS58192270A
JPS58192270A JP57074177A JP7417782A JPS58192270A JP S58192270 A JPS58192270 A JP S58192270A JP 57074177 A JP57074177 A JP 57074177A JP 7417782 A JP7417782 A JP 7417782A JP S58192270 A JPS58192270 A JP S58192270A
Authority
JP
Japan
Prior art keywords
lead
battery
current
deterioration
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57074177A
Other languages
Japanese (ja)
Inventor
Kazusumi Takeuchi
武内 一純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP57074177A priority Critical patent/JPS58192270A/en
Publication of JPS58192270A publication Critical patent/JPS58192270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To automatically detect abnormality or decide replacement time of a battery by detecting or indicating a degree of deterioration of a lead-acid battery. CONSTITUTION:Charge current is measured at a constant interval over a long period of time, and measured values are accumulated with a microcomputer 5 and a mean value is calculated. Temperature is inputted in the micro-computer 5 via a thermometer 2. The computer 5 converts current of floating charge obtained from the mean value based on temperature coefficient of floating charge current. A volt meter 3 is used to check floating charge condition of a lead- acid battery and information for restarting floating charge current measurement is sent to the computer 5. The computer 5 compares floating current obtained by temperature conversion calculation of mean values with that of an original battery, and the degree of deterioration of the battery is indicated on a display 6.

Description

【発明の詳細な説明】 本発明は浮動充電またはトリクル充電などで通常時は充
電状態に維持しながら長期間にオ)たって使用される鉛
蓄電池に対して、その異常の検出や寿命となった場合の
取り替え時期の判定などが自動的に行なえるような機能
を備えた鉛畜電池劣化検出装置に関するものである。
[Detailed Description of the Invention] The present invention provides a method for detecting abnormalities and reaching the end of the life of lead-acid batteries that are used for long periods of time while normally maintained in a charged state by floating charging or trickle charging. This invention relates to a lead-acid battery deterioration detection device that is equipped with a function that automatically determines when it is time to replace the battery.

このような使われ方をする代表的な鉛IIi電池として
は据置用鉛蓄電池があり、定電圧出力機能を有するm流
器と負荷とを組み合わせて使用される。
A typical lead-acid battery used in this manner is a stationary lead-acid battery, which is used in combination with a load and an m-current device having a constant voltage output function.

第1図はこの接続の様子の一例を示すブロック図であり
、鉛畜4池Bと負荷りが並列に接続され、負荷りに必要
なtlfLと、鉛−′−池Bの充電゛電流が整流@*よ
り供給される。整流器Aの出力電圧は鉛J14池BU、
)r4動充電鴫圧の値に設定されており、このため鉛蓄
4−Bは通常時は充電状態に維持される。他方、停電な
どで!1流器Aから負荷りへの電力供給が停止した場合
や、負荷りの必要な′1流が変動して電流が増加した際
にその一流を整流器Aから全て賄うことができなくなっ
た場合には、負荷I、に必要な′4力は鉛a4池Bの放
題によって賄われる。
Figure 1 is a block diagram showing an example of this connection, in which four lead battery batteries B and a load are connected in parallel, and the tlfL required for the load and the charging current of lead battery B are Supplied from rectifier @*. The output voltage of rectifier A is lead J14 battery BU,
) r4 is set to the value of the dynamic charging pressure, so that the lead acid battery 4-B is normally maintained in a charged state. On the other hand, due to power outages, etc. When the power supply from single-current device A to the load stops, or when the required current for the load fluctuates and the current increases, rectifier A cannot supply all of the current. In this case, the force required for the load I is provided by the amount of lead A4 battery B.

ところがこのような用途の鉛蓄4池においては、その老
朽化などにより性能が低ドしていた場合、負荷りに必要
な4力が得られなくなることがあり、鉛蓄電池の使用者
は鉛畜’471tI!の劣化の有無を知ることに重大な
関心を寄せている。
However, if the performance of lead-acid 4-cell batteries used for such purposes has deteriorated due to aging, it may not be possible to obtain the 4-power required for loading, and users of lead-acid batteries may '471tI! There is great interest in knowing whether or not there is any deterioration.

一方、鉛a4池の寿命はその使用条件や使用環境により
、相当の開きがあり、さらにその劣化の度合いを容易に
かつ正しく調べる適当な方法がないのかこれまでの実情
であった。
On the other hand, the lifespan of lead A4 ponds varies considerably depending on the conditions and environment in which they are used, and the current situation has been that there is no suitable method for easily and correctly examining the degree of deterioration.

