JPH11233162A - Method for judging life of sealed lead-acid battery - Google Patents

Method for judging life of sealed lead-acid battery

Info

Publication number
JPH11233162A
JPH11233162A JP10029392A JP2939298A JPH11233162A JP H11233162 A JPH11233162 A JP H11233162A JP 10029392 A JP10029392 A JP 10029392A JP 2939298 A JP2939298 A JP 2939298A JP H11233162 A JPH11233162 A JP H11233162A
Authority
JP
Japan
Prior art keywords
capacity
battery
resistance
life
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10029392A
Other languages
Japanese (ja)
Inventor
Kiyoshi Koyama
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP10029392A priority Critical patent/JPH11233162A/en
Publication of JPH11233162A publication Critical patent/JPH11233162A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3647Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge the life of a battery by measuring the capacity of the battery at each stage during the period in which the life of the battery comes to its end, internal resistance during charging, and the resistance between the top and bottom of plates during charging, then calculating the relationship to the capacity of the internal resistance and the resistance between the top and bottom of the plates, and measuring the internal resistance and the resistance between the top and bottom of the plates when using a storage battery having the same voltage capacity as the former battery. SOLUTION: A resistance between the top and bottom of positive and negative plates is calculated by connecting a current-conducting wire and a voltage-detecting wire to the lowest ones of the positive and negative plates of a parameter-measuring cell, passing a current between the current-conducting wire and battery terminals, and measuring voltage drop. The voltage between the top and bottom of the positive and negative plates during discharging causes the battery charged to discharge at a specific current value, and the voltage between the terminals and a voltage measuring wire taken out from the bottom of the plates is measured a relatively short time thereafter. Internal resistance is measured by measuring the resistance between the battery terminals with an ac impedance gauge. A regression formula of these parameters and a capacity shown as the ratio to initial capacity is calculated to judge the life of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は密閉形鉛蓄電池の寿
命を判定する方法に関する。
The present invention relates to a method for determining the life of a sealed lead-acid battery.

【0002】[0002]

【従来の技術】従来、密閉形鉛蓄電池の寿命を判定する
方法として、蓄電池の充放電量を積算してその値が基準
値を超えたときに寿命が尽きたと判断する方法や、電流
−電圧特性を測定する方法、内部抵抗を測定して蓄電池
の劣化程度を推定する方法等が提案されていた。しか
し、これらの方法は、例えば特開平1−253177号
公報に示されているように正極格子体の伸びと透湿によ
る劣化を寿命原因と見なし、その適用をトリクル充電使
用時に限定している。また、特開平4−366565号
公報には、放電中の極板上下の電位差から抵抗を算出
し、格子体の腐食という一つの寿命原因に着目した寿命
判定方法が示されているが、例えばサイクル使用での負
極活物質の不活性化や正極活物質の軟化など密閉形鉛蓄
電池のさまざまな劣化状態や使用方法を考慮すると一律
に適用出来るわけではなかった。
2. Description of the Related Art Conventionally, as a method of determining the life of a sealed lead-acid battery, a method of integrating the amount of charge and discharge of a storage battery and determining that the life has expired when the value exceeds a reference value, a method of determining the current-voltage A method for measuring characteristics, a method for estimating the degree of deterioration of a storage battery by measuring internal resistance, and the like have been proposed. However, in these methods, for example, as shown in Japanese Patent Application Laid-Open No. 1-253177, elongation of the positive electrode grid and deterioration due to moisture permeability are regarded as causes of life, and its application is limited to trickle charge use. Japanese Unexamined Patent Publication No. 4-366565 discloses a life determination method that calculates resistance from the potential difference between the top and bottom of an electrode plate during discharge and focuses on one life cause of corrosion of a lattice body. In view of various degraded states and usage methods of the sealed lead-acid battery such as inactivation of the negative electrode active material and softening of the positive electrode active material during use, the method cannot be applied uniformly.

【0003】[0003]

【発明が解決しようとする課題】従来の技術、例えば上
記公報のものは、電池の内部抵抗や極板上下の電位差を
特定の劣化要因に結び付けて寿命判定をしているが、サ
イクル使用かフロ−ト充電使用、周囲温度、放電深度、
過充電量など密閉形鉛蓄電池の使用条件が変われば様々
の劣化要因が現れ、上記特性値(パラメ−タ)を単独で
適用すると誤差が大きくなるという問題点があった。
In the prior art, for example, in the above-mentioned publication, the life is determined by associating the internal resistance of the battery or the potential difference between the upper and lower electrodes with a specific deterioration factor. -Charge use, ambient temperature, depth of discharge,
If the use conditions of the sealed lead-acid battery such as the amount of overcharge change, various deterioration factors appear, and there is a problem that the error increases when the above characteristic values (parameters) are applied alone.

