JPS58190705A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPS58190705A
JPS58190705A JP7290382A JP7290382A JPS58190705A JP S58190705 A JPS58190705 A JP S58190705A JP 7290382 A JP7290382 A JP 7290382A JP 7290382 A JP7290382 A JP 7290382A JP S58190705 A JPS58190705 A JP S58190705A
Authority
JP
Japan
Prior art keywords
light
optical
optical fiber
amount
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7290382A
Other languages
Japanese (ja)
Inventor
Masataka Tokita
時田 正隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7290382A priority Critical patent/JPS58190705A/en
Publication of JPS58190705A publication Critical patent/JPS58190705A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To obtain an economical sensor in which the amount of displacement of an object is sensed by an optical sensor as the amount of change of light quantity reflected by the object and then transmitted through the optical fiber. CONSTITUTION:A constant quantity of light emitted from a light source 21 constituted by a light-emitting diode is applied to an optical fiber 22 and impinges upon an optical circulator 23. The light is then transmitted to an optical fiber 24 connected to the other side of the optical circulator 23 and is radiated from the end 24a of the optical fiber 24. The light is then changed into a parallel light beam through a magnifier lens 25 and impinges upon a reflecting plate 26 which is movable up and down as illustrated. The light reflected by the reflecting plate 26 again comes into the lens 25 and is converged to be applied to the optical fiber 24. This light is transmitted to the optical circulator 23 and is deflected as indicated by an arrow E to come into a photo sensing unit 27 provided at the output end of the sensor. The photo sensing unit 27 converts the quantity of the reflected light into quantity of electricity which is displayed on a photo meter 28.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は光量変化を利用して変位量を検出する光センサ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an optical sensor that detects the amount of displacement using changes in the amount of light.

ト (、a)従来技術と問題点 機構的な運動の位置について広く種々の測定、検出装置
が使用されているが、特に遠隔測定、表示、制御の場合
従来は電気的な測定、伝達を利用することが一般的であ
る。しかし電気回路による伝達に屡々配線途中において
誘導障害、ノイズを給して影響されることが多い。例え
ば回路中で開閉されるスイッチ等も大きなノイズの原因
となる。
(a) Prior art and problems A wide variety of measuring and detecting devices are used to determine the position of mechanical movement, but in the case of remote measurement, display, and control, electrical measurement and transmission have traditionally been used. It is common to do so. However, transmission through electrical circuits is often affected by inductive disturbances and noise in the wiring. For example, switches that are opened and closed in a circuit can also cause large noise.

−カデジタル化された電気信号は一層これらのノイズに
対して敏感となるため電気的伝達には限度かある。
- There is a limit to electrical transmission since digitized electrical signals are more sensitive to these noises.

第1図は油圧シリンダのストローク位置検出器の取付け
の構造図である。油圧シリンダ1から出入するピストン
棒2に接触回転するロークリエンコーダ3によりデジタ
ル信号を送出する。信号は線路4を介して離れた位置の
デコーダ5に伝えられる。線路4には一般にはシールド
線等を使用して外部からの誘導、ノイズの混入されるこ
とを極力防止するように計っている。尚ロータリエンコ
ーダにかえてアナログ方式のポテンシオメータも同様に
広く使用される。これらの方法はノイズ条件の比較的よ
い室内に配置される工作機械等の機器において、位置決
め装置に広く使用されるが、例えば車両に搭載される各
種の計測装置等にあっては上記のごとき信号発生手段に
よると車稠等ではエンジンの点火栓の放電ノイズのため
正確な信号を捕えることは屡々困難となる。
FIG. 1 is a structural diagram of the installation of a stroke position detector of a hydraulic cylinder. A digital signal is sent out by a rotary encoder 3 that rotates in contact with a piston rod 2 moving in and out of a hydraulic cylinder 1. The signal is transmitted via line 4 to decoder 5 at a remote location. Generally, a shielded wire or the like is used for the line 4 in order to prevent induction and noise from entering as much as possible from the outside. Note that analog potentiometers are also widely used instead of rotary encoders. These methods are widely used for positioning devices in equipment such as machine tools that are placed indoors with relatively good noise conditions. According to the generating means, it is often difficult to capture an accurate signal in a vehicle cabin or the like due to the discharge noise of the engine's spark plug.