すjjわち従来用いられてきた鉛蓄電池の劣化判定法の
主なものとしては、鉛蓄電池を実際に放−してその容置
や放電−圧の経時変化を見る方法、鉛蓄電池の電解液比
ム・端子′−圧を全数測定してそのバラツキの大きさを
調べる方法、あるいは鉛蓄電池の極板の状態や沈#物の
皿を目視により外観的に判定する方法などが知られてい
る。
The main methods of determining the deterioration of lead-acid batteries that have been used in the past include actually releasing the lead-acid battery and observing changes in its container and discharge pressure over time, and checking the electrolyte of the lead-acid battery. Known methods include measuring the ratio and terminal pressure of all batteries and examining the magnitude of their dispersion, and visually determining the condition of the electrode plates of lead-acid batteries and visually inspecting the deposits. .

しかし船蓄准池を放電する方法は確かに劣化状態を知る
ことができるが、手数がかかる上、無停電形の4諒/ス
テムにおいては本来は常時完全充電状態に保っておくべ
き鉛蓄電池を放電しなければならないため、万一この放
電後に停鴫などが起きて鉛Mdt池を使う必要が生じた
場合には、必要な電力を賄えなくなってしまう欠点があ
る。つぎに−解液比電や端子磁圧のバラツキを調へる方
法では、現在のところ比重を精度良く測定するのに多く
の手数を要することや、この方法により内部短絡など極
端に劣化した鉛蓄電池であれは容易に発見できるが、劣
化+X合いとの相関性の強さが今一つ不充分であるため
、鉛畜凍曲が寿命に達する以的にその時期を予測して取
り替えなどの対策を講じるといった用途には不向きであ
る。また鉛蓄′4池の極板や沈澱物の敬などで外観的に
判定する方法は、判定基準が曖昧でかなり見る人の主観
で左右されるに、もし4槽が1ボナイトなどの不透明の
材簀でできていれば電池を解体しない限り、外観を調べ
ることは不可能である。
However, although the method of discharging a ship's storage battery can certainly tell the state of deterioration, it is time-consuming, and in an uninterruptible type 4-ryo/stem, lead-acid batteries, which should normally be kept fully charged, are used. Since it has to be discharged, if a problem such as stagnation occurs after discharge and it becomes necessary to use a lead Mdt battery, there is a drawback that it will not be able to supply the necessary power. Next, the method of checking the dispersion of solution specific electric current and terminal magnetic pressure currently requires a lot of work to accurately measure the specific gravity. Although it is easy to detect storage batteries, the correlation between deterioration and It is not suitable for purposes such as teaching. In addition, the method of visually determining the appearance of a lead-acid 4-cell plate or precipitate has ambiguous criteria and is highly dependent on the subjectivity of the viewer. If the battery is made of wood, it is impossible to examine its appearance without disassembling the battery.

ところでその劣化と共に変化する鉛a4池の特性の一つ
として、浮動光4′4流の変化を挙げることができる。
By the way, one of the characteristics of the lead A4 pond that changes with its deterioration is the change in the flow of floating light 4'4.

第2図は]O時間率容量251]13 A h (7)
クラブト式据置用鉛蓄4池を2.I5V/セルの電圧で
浮動充電した場合の、使用年数に対する10時間率容量
の変化と、電解07M 貫が25℃の場合の浮動充′4
It流の経年変化を示したグラフであるが、充電4流は
使用年数と共に増加していく傾向にあ □ることがわか
る。さらに鉛i池の8鐘は充4′Iシ  (流が新品時
の約4倍程lf1こ増In した時点で新品時の約81
9%1こまで容置低下していることがわかる。
Figure 2 shows] O time rate capacity 251] 13 A h (7)
2. Crabt type stationary lead acid 4 ponds. Changes in 10-hour rate capacity with age when floating charging at a voltage of I5V/cell and floating charging when electrolytic 07M at 25°C
This is a graph showing the change in IT flow over time, and it can be seen that the number of charging currents tends to increase with the number of years of use. In addition, the 8 bells in the lead pond are full 4'I (when the current has increased by about 4 times as much as when it was new, it is about 81 when it was new)
It can be seen that the capacity has decreased to 9%.