【0004】本発明は、上記問題点を解決するためにな
されたものであって、その目的は、比較的少数の測定可
能なパラメ−タで、使用方法や履歴等によって誤差が殆
ど生じない密閉形鉛蓄電池の寿命判定方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object the purpose of using a sealed device which has a relatively small number of measurable parameters and hardly causes an error depending on the method of use or history. It is an object of the present invention to provide a method for determining the life of a lead-acid battery.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1は、密閉形鉛蓄電池の寿命に到る期間
中の各段階における容量と、充電状態における内部抵抗
と、充電状態における極板上下間の抵抗とを測定し、こ
れら測定値から前記容量に対する前記内部抵抗と前記極
板上下間の抵抗との関係を予め回帰式として求め、次
に、前記電池と同一電圧かつ同一容量の密閉形鉛蓄電池
の使用状態における前記内部抵抗と前記極板上下間の抵
抗とを測定し、該測定値を前記回帰式に当てはめて寿命
判定することを特徴とするものである。
In order to achieve the above object, a first aspect of the present invention is to provide a sealed lead-acid battery having a capacity at each stage during its life, an internal resistance in a charged state, and a charge state. The resistance between the top and bottom of the electrode plate in the state is measured, and the relationship between the internal resistance and the resistance between the top and bottom of the electrode is determined in advance as a regression equation from these measured values, and then the same voltage as the battery and The invention is characterized in that the internal resistance and the resistance between the top and bottom of the electrode plate in a use state of a sealed lead-acid battery of the same capacity are measured, and the measured value is applied to the regression equation to determine the life.

【0006】また、本発明の第2は、上記第1の発明に
おいて放電開始から所定時間経過後の極板上下間の電圧
を特性値として加えたことを特徴とするものである。
According to a second aspect of the present invention, in the first aspect, the voltage between the upper and lower electrodes after a predetermined time has elapsed from the start of the discharge is added as a characteristic value.

【0007】[0007]

【本発明の実施の形態】本発明は、密閉形鉛蓄電池の寿
命に到る期間中の各段階において放電容量を測定すると
共に、放電過程に直接関係する電池内のパラメ−タを測
定し、測定容量に対する前記パラメータの関係を回帰式
として予め求めておき、これをもとに使用中の電池のパ
ラメ−タから寿命判定を行うものである。このパラメー
タ決定するために、内部抵抗と正、負極板上下間の抵
抗、放電中の正、負極板上下間の電圧を選択した。
DETAILED DESCRIPTION OF THE INVENTION The present invention measures the discharge capacity at each stage during the life of a sealed lead-acid battery, and measures the parameters in the battery directly related to the discharge process. The relationship between the measured capacity and the above parameters is obtained in advance as a regression equation, and the life is determined based on the parameters of the battery in use based on this. In order to determine these parameters, the internal resistance and the resistance between the upper and lower sides of the positive and negative electrodes and the voltage between the upper and lower sides of the positive and negative electrodes during discharge were selected.

【0008】正、負極板上下間の抵抗は、パラメ−タ測
定用セルの正極板及び負極板の一枚の最下部に電流通電
用および電圧検出用の電線を接続し、電流通電線と電池
端子の間に電流を流し電圧降下を測定して算出する。こ
れらは格子体と活物質の並列な接続としての極板の電気
抵抗を表す。放電中の正、負極板上下間の電圧は充電状
態の電池を特定の電流値で放電し、端子と極板下部から
取り出した電圧測定線の間の電圧をある比較的短い時間
後に測定する。これは格子体の抵抗変化や希硫酸の濃度
偏重、活物質の不活性化を含めた諸原因による放電反応
の不均一さを反映し、何らかの原因で放電が下部に局在
したり、極板の電気抵抗が大きくなるとこの電圧が大き
くなる。内部抵抗は電池端子間の抵抗を交流インピ−ダ
ンス計で測定する。これは格子体の抵抗変化や電解液の
減少、活物質の不活性化を含めた諸原因による放電反応
の起こりにくさの変化を反映する。この正、負極あわせ
て5種類のパラメ−タの内いくつかを使って、さまざま
な状態の密閉形鉛蓄電池の容量と測定されたパラメ−タ
の間の回帰式を作った。本発明者は、これらパラメ−タ
と初期容量に対する比率で示した容量との回帰式が同一
機種の電池では、使用方法、履歴によらずほぼ同一にな
る事を見いだした。従って、ある機種の電池劣化度と各
種パラメ−タの回帰式を予め実験で求めておけば、この
回帰式をもとに簡単なパラメ−タ測定の手順によって電
池寿命が判定できる。
[0008] The resistance between the upper and lower sides of the positive and negative electrodes is determined by connecting a current carrying wire and a voltage detecting wire to the bottom of one of the positive and negative plates of the parameter measuring cell. Calculate by applying a current between the terminals and measuring the voltage drop. These represent the electrical resistance of the plates as a parallel connection of the grid and active material. The voltage between the positive and negative plates during discharging is measured by discharging the charged battery at a specific current value and measuring the voltage between the terminal and a voltage measurement line taken out from the lower part of the electrode after a relatively short time. This reflects the nonuniformity of the discharge reaction due to various factors including the change in the resistance of the lattice, the concentration of dilute sulfuric acid, and the inactivation of the active material. This voltage increases as the electrical resistance increases. The internal resistance is obtained by measuring the resistance between battery terminals with an AC impedance meter. This reflects a change in the difficulty of the discharge reaction caused by various factors including a change in the resistance of the lattice, a decrease in the electrolytic solution, and inactivation of the active material. Using some of the five parameters, positive and negative, a regression equation was created between the capacity of the sealed lead-acid battery in various states and the measured parameters. The inventor of the present invention has found that the regression equation between these parameters and the capacity expressed as a ratio to the initial capacity is substantially the same for batteries of the same model regardless of the method of use and history. Therefore, if the regression formula of the battery deterioration degree and various parameters of a certain model is obtained in advance by an experiment, the battery life can be determined by a simple parameter measurement procedure based on the regression formula.