第2図は従来の光信号を利用した位置検出装置の原理図
である。矢印CD方向に移動する軸11上に反射板12
を取り付け、−刃固定部には多数の光ファイバ13を並
列して配設し、この一端を反射板12に対向させるとと
もに光ファイバ13の他方の端部にビームスプリンター
14を夫々取り付け、光を総てのビームスプリッタ−1
4の上方から入射する。軸11が移動して反射板12が
何れかの光ファイバ13の直下に来た場合光は反射され
てビームスプリンター14に再帰し、この反射光はビー
ムスプリンター14のハーフミラ−面14aで偏光され
る。このようにして反射光のみられる光ファイバ13を
検知することにより反射板12の、即ち軸の移動位置が
検出される。この方法は検出す段きする位置に夫々の光
ファイバ、ビームスプリンター等を多数配列するため高
価になり、且つ精度上にも限度がある。
FIG. 2 is a principle diagram of a conventional position detection device using optical signals. A reflector 12 is placed on the shaft 11 moving in the direction of arrow CD.
- A large number of optical fibers 13 are arranged in parallel on the blade fixing part, one end of which faces the reflection plate 12, and a beam splinter 14 is attached to the other end of the optical fiber 13 to emit light. All beam splitters-1
4 is incident from above. When the shaft 11 moves and the reflector 12 comes directly under one of the optical fibers 13, the light is reflected and returns to the beam splinter 14, and this reflected light is polarized by the half mirror surface 14a of the beam splinter 14. . By detecting the optical fiber 13 in which the reflected light is seen in this manner, the moving position of the reflecting plate 12, that is, the shaft is detected. This method is expensive because a large number of optical fibers, beam splinters, etc. are arranged at each detection position, and there is also a limit in terms of accuracy.

(7)発明の目的 本発明は信号を光信号として光ファイバにより検出し、
伝送を可能ならしめ、且つこれを経済的に実現するもの
である。
(7) Purpose of the invention The present invention detects a signal as an optical signal using an optical fiber,
The purpose is to make transmission possible and realize this economically.

部に導く光導波路と、該被測定部に出射せしめられた該
光の反射光を該光導波路に再入射せしめ、該入射せしめ
られた反射光を分岐する光回路と、該分岐された反射光
を電気信号に変換する光電変換素子とよりなり、該被測
定部の変位に基づく反射光量の変化により変位量をヰ★
出する光センサにより上記目的を達成するものである。
an optical waveguide that guides the light emitted to the part to be measured, an optical circuit that makes the reflected light of the light emitted to the part to be measured re-enter the optical waveguide and branches the reflected light that has entered the part, and the branched reflected light. It consists of a photoelectric conversion element that converts the amount of light into an electrical signal, and changes the amount of displacement based on the amount of reflected light based on the displacement of the part to be measured.
The above objective is achieved by a light sensor that emits light.

C2 (1)発明の実施例 第3図は本発明に係る光センサの実施例の構成図である
。発光ダイオードからなる光源21の発光が一定光量と
なるようにして光ファイバ22に入射されて伝送され、
光サーキュレータ23に入る。光サーキュレータ23に
入射された入射光は光サーキュレータ23の他端に接続
される光ファイバ24に伝えられる。この伝送光は光フ
ァイバ24の末端24aで放射され、レンズ25によっ
て拡大された平行光として反射板26に到達する。
C2 (1) Embodiment of the invention FIG. 3 is a block diagram of an embodiment of the optical sensor according to the invention. The light emitted from a light source 21 consisting of a light emitting diode is incident on an optical fiber 22 and transmitted in a constant amount of light,
It enters the optical circulator 23. The incident light incident on the optical circulator 23 is transmitted to the optical fiber 24 connected to the other end of the optical circulator 23. This transmitted light is emitted from the end 24a of the optical fiber 24, and reaches the reflection plate 26 as parallel light that is expanded by the lens 25.

反射板26は矢印F方向に示すよう入射光とは垂直方向
に移動し得る構造である。反射板26による反射光は再
びレンズ25に入り、築光されて光ファイバ24に入°
射される。この入射光は光サーキュレータ23に入り、
矢印E方向に転しられて出力端醋けられる光検出器27
に入る。ここにおいて反射光量は電気量に変換され、出
力計28によって光量は電気量として出力計28に指示
される。
The reflecting plate 26 has a structure that can move in a direction perpendicular to the incident light as shown in the direction of arrow F. The light reflected by the reflection plate 26 enters the lens 25 again, forms a light beam, and enters the optical fiber 24.
shot. This incident light enters the optical circulator 23,
Photodetector 27 which is rotated in the direction of arrow E and is placed at the output end.
to go into. Here, the amount of reflected light is converted into an amount of electricity, and the amount of light is indicated to the output meter 28 as an amount of electricity.