この現象に着目し、約50例の鉛蓄電池につき新品時と
寿命末における容量と浮動光1!電流の調査を行なった
結果、容量と浮動光1tit流には極めて強い相関性が
あり、浮動充電電流が新品時の約3〜5倍になった時点
で容量は新品時のほぼ70〜90%に低下していること
が判明した。この鉛蓄電池の劣化の度合いと浮動充電電
流の間に強い相関性があることの理由については、次の
ように考えられる。すなわち鉛蓄11池の陽極板の格子
などの素材として広く用いられている鉛−アンチモン合
金は長期間の使用中に徐々に表面の酸化腐食が進行し、
鉛−アンチモン合金中のアンチモンを遊離するが、これ
が陰極板の活物質の表面に付着すると水素過電圧を低下
させ、これが浮動充′4′4流を増加させると考えられ
る。つまり浮動光41M流の増加は陽極板の腐食劣化と
密接に関係しており、浮動充電が増えるとさらに陽極の
合金の酸化腐食を促進するという悪循環が起きる。
Focusing on this phenomenon, we investigated the capacity and floating light of about 50 lead-acid batteries when new and at the end of their life. As a result of current research, we found that there is an extremely strong correlation between capacity and 1tit current of floating light, and when the floating charging current becomes about 3 to 5 times that of new, the capacity is approximately 70 to 90% of that of new. It was found that there was a decline in The reason why there is a strong correlation between the degree of deterioration of lead-acid batteries and the floating charging current is considered as follows. In other words, the lead-antimony alloy, which is widely used as a material for the grids of the anode plates of lead-acid batteries, gradually undergoes oxidation corrosion on the surface during long-term use.
Antimony in the lead-antimony alloy is liberated, which when deposited on the surface of the active material of the cathode plate lowers the hydrogen overpotential, which is believed to increase the floating charging current. In other words, an increase in the flow of floating light 41M is closely related to corrosion deterioration of the anode plate, and an increase in floating charge further promotes oxidation corrosion of the anode alloy, creating a vicious cycle.

また陰極板の活物質に付着したアンチモンは陰極活物質
の自己放電を促進する作用があるため、陰極活物質に硫
酸鉛が生じるほか、この自己放電を補なうためにも浮動
充電電流が増加するものと考えられる。すなオつち浮動
充電′罐流と鉛蓄′−池の劣化度合いとの間に密接な関
係があることは、理論的にも充分な裏付けができる。
In addition, antimony attached to the active material of the cathode plate has the effect of promoting self-discharge of the cathode active material, so lead sulfate is generated in the cathode active material, and the floating charging current increases to compensate for this self-discharge. It is considered that In other words, there is sufficient theoretical support that there is a close relationship between the floating charge canal current and the degree of deterioration of the lead acid battery.

これより鉛蓄1111t池の浮動充電゛電流を測定して
鉛蓄4池の劣化度合いを知る方法が考えられる。ところ
が、この方法にも次の様な問題点がある。すなわち例え
ば第1図1とおいて負荷りに流れる1流が一定でない場
合、整流器Aのレギュレーシ冒ン特性などが影響して鉛
蓄電池Bに流れる4流がそれにつれ変動するため、測定
した時間により鉛蓄電池Bの充電4流の値はまちまちと
なり、正確な値がわからないということがある。また鉛
蓄電池の充電電流は′電解液の温度に比例して増加し、
充電電圧にも比例して増加するため、これらの影響を考
慮せず巣に充44流を測定したたけでは、劣化度合いを
正確に知ることはできない。
From this, a method can be considered to determine the degree of deterioration of the four lead acid batteries by measuring the floating charging current of the lead acid 1111t battery. However, this method also has the following problems. For example, if the first current flowing to the load in Figure 11 is not constant, the four currents flowing to lead-acid battery B will vary due to the regulation characteristics of rectifier A, so the lead current will vary depending on the measured time. The values of the four charging currents of storage battery B vary, and the exact values may not be known. Furthermore, the charging current of a lead-acid battery increases in proportion to the temperature of the electrolyte.
Since it increases in proportion to the charging voltage, it is not possible to accurately know the degree of deterioration by simply measuring the charging current without considering these effects.