【0009】また、パラメ−タ測定用のセルを一連の電
池群に組込んでおけば、1つまたは幾つかのセルの測定
によって、電池群全体の寿命の判定が可能となる。
If the cells for parameter measurement are incorporated in a series of battery groups, the life of the entire battery group can be determined by measuring one or several cells.

【0010】(実施例1)公称容量65Ahの12V系
密閉形鉛蓄電池を24個直列に配線した288V系電池
群において、24個の電池のうち3個を選び、それぞれ
の電池の1セルから図1のようにパラメ−タ測定用の電
流線6,6’、電圧線5,5’を正、負極板のそれぞれ
1枚の最下部から取り出し、この電池群を電気自動車に
積載した。この電気自動車は1日に平均90km走行
し、夜間に充電する方法で実験した(実験条件Aとす
る)。なお、1は正極端子、2は負極端子、3は電槽、
4は負極板を示す。
(Embodiment 1) In a 288V system battery group in which 24 sealed 12V series lead-acid batteries having a nominal capacity of 65Ah are wired in series, three of the 24 batteries are selected, and one cell of each battery is selected. As in 1, the current lines 6, 6 'and the voltage lines 5, 5' for parameter measurement were taken out from the bottom of one of the positive and negative electrodes, respectively, and this battery group was mounted on an electric vehicle. This electric vehicle traveled an average of 90 km per day and was tested in a method of charging at night (referred to as experimental condition A). In addition, 1 is a positive electrode terminal, 2 is a negative electrode terminal, 3 is a battery case,
Reference numeral 4 denotes a negative electrode plate.

【0011】使用開始の初期および1ヶ月に1度の割合
で寿命に到るまで測定用セルの極板上下間の抵抗を各端
子1,2と電流線6,6’間に5Aの電流を通電して測
定算出した。極板上下間の電圧は、電池端子1と2間に
おいて1.6C放電で30秒後の電圧を測定した。内部
抵抗は、交流インピ−ダンス計で端子1と2間の抵抗を
測定した。また、1.6Cでの放電容量を測定した。こ
れらのデ−タを電池群の1.6C容量が初期の60%を
下まわるまで1.5年間採取し、そのデ−タに回帰分析
法を適用して回帰式を求めた。その内相関係数の大きい
ものを次式に示す。
The resistance between the upper and lower electrodes of the measuring cell is set at the beginning of use and once a month until the end of its life. A 5 A current is applied between the terminals 1 and 2 and the current lines 6 and 6 '. The current was measured and calculated. The voltage between the upper and lower electrode plates was measured between the battery terminals 1 and 2 after a lapse of 30 seconds at 1.6 C discharge. For the internal resistance, the resistance between the terminals 1 and 2 was measured with an AC impedance meter. Further, the discharge capacity at 1.6 C was measured. These data were collected for 1.5 years until the 1.6 C capacity of the battery group fell below the initial 60%, and a regression analysis method was applied to the data to obtain a regression equation. The one having a large correlation coefficient is shown in the following equation.

【0012】なお、容量をY、正極板の抵抗をX1 、正
極板上下間の電圧をX3 、負極板上下間の電圧をX4
内部抵抗をX5 、X6 =X3 −X4 、相関係数をRとす
る。 Y=−13.3X1 +12.21 X5 +33.53 ;R=0.891 ・・・(1) Y=−10.42 X1 −0.31X3 +9.73X5 +35.14 ;R=0.897 ・・・(2) Y=−8.75X1 +10.97 X5 −0.57X6 +25.94 ;R=0.896 ・・・(3) 上記回帰式のうち、(1)と(2)式で求めた容量(算
出容量という)と実測した容量(測定容量という)を比
較したところ図2のようになり、寿命に到る期間までそ
の差が殆どなく、実用的であることが分かった。
The capacity is Y, the resistance of the positive electrode plate is X 1 , the voltage between the upper and lower portions of the positive electrode plate is X 3 , the voltage between the upper and lower portions of the negative electrode plate is X 4 ,
The internal resistance is X 5 , X 6 = X 3 -X 4 , and the correlation coefficient is R. Y = -13.3X 1 +12.21 X 5 +33.53 ; R = 0.891 ··· (1) Y = -10.42 X 1 -0.31X 3 + 9.73X 5 +35.14; R = 0.897 ··· (2 ) Y = -8.75X 1 +10.97 X 5 -0.57X 6 +25.94; R = 0.896 ··· (3) of the regression equation, (1) and (2) capacity determined by the equation (calculation capacity FIG. 2 shows a comparison between the measured capacity and the actually measured capacity (referred to as the measured capacity), and it was found that there was almost no difference until the end of the life, and that it was practical.