第4図は反射板26の平面図である。点線31は第3図
のレンス25によって拡大された平行光の反射領域を示
す。反射板′?6には垂直に三角形の反射面30が金又
はアルミ蒸着により形成されこの面以外は反射を抑止す
るため黒色皮膜がかけられている。このため反射板26
のF方向の移動に伴い、点線に示すの反射領域31が相
対的に上下し、このため第3図説明の反射板26の上下
は反射光量の変化として現れる。
FIG. 4 is a plan view of the reflection plate 26. A dotted line 31 indicates a reflection area of parallel light magnified by the lens 25 in FIG. a reflector'? 6 has a vertically triangular reflective surface 30 formed by vapor deposition of gold or aluminum, and other surfaces than this surface are coated with a black film to suppress reflection. Therefore, the reflector 26
With the movement in the F direction, the reflection area 31 shown by the dotted line moves up and down relatively, and therefore the up and down of the reflection plate 26 illustrated in FIG. 3 appears as a change in the amount of reflected light.

第5図は光センサの特性図である。反射板26のF方向
への変位量χに対して反射光量Prの変化は近似的に直
線に示される。
FIG. 5 is a characteristic diagram of the optical sensor. The change in the amount of reflected light Pr with respect to the amount of displacement χ of the reflection plate 26 in the F direction is approximately shown as a straight line.

第6図は本発明に係る他の反射板の実施例における平面
図である。反射板36の基本的構造は第4図における説
明の反射板と同様である。特に反射面40は曲線輪廓を
持った近似三角形をしている。点線で示す反射領域41
の上下の移動による光量は非直線性を示す。本実施例の
ごとく反射面の形状は更に反射特性を変形させてその利
用の目的に応じて選択設計し使用する。
FIG. 6 is a plan view of another embodiment of a reflecting plate according to the present invention. The basic structure of the reflector 36 is the same as that of the reflector explained in FIG. In particular, the reflective surface 40 has an approximate triangular shape with a curved contour. Reflection area 41 indicated by dotted line
The amount of light due to the vertical movement of shows non-linearity. As in the present embodiment, the shape of the reflecting surface is further modified in its reflection characteristics, and is selectively designed and used depending on the purpose of its use.

本発明において光サーキュレータの光端子部の光ファイ
バ番接続したが、光導波路として光ファイバは最小限光
サーキュレータと被測定部間に配置されればよいことで
あり、光サーキュレータの他の2端には直接に光源と光
電変換子が設けられてよいことであ。
In the present invention, the optical fiber number is connected to the optical terminal part of the optical circulator, but the optical fiber as an optical waveguide only needs to be placed between the optical circulator and the part to be measured, and the other two ends of the optical circulator are connected. This means that a light source and a photoelectric converter may be directly provided.

父上記における光サーキュレータは反射光の偏光子、或
いは光方向性結合器等でもよく、何れも光IC回路基板
に形成される光導波路パターンによっても実現し得る。
The optical circulator mentioned above may be a polarizer for reflected light, an optical directional coupler, or the like, and either of these can be realized by an optical waveguide pattern formed on an optical IC circuit board.

この場合光源への再帰光を防止する光アイソレータ等が
設けられる。
In this case, an optical isolator or the like is provided to prevent light from returning to the light source.