本発明は充電電流から劣化度合いを正しく知るために、
以Eの点を考慮してなされた鉛蓄′4池川劣化検出装置
に関するものであり通常時は充電状態にて使用される鉛
蓄電池の定電圧充電中の充電電流値を一定の時間間隔を
置いて複数回計測する回路と、その複数の計測値を平均
して平均値を算出する回路を有し、その平均値と蓄電池
の温度と充電電圧に基き、鉛蓄電池の劣化の有無あるい
はその程度を検出あるいは表示する回路を備えたことを
特徴とするものである。
In order to accurately determine the degree of deterioration from the charging current, the present invention
This is a lead-acid '4 Ikegawa deterioration detection device that was developed with the above points in mind.It detects the charging current value during constant-voltage charging of a lead-acid battery that is normally used in a charged state at regular time intervals. It has a circuit that measures the battery multiple times, and a circuit that calculates the average value by averaging the multiple measured values.Based on the average value, the battery temperature, and the charging voltage, it is possible to determine whether or not the lead-acid battery has deteriorated, or to what extent. The device is characterized by being equipped with a detection or display circuit.

以下、本発明をその一実施例におけるブロック図を示す
第5図により詳細に説明する。第5図において1はデジ
タル式の電流針であり、蓄電池に流れる充電電流を測定
するのに使用される。2は例えば白金抵抗測温体のよう
な温度センサーを備えたデジタル式の温度針で電解液の
温度測定に使用される。6はデジタル式の電圧針で鉛蓄
電池の端子電圧の測定に使用される。電流針1.温度針
2、電圧針6はそれぞれインターフェース回路4・4′
・41を介してマイクロコンピュータ−5に接続される
。負荷電流の変動の周期は負荷の種類によってまちまち
ではあるが、ある一つの負荷を特定した場きの変動は固
育の略定期的なものになっている場合が多い。このため
、この周期よりも充分長い時間にわたって何回も一定の
時間間隔を置いて充電電流を′4流61−1で測定し、
それぞれの測定値をマイクロ・コンピューター5で積算
し、平均値を求めると、この値は爽の浮動充′題の電流
値に一致することとなる。また通常、鉛1ji4池は熱
容瀘が太きいために、浮動充電使用中の温度変化は短時
間においてはほとんどM視しうる この一度は諷ノ丈計
2を通じてマイクロ・」ンピューター5に送られ、マイ
クロ・コンピューター5では浮動光4電流のIM度係数
に篭き、前述した平均により求めたI#動充鑵の4dL
値を一度換算する。また電圧計5は鉛蓄電池が浮船充電
状態にあるかどうかを調べるためのものであり、均等光
1があった時や停゛4で放1した時などにおいて船畜d
t池の端子′電圧が所定の浮動光4+4圧からずれた場
合において、例えばIU日間捏度待・て浮動充−噸流が
    1安定したのち、浮動充電の測定を再開するた
めの情報ヲマイクロ・コンピューター5に伝える。フィ
クロ・コンピューター5ではこのようにして平均して温
度換算された浮動光+4Eii流が新品時の何倍になっ
ているか比較し、その結果得られた&Q畜電池の劣化度
合いを表示装置6に出力する。
Hereinafter, the present invention will be explained in detail with reference to FIG. 5, which shows a block diagram of an embodiment thereof. In FIG. 5, 1 is a digital current needle, which is used to measure the charging current flowing into the storage battery. 2 is a digital temperature needle equipped with a temperature sensor such as a platinum resistance thermometer, and is used to measure the temperature of the electrolytic solution. 6 is a digital voltage needle used to measure the terminal voltage of lead-acid batteries. Current needle 1. Temperature needle 2 and voltage needle 6 are connected to interface circuits 4 and 4', respectively.
- Connected to the microcomputer-5 via 41. Although the period of variation in load current varies depending on the type of load, the variation when a certain load is specified is often approximately regular. For this reason, the charging current is measured with the '4 current 61-1 many times at regular intervals over a period sufficiently longer than this period.
When each measured value is integrated by the microcomputer 5 and an average value is obtained, this value coincides with the current value of the floating charge. In addition, since the lead battery usually has a large heat capacity, the temperature change during floating charging can be almost as large as M for a short time. The microcomputer 5 is focused on the IM degree coefficient of the floating light 4 current, and calculates the 4 dL of I# dynamic charge calculated by the above-mentioned average.
Convert the value once. In addition, the voltmeter 5 is used to check whether the lead-acid battery is in a floating state of charge.
If the voltage at the terminals of the battery deviates from the predetermined floating voltage 4+4 voltage, for example, after the IU has been used for a day and the floating charge current has stabilized by 1, the information for restarting the floating charge measurement can be sent to the micrometer. Tell computer 5. In this way, the phycro computer 5 compares how many times the temperature-converted floating light +4Eii current is compared to when it was new, and outputs the degree of deterioration of the &Q battery obtained as a result to the display device 6. do.