【0013】また、上記3個の電池の寿命時期と電池群
全体の寿命時期はほぼ一致した。
Further, the life time of the three batteries almost coincided with the life time of the whole battery group.

【0014】次に、(1)〜(3)式を別のいくつかの
条件B,C下で実車試験を行った電池群に適用した。な
お、実験条件Bは、1日に平均20km走行し、充電を
夜間に行う方法であり、実験条件Cは、平均気温が条件
Bより5℃高い地域で条件Bと同じ方法で行った。
Next, the equations (1) to (3) were applied to a battery group that was subjected to an actual vehicle test under some other conditions B and C. Note that the experimental condition B is a method of running an average of 20 km per day and charging at night, and the experimental condition C was performed in a region where the average air temperature is 5 ° C. higher than the condition B in the same manner as the condition B.

【0015】そして、算出容量/測定容量の比を使用期
間(初期容量から初期容量の60%に到るまでの期間)
の関数として表すと図3のようになった。測定容量が初
期の60%以下になるまでの期間では、算出容量/測定
容量は0.85〜1. 20の間にあり、測定容量が初期
容量の75%以下になるまでの期間では、算出容量/測
定容量は0.90〜1.10の間にある。従って、充分
に実用的な精度の容量判定が可能である。
Then, the ratio of the calculated capacity / measured capacity is used for the period of use (the period from the initial capacity to 60% of the initial capacity).
When expressed as a function of The calculated capacity / measured capacity is between 0.85 and 1.20 during the period until the measured capacity becomes 60% or less of the initial value, and is calculated during the period until the measured capacity becomes 75% or less of the initial capacity. The volume / measured volume is between 0.90 and 1.10. Therefore, it is possible to determine the capacity with sufficient practical accuracy.

【0016】(実施例2)実施例1と同機種の公称容量
65Ahの12V系密閉形鉛蓄電池を8個直列に配線
し、この100V系電池群を5個並列に接続した合計4
0個の電池よりなる群において、40個の電池の内3個
を選定し、それぞれの電池の中から1セルを選び実施例
1と同様にパラメ−タ測定用の電流線6,6’、電圧線
5,5’を正、負極板のそれぞれ1枚の最下部から取り
出し、該電池群を無停電電源装置の出力源として使用し
た。
(Embodiment 2) Eight 12V series sealed lead-acid batteries of the same model as in Example 1 having a nominal capacity of 65 Ah are wired in series, and five 100V series battery groups are connected in parallel, for a total of 4
In the group consisting of zero batteries, three of the forty batteries were selected, and one cell was selected from each of the batteries, and the current lines for parameter measurement 6, 6 ', The voltage lines 5 and 5 ′ were taken out from the bottom of each of the positive and negative plates, and the battery group was used as an output source of an uninterruptible power supply.

【0017】使用開始の初期および4ヶ月に1度、測定
用セルを取り出し、極板上下間の抵抗を各端子1,2と
電流線6,6’間に5Aの電流を通電して測定算出し
た。極板上下間の電圧は1.6Cで30秒後の電圧を測
定した。内部抵抗は、交流インピ−ダンス計で端子1,
2間の抵抗を測定した。測定の最後に1.6Cでの放電
容量を測定した。これらのデ−タを電池群の1.6C容
量が初期の60%を下まわるまで3年間採取し、そのデ
−タを前記(1)〜(3)式に当てはめて、試験期間中
の算出容量と測定容量を比較した。その結果を図4と図
5に示す。なお、図4は使用日数に対する(1)式の算
出容量と測定容量のグラフであり、図5は図3と同様な
使用期間中における(1)〜(3)式の算出容量/測定
容量のグラフである。
At the beginning of use and once every four months, the measuring cell is taken out and the resistance between the upper and lower electrodes is measured and calculated by applying a current of 5 A between each of the terminals 1, 2 and the current lines 6, 6 '. did. The voltage between the upper and lower electrodes was 1.6 C, and the voltage after 30 seconds was measured. The internal resistance is measured at terminals 1 and 2 using an AC impedance meter.
The resistance between the two was measured. At the end of the measurement, the discharge capacity at 1.6 C was measured. These data are collected for three years until the 1.6 C capacity of the battery group falls below 60% of the initial value, and the data is applied to the above equations (1) to (3) to calculate during the test period. The capacity and the measured capacity were compared. The results are shown in FIGS. FIG. 4 is a graph of the calculated capacity of equation (1) and the measured capacity with respect to the number of days of use, and FIG. 5 is the calculated capacity / measured capacity of equations (1) to (3) during the same use period as in FIG. It is a graph.