本実施例では光源に発光ダイオードを使用したが、レー
ザダイオード等も使用可能であり、光検本発明によれば
機械的変位量を光を利用して電気量に変換し測定するこ
とが可能となり、又変換の関数的関係を任意に設定する
ことも出来る。機械的変位はその他回転、力の測定等広
く応用拡大し得る所である。又光利用のため外界からの
誘導やノイズ等に対して影響されることがないので安定
である。以上の特性を利用し各種のフィートハック制御
にも応用し得る。
In this example, a light emitting diode was used as the light source, but a laser diode or the like can also be used.According to the present invention, it is possible to convert mechanical displacement into an electrical quantity using light and measure it. , it is also possible to arbitrarily set the functional relationship of the transformation. Mechanical displacement can be expanded to a wide range of other applications such as rotation and force measurement. Furthermore, since it uses light, it is stable because it is not affected by induction or noise from the outside world. Utilizing the above characteristics, it can also be applied to various foot hack controls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は油圧シリンダのストローク位置検出器の取付け
の構造図、第2図は従来の光信号を利用した位置検出装
置の原理図、第3図は本発明に係る光センサの実施例の
構成図、第4図は本発明に係る反射板の平面図、第5図
は本発明に係る光センサの特性図、第6図は本発明に係
る他の反射板の平面図である。 図ニオいて21は光源、22.24は光ファイバ、23
は光サーキュレータ、25はレンズ、26は反射板27
は光検出器、28は出力針である。
Fig. 1 is a structural diagram of the installation of a stroke position detector of a hydraulic cylinder, Fig. 2 is a principle diagram of a conventional position detection device using optical signals, and Fig. 3 is a configuration of an embodiment of an optical sensor according to the present invention. 4 is a plan view of a reflector according to the present invention, FIG. 5 is a characteristic diagram of an optical sensor according to the present invention, and FIG. 6 is a plan view of another reflector according to the present invention. In the figure, 21 is a light source, 22.24 is an optical fiber, 23
is an optical circulator, 25 is a lens, 26 is a reflector 27
is a photodetector, and 28 is an output needle.

Claims (1)

【特許請求の範囲】[Claims] 光源と、該光源からの出射光を被測定部に導く光導波路
と、該被測定部に出射せしめられた該光の反射光を該光
導波路に再入射せしめ、該入射せしめられた反射光を分
岐する光回路と、該分岐された反射光を電気信号に変換
する光電変換素子とよりなり、該被測定部の変位に基づ
く反射光量の変化により変位量を検出する光センサ。
A light source, an optical waveguide that guides the light emitted from the light source to a part to be measured, and a reflected light of the light emitted to the part to be measured that makes the reflected light enter the optical waveguide again, and the reflected light that was made to enter the part. An optical sensor that includes a branching optical circuit and a photoelectric conversion element that converts the branched reflected light into an electrical signal, and detects the amount of displacement based on a change in the amount of reflected light based on the displacement of the measured part.
JP7290382A 1982-04-30 1982-04-30 Optical sensor Pending JPS58190705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7290382A JPS58190705A (en) 1982-04-30 1982-04-30 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7290382A JPS58190705A (en) 1982-04-30 1982-04-30 Optical sensor

Publications (1)

Publication Number Publication Date
JPS58190705A true JPS58190705A (en) 1983-11-07

Family

ID=13502766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7290382A Pending JPS58190705A (en) 1982-04-30 1982-04-30 Optical sensor

Country Status (1)

Country Link
JP (1) JPS58190705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658603A1 (en) * 1990-02-20 1991-08-23 Dassault Electronique Method and device for remote acquisition of physical parameters
JPH0390212U (en) * 1989-12-29 1991-09-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390212U (en) * 1989-12-29 1991-09-13
FR2658603A1 (en) * 1990-02-20 1991-08-23 Dassault Electronique Method and device for remote acquisition of physical parameters

Similar Documents

Publication Publication Date Title
US4717255A (en) Device for measuring small distances
US4744661A (en) Device for measuring small distances
JPH06509415A (en) probe
US4670649A (en) Optical transducer and measuring device
US20120033710A1 (en) Optical temperature sensor
US2437608A (en) Coaxial optical system for displacement gauges
US3552857A (en) Optical device for the determination of the spacing of an object and its angular deviation relative to an initial position
US6535290B1 (en) Optical position measuring device with a beam splitter
JPS58190705A (en) Optical sensor
US5187545A (en) Integrated optical position measuring device and method with reference and measurement signals
JP4377072B2 (en) 3D measurement module
CN1563883A (en) Fiber glass motion transducer
KR100326170B1 (en) Measuring device for waveguides pitch of optical device
US6346987B1 (en) Micro-optical position indicator
SU1659701A1 (en) Optoelectronic device to orient object towards source of radiation
KR930008564B1 (en) Angle measuring divice
US4861980A (en) Optical sensor having stationary co-terminus ends of the input and output optical fibres
CN1257383C (en) High precision two-dimensional narrow angle measuring device
RU2164662C2 (en) Optical displacement transducer
Frank et al. General purpose position sensor
RU2085836C1 (en) Optical device which measures distance from surface to initial point
JPS58165009A (en) Position sensor of optical fiber
SU1196686A1 (en) System for object angular displacement compensation of double-reflecting interferometric displacement meters
SU1543308A1 (en) Device for measuring absolute coefficients of mirror reflection
JPS59176637A (en) Temperature sensor