以上、本発明の一実施例について1述したか、本発明は
その主旨を逸脱しない範囲で様々な実施態様が考えられ
る。例えば上記実施例においては浮動充′−中の充電電
流を測定する方法を用いているか、このほか均等充電を
実施した際の光磁不時の充電電流を同様の方法で計測し
て新品時と比較する方法を用いても良いし、またトリク
ル充電中の充電電流を同様の方法で計測する方法を用い
ても良い。すなわち定−圧充電で充′電される鉛畜′−
池/ステムにおいては本発明が常に適用可能である。
Although one embodiment of the present invention has been described above, various embodiments of the present invention can be considered without departing from the spirit thereof. For example, in the above embodiment, a method is used to measure the charging current during floating charging, or a similar method is used to measure the charging current during non-optical charging when uniform charging is performed. A method of comparison may be used, or a method of measuring the charging current during trickle charging using a similar method may be used. In other words, a lead battery charged by constant voltage charging
The invention is always applicable in ponds/stem.

以上の説明から明らかであるが、本発明の鉛藷ゼ池用劣
化検出装置は定電圧充電中の充電−流の値を一定の間隔
を置いて複数回計測して平均しているため、負荷の影響
などで充鑵′−流が経時変動していても、その影響を除
去した充lt−流の値を求めることができ、かつ鉛蓄′
d1池の一度による充罐′4流の変化を補正し、さらに
は測定時の充4′4圧条件をも加味したことなど(こよ
り、その劣化度合いの判定は従来の方法に比較して極め
て客観的であり、かつ正確である。また−極板のアンチ
モン付着による充111twl流増加のみでなく、例え
ば内部短絡なとによる異常な充4It流増加も検出する
ことができる。
As is clear from the above explanation, the deterioration detection device for lead battery of the present invention measures the charge flow value during constant voltage charging multiple times at regular intervals and averages it. Even if the charge flow fluctuates over time due to the influence of
By correcting the change in the charging can '4 flow due to one change in the d1 pond and also taking into account the charging pressure conditions at the time of measurement, the degree of deterioration can be determined much more easily than with conventional methods. It is objective and accurate.It is also possible to detect not only an increase in the current of 111twl due to antimony adhesion to the electrode plate, but also an abnormal increase in the current of 4t due to, for example, an internal short circuit.