【0018】図4と図5を見ると、容量が初期の60%
以下になるまでの期間では算出容量/測定容量は0.9
9〜1.25、容量が初期の75%以下になるまでの期
間では同比は0.99〜1.12の範囲に入った。従っ
て、フロ−ト充電状態の電池群の寿命をサイクル寿命試
験に基づく寿命判定の回帰式(1)〜(3)によって判
断することが実用上有効である。ただし、(1)式と
(2)式では寿命末期での判定精度がやや悪いという欠
点があるが、(3)式を適用するとやや改善されること
が分かる。さらに、(1)〜(3)式の係数を若干変更
して容量判定精度を向上させることを検証した。その結
果、算出容量/測定容量をrとし、以下の範囲毎に各式
(4)〜(6)を適用すると、寿命判定の精度があがっ
た。すなわち、図6に示すように下記式を適用した場合
における使用期間中の算出容量/測定容量は、図5に示
す算出容量/測定容量に比べ1.0に近づき精度が向上
していることが分かる。なお、rの値の重なる期間では
対応するどの式を適用してもよい。
Referring to FIGS. 4 and 5, the capacity is 60% of the initial capacity.
The calculated capacity / measured capacity is 0.9 in the period up to the following.
The ratio was in the range of 0.99 to 1.12. Therefore, it is practically effective to determine the life of the battery group in the floating charge state by the regression formulas (1) to (3) for life judgment based on the cycle life test. It should be noted, however, that the expressions (1) and (2) have a drawback that the determination accuracy at the end of life is somewhat poor, but it can be seen that the application of the expression (3) slightly improves the accuracy. Furthermore, it was verified that the capacity determination accuracy was improved by slightly changing the coefficients in the equations (1) to (3). As a result, when the calculated capacity / measured capacity was set to r and each of the equations (4) to (6) was applied to each of the following ranges, the accuracy of the life determination was improved. That is, as shown in FIG. 6, when the following equation is applied, the calculated capacity / measured capacity during the use period approaches 1.0 as compared with the calculated capacity / measured capacity shown in FIG. I understand. In the period in which the value of r overlaps, any corresponding formula may be applied.

【0019】 Y=−13.5X1 +12.0X5 +32.8 (0.96≦r≦1.20) ・・・(4) Y=−10.7X1 −0.31X3 +9.7 X5 +33.9 (1.02≦r≦1.17) ・・・(5) Y=−8.9 X1 +11.1X5 −0.57X6 +24.7 (0.99≦r≦1.15) ・・・(6) さらに、これらの式(4)〜(6)が実施例1のサイク
ル寿命試験結果の寿命判定の誤差をどの程度大きくする
か確認したところ、若干の誤差の増加はあったが、実用
上無視できる程度であった。
Y = −13.5X 1 + 12.0X 5 +32.8 (0.96 ≦ r ≦ 1.20) (4) Y = −10.7X 1 −0.31X 3 +9.7 X 5 +33.9 (1.02 ≦ r ≦ 1.17) (5) Y = −8.9 X 1 + 11.1X 5 −0.57X 6 +24.7 (0.99 ≦ r ≦ 1.15) (6) Furthermore, these formulas (4) to (4) 6) confirmed how large the error in the life judgment of the cycle life test result of Example 1 was. As a result, although the error slightly increased, it was practically negligible.

【0020】(解体調査)以上、重回帰分析手法を使っ
ていくつかのパラメ−タと電池容量の関係に基づく寿命
判定方法について述べたが、密閉形鉛蓄電池の劣化要因
とパラメ−タの関係を確認するために、解体調査を行っ
た。
(Disassembly Investigation) The life determination method based on the relationship between some parameters and the battery capacity using the multiple regression analysis method has been described above. The relationship between the deterioration factors of the sealed lead-acid battery and the parameters has been described. A dismantling survey was conducted to confirm the situation.