この結果、本発明の鉛蓄峨池用劣化検出装置を用いるこ
とによって、何ら保守管理の手数を増やすことなく突発
的な鉛M−池の故障に備えることができ、また寿命が尽
きた場合の鉛蓄電池の取り換え時期の判定なとが6易に
口Jt+[、となる。このため本発明の鉛蓄電池用劣化
検出装置は鉛蓄電池を用いた4諒/ステムの高倍軸化に
大きく寅献するものであり、コンピューター・オノライ
ンシステム用のバック・アップ″4源餉簀、電話交換器
用4mm1などにその応用範囲も広く、その工業的価1
の極めて藁いものである。
As a result, by using the deterioration detection device for lead storage ponds of the present invention, it is possible to prepare for sudden breakdowns of lead storage ponds without increasing the number of maintenance management steps, and also to prepare for sudden failures of lead storage ponds when their lifespan has expired. Judging when it's time to replace a lead-acid battery is easy. For this reason, the deterioration detection device for lead-acid batteries of the present invention greatly contributes to the high multiplication of 4-meter/stem using lead-acid batteries. Its application range is wide, such as 4 mm 1 for telephone exchanges, and its industrial value is 1.
It's a very boring thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・錯蓄電油Bと負倚りと整流器Aの接続の様子を
示すブロック図。 第2図・容1と浮動光(電流の経年父化を示すグラフ。 第5図 本発明の一実施例を示すブnJ ツク図。 1 ・電流計  2 ・温度計  5・セ圧計4.4’
、4’  インターフェース回路5・・・マイクロコン
ピュータ 6・・・表示装d出願人 湯浅電池株式会社 第1図 第2図 第3図 自発手続補市占 昭(115741:  6   月  /11持許1j
  長 1  欺 1 巾(!1い大小 昭和57  年 特許  願第74177月2 発明の
名称 船麺電池廟劣化検出装諏 :3 袖11をする考 小作との関係   特許出願人 月1jl’番弓 569   小話 ti槻 (1ン7
26)75−55i月(1−所   大阪VJ t、%
槻市域西町6番6弓1 補市1マ1−8マ;o)l」付
  昭和  年  月   日F) 補if−により増
加する発明の数人補正の内容 1) 特M−求の範囲を全文、以下の通り抽圧する。 [通常時は光電状態にて使用される1畜電池の定電圧充
電中の充電電流値を一定の時間間隔を麿いて鶴数回岨測
する回路と、その−その一餘と蓄電池の温度と充電電圧
に基き、&I蓄亀電池劣化の有無あるいはその一度を、
8[!出あるいは表示する回路を備えたことを持敞とす
る船蓄電池用劣化検出統−0」 2)明bm絽7頁第4〜琳6?丁目の[そのし鈑の〜光
WL&圧に基き、」を[その値数のttt cm−を平
均して平均値を算出するなどの、これそ、)憾と蓄−池
、)湿度と光−1庄kl@、、I        ’に
補止する。 3)明細書第10貞8テJ−目以降に次の文幕を押入す
る。 1さらに上記実施例では舖阪の#測値を平均して平均値
を算出する回路を有するものについてのみ例不したが、
jtm−の合計値を算出して、この麺に基き1畜電池の
劣化の有無あるいはその一度を、検出あるいは表示する
ようにするなどもでき、このように本発明によれば伽象
の針鵬値を変龜として一定の式により一義的に求められ
るある値を鼻出し、この値に轟き1畜電池の劣化の有無
あるいはその一度を、検出あるいは衣不するようにすれ
ばよい。」 4)明細W謝9貞19行目[て平均1を、「。 るO 以  上 −31′
FIG. 1 is a block diagram showing how the complex storage oil B, negative bias, and rectifier A are connected. Figure 2: Volume 1 and floating light (a graph showing the change in current over time. Figure 5: A graph showing an embodiment of the present invention. 1. Ammeter 2. Thermometer 5. Pressure gauge 4.4 '
, 4' Interface circuit 5...Microcomputer 6...Display device d Applicant Yuasa Battery Co., Ltd. Figure 1 Figure 2 Figure 3 Voluntary procedure auxiliary city Shiraaki (115741: June /11 Permit 1j
Length 1 Width 1 Width (1987) Patent Application No. 74177 July 2 Name of the invention Ship Noodle Battery Temple Deterioration Detection Device: 3 Relationship with consideration and small work with sleeves 11 Patent applicant Month 1 Jl' Banyumi 569 Short story ti Tsuki (1-7
26) 75-55i month (1-place Osaka VJ t,%
Tsuki City Area Nishimachi 6-6 Yumi 1 Houichi 1 Ma 1-8 Ma; o) l'' Showa Year Month Day F) Supplementary if- Contents of several amendments to the invention 1) Special M- Scope of request The full text is extracted as follows. [A circuit that measures the charging current value during constant-voltage charging of a single battery that is normally used in a photoelectric state several times at regular intervals, and the temperature of that battery and the battery.] Based on the charging voltage, determine whether or not the &I storage battery has deteriorated,
8[! "Deterioration detection system for ship storage batteries equipped with a circuit for outputting or displaying the battery" 2) BM-7 page 4-6? ``Based on the ~light WL & pressure of that plate'' on the block, ``calculate the average value by averaging the number of values, ttt cm-, etc.) Regret and storage,) Humidity and light -1 Sho kl@,, Supplement to I'. 3) Insert the following sentence after the 10th, 8th, J-th paragraph of the specification. 1 Furthermore, in the above embodiments, only those having a circuit for calculating the average value by averaging the # measured values of Masaka were not mentioned.
It is also possible to calculate the total value of jtm- and detect or display the presence or absence of deterioration of the battery based on this noodle, and thus, according to the present invention, the By varying the value, a certain value uniquely determined by a certain formula may be determined, and this value may be used to detect or determine whether or not the primary battery has deteriorated. 4) Details W Xie 9 Tei 19th line [The average is 1, ``.