【0021】実施例1では電気自動車に登載してサイク
ル使用条件のもとでの調査であるが、3セルa,b,c
を解体したところ、うち容量劣化が最も著しいセルaに
は負極に不可逆な硫酸鉛が下部を中心に多量に蓄積さ
れ、正極では上部の活物質の著しい軟化が発生してい
た。一方、他の2セルb,cには負極下部に不可逆な硫
酸鉛が少し見られ、正極活物質の軟化が確認された。セ
パレ−タ中の電解液比重は、前者が初期より0.055
g/cc低下していたのに対し、後者ではほとんど変化がな
かった。また、前者では電解液の液渇れが見られた。以
上の結果をパラメ−タとの関係で考察すると、図7〜9
に示す内部抵抗、極板抵抗、極板上下の電圧を寿命要因
と関連させることが出来る。即ち容量劣化の激しいセル
aにおいて内部抵抗及び正極板上下の電圧の増加が見ら
れ、それぞれが電解液の液渇れ、及び負極の不可逆化、
正極軟化の反映である。
In the first embodiment, the investigation is carried out under the condition of using the cycle mounted on an electric vehicle, but three cells a, b, c
When the cell was disassembled, a large amount of irreversible lead sulfate was accumulated in the negative electrode mainly in the lower part of the cell a in which the capacity deterioration was most remarkable, and the upper active material was remarkably softened in the positive electrode. On the other hand, in the other two cells b and c, a little irreversible lead sulfate was observed below the negative electrode, and softening of the positive electrode active material was confirmed. The specific gravity of the electrolyte in the separator is 0.055 from the initial value.
While the g / cc decreased, the latter remained almost unchanged. In the former case, the electrolyte was dry. Considering the above results in relation to the parameters, FIGS.
Can be related to the life factor. That is, an increase in the internal resistance and the voltage above and below the positive electrode plate is observed in the cell a where the capacity is severely degraded.
This is a reflection of softening of the positive electrode.

【0022】実施例1の別の条件Bで行った実験では、
いずれのセルd,e,fも解体結果で正極の腐食と軟化
が寿命要因と思われた。この実験でパラメ−タの変化
は、正極板抵抗と正極上下間電圧において著しく、内部
抵抗は寿命の最終段階において急に変化した。
In an experiment performed under another condition B of the first embodiment,
In all the cells d, e, and f, the disassembly results indicated that the corrosion and softening of the positive electrode were the life factors. In this experiment, the change of the parameters was remarkable in the resistance of the positive electrode plate and the voltage between the upper and lower sides of the positive electrode, and the internal resistance changed suddenly in the final stage of the life.

【0023】実施例2はフロ−ト充電の条件下の実験で
ある。いずれのセルg,h,iの寿命要因も正極格子体
の腐食(変形)であった。パラメ−タの変化は正極板抵
抗において著しかった。
Example 2 is an experiment under the condition of float charging. The life factor of each of the cells g, h, and i was corrosion (deformation) of the positive electrode grid. The change of the parameter was remarkable in the positive electrode resistance.

【0024】以上の結果から、公称容量65Ah−12
Vの密閉形鉛蓄電池の寿命は多項式によって実用上精度
良く判定されることが見いだされた。実際にこの方法を
採用するにあたっては、パラメ−タの測定の手間を減ら
すことが望まれる。比較的簡単に測定可能なX1 (正極
板抵抗)、X5 (内部抵抗)の2つで容量推定できる
(4)式がよいか、測定の手間は増えるが精度が少し良
くなる(6)式が良いか、実施者が選択できる。なお、
内部抵抗と正極板抵抗の測定にあたって、図10のよう
に測定用のセル10を電池群11の配線から切り離す開
閉器12、12を電池群に取り付けると良い。フロ−ト
使用の電池群11の際には測定中に電池群11を電源装
置から切り放せないので、図11のように並列回路を設
け、一方の回路には測定用セル10を電池群11の配線
から切り離す開閉器12,12を取り付けると共に、他
方の回路には測定用セル10が切り離された時に電池群
11にフロート電流を流す開閉器13と、測定用セルに
代わる補助セル14を設けると簡単に測定できる。この
際使用する2V系電池の容量は数Ahのもので充分であ
る。
From the above results, the nominal capacity is 65 Ah-12.
It has been found that the life of a sealed lead-acid battery of V can be practically accurately determined by a polynomial. In actually adopting this method, it is desirable to reduce the trouble of measuring parameters. Equation (4), in which the capacity can be estimated with two values of X 1 (positive plate resistance) and X 5 (internal resistance), which can be measured relatively easily, is good, or the measurement time is increased but the accuracy is slightly improved (6) The formula is good or the practitioner can choose. In addition,
When measuring the internal resistance and the positive plate resistance, it is preferable to attach switches 12, 12 for disconnecting the measuring cell 10 from the wiring of the battery group 11 to the battery group as shown in FIG. 10. In the case of the floating battery group 11, since the battery group 11 cannot be disconnected from the power supply during the measurement, a parallel circuit is provided as shown in FIG. The switches 12 and 12 that separate from the wiring are attached, and the other circuit is provided with a switch 13 that allows a float current to flow through the battery group 11 when the measuring cell 10 is disconnected and an auxiliary cell 14 that replaces the measuring cell. And can be easily measured. At this time, the capacity of the 2V battery used is several Ah.

【0025】以上が65Ah電池を例にした寿命判定の
実例だが、他の機種についても同じような実験を予め行
い、容量推定の多項式を同じ手順で求めておけばよい。
The above is an actual example of life determination using a 65Ah battery as an example. However, similar experiments may be performed in advance for other models, and a polynomial for capacity estimation may be obtained in the same procedure.