Claims (1)

【特許請求の範囲】[Claims] 通籍時は充電状態にて使用される鉛蓄電池の定4圧充4
中の充4*流値を一定の時間間隔を置いて複数回t1測
する回路と、その複数の計測値を平均して平均値を算出
する回路を有し、その平均値とam池の温度と充−電圧
に基き、鉛蓄電池の劣化の有無あるいはその程度を、検
出あるいは表ボする回路を備えたことを特徴とする船蓄
電池用劣化検出装′tIl。
Constant 4-pressure charging of lead-acid batteries that are used in a charged state when commuting
It has a circuit that measures t1 multiple times at regular time intervals, and a circuit that calculates the average value by averaging the multiple measured values, and calculates the average value and the temperature of the AM pond. 1. A deterioration detection device for a ship storage battery, characterized by comprising a circuit for detecting or indicating the presence or absence of deterioration of a lead-acid battery, or its degree, based on the charging voltage and charging voltage.
JP57074177A 1982-04-30 1982-04-30 Deterioration detector for lead-acid battery Pending JPS58192270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57074177A JPS58192270A (en) 1982-04-30 1982-04-30 Deterioration detector for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57074177A JPS58192270A (en) 1982-04-30 1982-04-30 Deterioration detector for lead-acid battery

Publications (1)

Publication Number Publication Date
JPS58192270A true JPS58192270A (en) 1983-11-09

Family

ID=13539617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57074177A Pending JPS58192270A (en) 1982-04-30 1982-04-30 Deterioration detector for lead-acid battery

Country Status (1)

Country Link
JP (1) JPS58192270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232276A (en) * 1988-07-22 1990-02-02 Yuasa Battery Co Ltd Life detecting method for storage battery
FR2841385A1 (en) * 2002-06-12 2003-12-26 Toyota Motor Co Ltd DEVICE FOR CALCULATING THE DETERIORATION DEGREE AND METHOD FOR CALCULATING THE DETERIORATION DEGREE OF A BATTERY
JP2020057565A (en) * 2018-10-04 2020-04-09 日立化成株式会社 Diagnosis method and diagnosis system for deteriorated condition of storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232276A (en) * 1988-07-22 1990-02-02 Yuasa Battery Co Ltd Life detecting method for storage battery
FR2841385A1 (en) * 2002-06-12 2003-12-26 Toyota Motor Co Ltd DEVICE FOR CALCULATING THE DETERIORATION DEGREE AND METHOD FOR CALCULATING THE DETERIORATION DEGREE OF A BATTERY
JP2020057565A (en) * 2018-10-04 2020-04-09 日立化成株式会社 Diagnosis method and diagnosis system for deteriorated condition of storage battery

Similar Documents

Publication Publication Date Title
EP3480613B1 (en) Method for measuring the internal resistance of batteries
JP5122651B2 (en) How to estimate the state of charge of a lead battery
EP3913726B1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
JP2013518272A (en) How to diagnose battery deterioration
JP2016090399A (en) Method for detecting short circuit, short-circuit detecting system, and method for calculating short-circuit current value
US20070252555A1 (en) Method and apparatus for determining to which battery cell in a string of battery cells a test instrument is connected
CN109669138B (en) Method for accurately measuring residual capacity of power lead storage battery pack
CN1879251B (en) Battery float management
CN111460656A (en) Method and system for evaluating operation life of communication power supply of electric power machine room
WO2021179639A1 (en) Method for assessing rechargeable battery health level, apparatus, and storage medium
KR101544215B1 (en) System for Monitoring Battery State of Health
JPS58192270A (en) Deterioration detector for lead-acid battery
Badeda et al. Adaptive battery steering and management system for the optimized operation of stationary battery energy storage systems in multi-use applications
JP2001250590A (en) Method for deciding deterioration of storage battery
JPH03182063A (en) Deteriorated condition sensing method for sealed lead-acid battery
JP3430600B2 (en) Method and apparatus for estimating deterioration state of storage battery
Hwang et al. Measurement method for online battery early faults precaution in uninterrupted power supply system
JPH11233162A (en) Method for judging life of sealed lead-acid battery
JP3030930B2 (en) Method for detecting deterioration of sealed lead-acid battery
Gotaas et al. Single cell battery management systems (BMS)
WO2023140277A1 (en) Electronic apparatus, and measuring method
JP2021015015A (en) Power storage element management unit
JPH06337282A (en) Battery measuring equipment
TW394848B (en) A measuring method for detecting the remaining capacity of a battery
Cantor Field experience with reference electrode measurements