【0026】[0026]

【発明の効果】以上説明したように、本発明は、サイク
ル使用やフロート使用、あるいは周囲温度や走行距離な
どが異なるさまざまな環境、条件下で使用される密閉形
鉛蓄電池の寿命を、比較的簡単な測定で、精度よく寿命
判定できる。
As described above, according to the present invention, the life of a sealed lead-acid battery used in various environments and conditions where the use of a cycle, the use of a float, or an ambient temperature or a running distance is different is relatively improved. The life can be accurately determined by simple measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るパラメータの測定方法を示す説明
図である。
FIG. 1 is an explanatory diagram showing a parameter measuring method according to the present invention.

【図2】実施例1における使用日数に対する算出容量と
測定容量の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a calculated capacity and a measured capacity with respect to the number of days used in Example 1.

【図3】実施例1における使用期間に対する算出容量/
測定容量の関係を示すグラフである。
FIG. 3 shows a calculated capacity / use period with respect to a use period in the first embodiment.
It is a graph which shows the relationship of measured capacity.

【図4】実施例2における使用日数に対する算出容量と
測定容量の関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a calculated capacity and a measured capacity with respect to the number of days used in Example 2.

【図5】実施例2において(1)〜(3)式を用いた場
合の使用期間に対する算出容量/測定容量の関係を示す
グラフである。
FIG. 5 is a graph showing a relationship between a calculated capacity and a measured capacity with respect to a use period when the equations (1) to (3) are used in the second embodiment.

【図6】実施例2において(4)〜(6)式を用いた場
合の使用期間に対する算出容量/測定容量の関係を示す
グラフである。
FIG. 6 is a graph showing a relationship between a calculated capacity and a measured capacity with respect to a use period when the equations (4) to (6) are used in the second embodiment.

【図7】実施例における使用期間中の内部抵抗の変化を
示すグラフである。
FIG. 7 is a graph showing a change in internal resistance during a use period in the example.

【図8】実施例における使用期間中の正極板の抵抗の変
化を示すグラフである。
FIG. 8 is a graph showing a change in resistance of the positive electrode plate during use in the example.

【図9】実施例における使用期間中の正極板上下の電圧
の変化を示すグラフである。
FIG. 9 is a graph showing a change in voltage above and below the positive electrode plate during use in the example.

【図10】サイクル使用時の電池群に本発明を適用する
場合のパラメータの測定方法を示す説明図である。
FIG. 10 is an explanatory diagram showing a method of measuring parameters when the present invention is applied to a battery group when a cycle is used.

【図11】フロート使用時の電池群に本発明を適用する
場合のパラメータの測定方法を示す説明図である。
FIG. 11 is an explanatory diagram showing a method of measuring parameters when the present invention is applied to a battery group when using a float.

【符号の説明】[Explanation of symbols]

1 正極端子 2 負極端子 4 負極板 5、5’ 電圧線 6、6’ 電流線 DESCRIPTION OF SYMBOLS 1 Positive electrode terminal 2 Negative electrode terminal 4 Negative electrode plate 5, 5 'Voltage line 6, 6' Current line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 密閉形鉛蓄電池の寿命に到る期間中の容
量と充電状態における内部抵抗と極板上下間の抵抗との
関係を予め回帰式として求めておき、次に、前記電池と
同一電圧かつ同一容量の密閉形鉛蓄電池の使用状態にお
ける前記内部抵抗と前記極板上下間の抵抗とを測定し、
該測定値を前記回帰式に当てはめて寿命判定することを
特徴とする密閉形鉛蓄電池の寿命判定方法。
The relationship between the capacity of a sealed lead-acid battery over its life, the internal resistance in a charged state, and the resistance between the upper and lower electrodes is determined in advance as a regression equation. Measure the internal resistance and the resistance between the top and bottom of the electrode plate in the use state of the sealed lead-acid battery of the same voltage and the same capacity,
A method for determining the life of a sealed lead-acid battery, wherein the measured value is applied to the regression equation to determine the life.
【請求項2】 密閉形鉛蓄電池の寿命に到る期間中の容
量と充電状態における内部抵抗と極板上下間の抵抗と放
電開始から所定時間経過後の極板上下間の電圧との関係
を予め回帰式として求めておき、次に、前記電池と同一
電圧かつ同一容量の密閉形鉛蓄電池の使用状態における
前記内部抵抗と前記極板上下間の抵抗と前記電圧とを測
定し、該測定値を前記回帰式に当てはめて寿命判定する
ことを特徴とする密閉形鉛蓄電池の寿命判定方法。
2. The relationship between the capacity of a sealed lead-acid battery during its life, the internal resistance in a charged state, the resistance between the upper and lower electrodes, and the voltage between the upper and lower electrodes after a lapse of a predetermined time from the start of discharging. The internal resistance, the resistance between the top and bottom of the electrode plate, and the voltage in a use state of a sealed lead-acid battery having the same voltage and the same capacity as the battery are measured in advance as a regression equation. Is applied to the regression equation to determine the life of the sealed lead-acid battery.
JP10029392A 1998-02-12 1998-02-12 Method for judging life of sealed lead-acid battery Pending JPH11233162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10029392A JPH11233162A (en) 1998-02-12 1998-02-12 Method for judging life of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10029392A JPH11233162A (en) 1998-02-12 1998-02-12 Method for judging life of sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11233162A true JPH11233162A (en) 1999-08-27

Family

ID=12274880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10029392A Pending JPH11233162A (en) 1998-02-12 1998-02-12 Method for judging life of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11233162A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227335B2 (en) 2003-07-22 2007-06-05 Makita Corporation Method and apparatus for diagnosing the condition of a rechargeable battery
JP2008058278A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Internal state estimating device for secondary cell, internal state estimation method for secondary cell, program, and recording medium
CN105905591A (en) * 2016-04-15 2016-08-31 深圳市大华库仑科技有限公司 Battery loading and unloading system with tray, and method thereof
CN111896791A (en) * 2020-06-23 2020-11-06 超威电源集团有限公司 Plate grid voltage distribution testing device and method
CN112698211A (en) * 2020-12-16 2021-04-23 超威电源集团有限公司 Method for detecting capacity of single-chip polar plate of storage battery
WO2022244378A1 (en) * 2021-05-19 2022-11-24 東洋システム株式会社 Battery state determination method, and battery state determination apparatus
JP2022179391A (en) * 2021-05-19 2022-12-02 東洋システム株式会社 Battery status determination method and battery status determination device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227335B2 (en) 2003-07-22 2007-06-05 Makita Corporation Method and apparatus for diagnosing the condition of a rechargeable battery
JP2008058278A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Internal state estimating device for secondary cell, internal state estimation method for secondary cell, program, and recording medium
CN105905591A (en) * 2016-04-15 2016-08-31 深圳市大华库仑科技有限公司 Battery loading and unloading system with tray, and method thereof
CN105905591B (en) * 2016-04-15 2018-03-09 深圳市大华库仑科技有限公司 A kind of battery loading and unloading system and method with pallet
CN111896791A (en) * 2020-06-23 2020-11-06 超威电源集团有限公司 Plate grid voltage distribution testing device and method
CN112698211A (en) * 2020-12-16 2021-04-23 超威电源集团有限公司 Method for detecting capacity of single-chip polar plate of storage battery
CN112698211B (en) * 2020-12-16 2023-05-26 超威电源集团有限公司 Method for detecting capacity of single-chip polar plate of storage battery
WO2022244378A1 (en) * 2021-05-19 2022-11-24 東洋システム株式会社 Battery state determination method, and battery state determination apparatus
JP2022179391A (en) * 2021-05-19 2022-12-02 東洋システム株式会社 Battery status determination method and battery status determination device
JP2022178209A (en) * 2021-05-19 2022-12-02 東洋システム株式会社 Battery status determination method and battery status determination device

Similar Documents

Publication Publication Date Title
US4876513A (en) Dynamic state-of-charge indicator for a battery and method thereof
US6300763B1 (en) Method of calculating dynamic state-of-charge within a battery
Coleman et al. State-of-charge determination from EMF voltage estimation: Using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries
US9121909B2 (en) Method for estimating state-of-charge of lithium ion battery
JP5835761B2 (en) Battery capacity deterioration estimation apparatus and method
US7132832B2 (en) Self-diagnosis system for an energy storage device
CN102468521B (en) Method and apparatus for assessing battery state of health
CN102565710B (en) Method and apparatus for assessing battery state of health
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US6737831B2 (en) Method and apparatus using a circuit model to evaluate cell/battery parameters
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
TWI381182B (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
US20170123013A1 (en) Post-deterioration performance estimating apparatus and post-deterioration performance estimating method for energy storage device, and energy storage system
US8466685B2 (en) Method of estimation of the state of charge of a battery
US20160011274A1 (en) Battery life estimation method and battery life estimation apparatus
CN107991623A (en) It is a kind of to consider temperature and the battery ampere-hour integration SOC methods of estimation of degree of aging
EP2573859A1 (en) Value calculation device and value calculation method for secondary battery
Goud et al. An online method of estimating state of health of a Li-ion battery
CN104698385A (en) Cell state calculation apparatus and cell state calculation method
US7507497B2 (en) Method and apparatus for judging degradation of storage battery
KR101725514B1 (en) Diagnosis Method for State of Health of Lithium Secondary Battery
JP2012507018A (en) Method for determining the state of charge of a battery in the charge or discharge phase
KR20220034543A (en) Method for estimating state of charge of battery
JP3371588B2 (en) Remaining battery capacity display
EP4044322A1 (en) Estimation device, estimation method, and computer program

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees