JPS58189557A - Predicting method of life of metallic material - Google Patents

Predicting method of life of metallic material

Info

Publication number
JPS58189557A
JPS58189557A JP57070437A JP7043782A JPS58189557A JP S58189557 A JPS58189557 A JP S58189557A JP 57070437 A JP57070437 A JP 57070437A JP 7043782 A JP7043782 A JP 7043782A JP S58189557 A JPS58189557 A JP S58189557A
Authority
JP
Japan
Prior art keywords
creep
life
damage
fatigue
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57070437A
Other languages
Japanese (ja)
Other versions
JPH0142381B2 (en
Inventor
Moritaka Shoji
庄司 守孝
Yusaku Nakagawa
雄策 中川
Hiroshi Soeno
添野 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57070437A priority Critical patent/JPS58189557A/en
Publication of JPS58189557A publication Critical patent/JPS58189557A/en
Publication of JPH0142381B2 publication Critical patent/JPH0142381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To predict the life in case of overlapping the fatigue and creep of a metallic material receiving a load under the environment of a high temperature, by computing the consumption ratio of the life from the hardness and electric resistance. CONSTITUTION:The consumption ratio of life of a fatigue degree is computed basing on a curve of the hardness-fatigue degree life consumption ratio by measuring Vickers hardness of a metallic material receiving a load under the environment of a high temperature and the damage ratio of the fatigue degree is determined. In the same way, the damage degree of a creep is determined basing on the measured electric resistance. These both damage ratios are conformed with an already known damages curve on the occasion of overlapping the fatigue with the creep. The life of the metallic material overlapping the fatigue and creep by receiving the load under the environment of the high temperature, is presumed by this detected damage.

Description

【発明の詳細な説明】 本発明は金属材料の寿命予知方法に関する。竹に、硬さ
の測定と電気抵抗法とを併用して、高温環境下で荷Ik
受ける金属材料の寿命會予知する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for predicting the lifespan of metal materials. Using a combination of hardness measurement and electrical resistance method, bamboo was subjected to a load Ik in a high temperature environment.
This invention relates to a method for predicting the life expectancy of metal materials.

従来、室温において疲労させた材料の損傷率r硬さの#
1足によって診断する方法は知ら扛ている。
Conventionally, damage rate r hardness # of materials fatigued at room temperature
I don't know how to diagnose by just one foot.

しかし、^m槙境下で使用さjLる蒸気タービンや原子
力発電プラントの部材の如き金属材料についてFi寿匍
予知方法はない。%に、このような高温虜境下での金属
材料は、疲労のみならずクリープも受ける。促米、この
ようにクリープと疲労1−鰭に受けるm曾の寿命予知方
法はなかった。
However, there is no method for predicting the Fi life of metal materials such as parts of steam turbines and nuclear power plants that are used under extreme conditions. %, metal materials under such high temperature conditions are subject not only to fatigue but also to creep. Unfortunately, there was no way to predict the lifespan of the fins due to creep and fatigue.

11C拳悄に―与、本発明省らは全島材料の破壊過根が
結Ii&叢形甚びに炭化物の凌楽・粗大化に晶くもので
あり、ビッカース硬さは結晶変形に敏感であり、−万電
気抵抗法は灰化物の凝集・粗大化並ひにマトリクス成分
の変化に敏感である拳に着目し、クリープ・鋏労相互作
用會受けた金属材料の構造変化を硬さの測定並びに電気
抵抗法により計価する拳により高温m境下での金属材料
の余寿命推定法する方法上提供せんとして本発明に飼達
したのでおる。
11C - In addition to this, the Ministry of Invention and others found that the fracture root of the entire island material is crystallized by condensation and plexus formation, as well as by the coarsening and coarsening of carbides, and the Vickers hardness is sensitive to crystal deformation. -The electric resistance method focuses on the fist, which is sensitive to agglomeration and coarsening of ash, as well as changes in matrix components, and uses the hardness measurement and electrical The present invention was developed in order to provide a method for estimating the remaining life of metal materials under high temperature conditions using resistance method measurements.

本発明は、高温環境下で荷重【受ける金撫材料のビッカ
ース硬さと電気抵抗とt測定して得たパラメータを用い
て寿命を予知するものである。
The present invention predicts the service life using parameters obtained by measuring the Vickers hardness, electrical resistance, and t of a metal material subjected to load in a high-temperature environment.

この場合、ビッカース硬さ【#J定して疲労被害ケ検出
し、電気抵抗tl−用いてクリープ被害を検出する◆に
よって、疲労とクリープとがi量した場合の寿命倉予知
できる。更に、既知のビッカース硬さと疲労寿命消費率
との関係に基いて鋏労被畜奮検出し、一方既知の電気抵
抗とクリープ変形量との関係に基いてクリープ変形置針
推定し、該推建りリープ震形重から既知の応力とクリー
プとの関s、’i示すクリープ曲*t−用いて加えらj
していた応力を推定すると共に、クリープ慣S率ケ推定
し、!51j記ビッカ ス硬さから推定した疲労損傷率
と前記鬼気抵抗から推定し次クリープ損傷率とを既知Q
疲労とクリープとが車量した場合の被害曲縁に溝付させ
る事によって慣Sヶ検出し、こ′nにより余寿命推定法
知 以下、本発明につき具体的に睨明する。
In this case, fatigue damage is detected by determining the Vickers hardness [#J, and creep damage is detected by using the electric resistance tl-. From ◆, it is possible to predict the life span when the amount of fatigue and creep is i. Furthermore, the scissor strain is detected based on the relationship between the known Vickers hardness and the fatigue life consumption rate, and the creep deformation needle is estimated based on the known relationship between the electrical resistance and the amount of creep deformation. The relationship between the stress known from the leap seismic weight and the creep s, 'i is shown by the creep curve * t - added using j
In addition to estimating the stress that was occurring, we also estimated the creep inertia rate, and! 51j, the fatigue damage rate estimated from the Vickers hardness and the next creep damage rate estimated from the above-mentioned resistance are known Q.
A method for detecting fatigue and creep by grooving the damaged curved edge of the vehicle and estimating the remaining life based on this will be described in detail below.

初めに疲労被害の検出法について述べる。ヒツg−−ス
硬さは結晶内部の転位ぞ度や微視的格子歪と関係してお
り焼なまし状態では極めて小さく、塑性度形ケ受けて七
扛らの格子欠陥が増大するとm丁。疲労変形の場合も同
様で、妓労遇根中のビッカース硬さは例えば焼なまし材
の場合には第1図の1ポに増大する。図にtま応力の太
き窟に応じて3段階で示したが、応力振巾が市いJ哨(
σ、>σ2〉σS)で増加運社も早くなっている。しか
しビッカース硬さ倉破断繰返し数Nfに対する応力繰返
し数Nの比N、/Nfとの相関で児て与ると、第2図の
如く斜線を施す程度のはらつさは南するが、tlは1本
の縁で衆わす拳ができる。
First, we will describe the method for detecting fatigue damage. The hardness is related to the degree of dislocation inside the crystal and the microscopic lattice strain, and is extremely small in the annealed state. . The same is true for fatigue deformation, and the Vickers hardness of the material under stress increases, for example, to 1 point in FIG. 1 in the case of annealed material. The figure shows three levels depending on the thickness of the stress, but the stress amplitude is not large enough.
σ, >σ2〉σS), the increase in fortunes is also faster. However, if we consider the correlation between the Vickers hardness and the stress repetition rate Nf to the stress repetition rate Nf, /Nf, the sharpness of the diagonal lines as shown in Fig. 2 is south, but tl is A fist can be formed with one edge.

一方、予2Ju工材つまり予め層性変形を加えて硬さ紮
増大させておい友材料を疲労させるとビッカース硬さは
第3図の如く上記N/N[に対して単調に減少する。従
って、檀々の熱処理条件や加工条件によって@2.3図
の如きビッカース硬さ変化のマスター曲艇ケ作成して&
fftf応力繰返し数Nケ配録しておいてビッカース硬
さを測定する◆によって余寿命Nrを推定できる。或い
は、I&ij定までの繰返し数が不明でもビッカース硬
さt−2回針側すれはその間の繰返し数もわかるので、
これによってt余寿命ケ推定できる。
On the other hand, if the pre-2Ju work material, that is, the hardness is increased by applying layered deformation in advance, and the material is fatigued, the Vickers hardness decreases monotonically with respect to the above N/N as shown in FIG. Therefore, depending on the heat treatment and processing conditions of each boat, we created a master curved boat with Vickers hardness as shown in Figure 2.3.
The remaining life Nr can be estimated by ◆, which records the number of fftf stress repetitions and measures the Vickers hardness. Alternatively, even if you do not know the number of repetitions until I & ij are constant, you can also know the number of repetitions between Vickers hardness t - 2 needle side slippage,
With this, the remaining life t can be estimated.

wJ4図にはこの様な手法に暴く余寿命推定法を示す。Figure wJ4 shows a method for estimating remaining life that deviates from this method.

図示の例は焼なまし材でのマスター曲at用いたもので
ある。運転開#I恢繰返し数N、がわρ・つている時点
でのビッカース硬さがHマ、であれば、ピンカース硬さ
変化のマスター曲線によりその時の鋏労寿砧(P賛率φ
f+ (= N+/ N i )がわかる。よって、余
jQliNr=Nf−N、はで与えらf’L、&o−返
し畝N1が不明な場合でもビッカース硬さケ2回計測し
て余寿命音知る事ができる。つまり、ビッカース硬さH
vlO時点の後、更に繰返し数N、=N、+Nt″″C
彼労させて該時点のビ疲労−ス硬さ)ivtt”測定す
lrLは、その時のφhが氷まり、且つその闇の繰返し
数はNである拳がわかっているので、傘寿fi6Nit
r1次式で与えらfLる。
The illustrated example uses master tune AT for annealed material. If the Vickers hardness at the time of opening #I is N, and the Vickers hardness at the point when the force is ρ is H, then the master curve of the change in Pinkers hardness can be used to calculate the scissor labor at that time (P praise φ).
We understand f+ (= N+/N i ). Therefore, even if the remainder jQliNr=Nf-N, f'L, &o-return ridge N1 is unknown, the remaining life can be determined by measuring the Vickers hardness twice. In other words, Vickers hardness H
After the vlO time point, the number of repetitions N, = N, +Nt″″C
Let him work hard and measure the bi-fatigue hardness at that point) ivtt"lrL, since we know that φh at that time is frozen and the number of repetitions of darkness is N, so the umbrella life is fi6Nit
r is given by a linear equation.

第2.3図の如きマスター曲線を腐食環境、高温環境な
どの夾磯壊墳下で作成しておけば該環境十での構造部材
の寿命も上記と全く同様にして予知できる。
If a master curve as shown in Fig. 2.3 is created under a collapsed tomb in a corrosive environment, high temperature environment, etc., the life of a structural member in such an environment can be predicted in exactly the same manner as above.

次に、クリープに基つく損傷による寿命の予知方法につ
いて述べる。
Next, we will discuss a method for predicting service life due to damage based on creep.

クリープ中の電気抵抗は焼なまし材の場合には第5図の
様に低下する21図には応力の大きさに応じて3段階で
示したが、8荷応力が高い順(σI2σ、2σ、ンで減
少速度も早くなる。しかし、電気抵抗をクリープによっ
て破断に至るまでの時間l#に対するクリープ時間tの
比1/ 1.との相関でみると、謝6図に示した様に斜
!Iを施して示すdらつきの範囲内ではば1本の線で表
わす拳ができる。
The electrical resistance during creep decreases in the case of annealed materials as shown in Figure 5. Figure 21 shows three levels according to the magnitude of stress, and the order of increasing stress (σI2σ, 2σ However, when looking at the correlation between the electrical resistance and the ratio of the creep time t to the time l# until rupture due to creep, the slope decreases as shown in Figure 6. A fist represented by a single line can be formed within the range of wobble shown by applying !I.

上記に示し皮様にず用ff1度で測定される抵抗率変化
は炭化物反応に依存している。したがって電気抵抗法に
炭化物反応及び十nに伴なう機械的性質ケ検出するのV
C,有効である。クリープ伸ひの小さいWIJ1〜2次
クリーグ領り内では炭化物反応はそ扛#にど促進さCな
いが、第3次クリープ域においては十分析出が促進され
る。そnは界(3)工事ルキーゲ減少させるため小さな
炭化物がより大きな炭化物に食わnる歇来・粗大化机象
やMs C” MlsC6の様な炭化物の組成変化現象
が起る参【意味している。
The resistivity change shown above and measured at ff1 degree for leathery dust depends on the carbide reaction. Therefore, the electrical resistance method detects the carbide reaction and the mechanical properties associated with the V.
C. Valid. In the WIJ1 to 2nd Krieg regions where creep elongation is small, the carbide reaction is not promoted at all, but in the 3rd creep region, precipitation is promoted to a large extent. (3) In order to reduce construction work, a phenomenon of gradual and coarsening in which small carbides are eaten by larger carbides and a phenomenon of composition change of carbides such as MsC" MlsC6 occurs. There is.

炭化物の分布状態や形状は鋼の*gLや靭性音訳める大
!!な要因でろって、使用中における炭化物の形状変化
に汗なう材料の機械的性質の劣化が電気抵抗法によって
診断できる。
The distribution state and shape of carbides can be interpreted as the *gL and toughness of steel! ! Deterioration of the mechanical properties of materials due to changes in the shape of carbides during use can be diagnosed by the electrical resistance method.

炭化物の&集・粗大化とクリープ変形蓋との+b」にF
i第7図に示す様な関係がある。この場合クリ−7変形
量は加熱温度、時間、負荷応力がそnそf′L^く、或
いは長くなnは殆んど大きくなるものでおる。従って、
電気抵抗を測定する事によって縦化物反応が求めら扛る
わけでめって、これに基き、クリープのマスター曲4!
i!ケ予め作成しておいた上でクリープ時間【音記録(
7、改めて電気抵抗音測定する拳によって余寿命tr 
f推定できる。クリープ時間tが不明な場合には2回鵞
気抵抗を測短し、両測定間の時間を知っておけσ余寿命
【。
+b of carbide & agglomeration/coarsening and creep deformation lid F
There is a relationship as shown in Figure 7. In this case, the amount of deformation of the Cree-7 becomes larger as the heating temperature, time, and applied stress become smaller (f'L^) or longer (n). Therefore,
By measuring electrical resistance, it is possible to determine the vertical reaction, and based on this, Creep's master song 4!
i! Creep time [sound recording (
7. Remaining lifespan tr by measuring electric resistance sound again with fist
f can be estimated. If the creep time t is unknown, measure the resistance twice and know the time between both measurements to find out the remaining life σ.

ケ推定できる。It can be estimated.

この手法に従う余寿命推足法を第8図にボす。The remaining life estimation method according to this method is shown in Figure 8.

運転開始後【1時間での電気抵抗がP、でろnば、鬼気
抵抗とクリープ時間比の関係のマスター曲線(a)から
クリープ時間比が求筐る。このクリープ時tWJ比ケ予
め侍ておいた実機と同じ温度下で得ら71 fc也々の
応力にネーける寛気抵抗忙表わすりIJ −グ曲線(b
)に通用1〜、この電気抵抗P、とクリープ時間を箇と
の交点から応力全推定する1 この様にして侍らnた応
力がσ!であt′L、は、余寿命t1は、【。
If the electrical resistance at 1 hour after the start of operation is P, then the creep time ratio can be calculated from the master curve (a) of the relationship between the resistance and the creep time ratio. The IJ-g curve (b
), the total stress is estimated from the intersection of this electric resistance P and the creep time 1. In this way, the stress σ! So, t'L, the remaining life t1 is [.

= 1.−1.で与えらnる。= 1. -1. It is given by n.

運転時間t1が不明の場合には上記の様な測定の後【時
間使用後に同様な測定を行なう。を時閣倣Q)電気抵抗
かP、で、クリープ時間比が1./1.と求まった場合
、第8図のグラフ(b)に破線で示し九曲線の様に電気
抵抗の貧化傾向が一玖するクリープ曲線を推定して、電
気抵抗がP、0時の運転時間t!と、応力σ、とσ宜の
内挿から応力σ′を推定し、こ扛に裏って余角命’v”
t ’ t’ = It  L@にて求める拳ができる
If the operating time t1 is unknown, perform the same measurement after the above-mentioned measurement. Q) If the electrical resistance is P, and the creep time ratio is 1. /1. If this is determined, a creep curve in which the electrical resistance tends to become poorer for a while as shown by the broken line in graph (b) of Figure 8 is estimated, and the operating time t when the electrical resistance is P and 0 is estimated. ! Then, the stress σ' is estimated from the interpolation of the stress σ, and the stress σ, and the complementary angle 'v'
The desired fist is made with t't' = It L@.

以上、^温疲労とクリープとの場合を各々について説明
したが、次に渦電疲労とクリープとが1畳した場合の余
寿命診断について説明する。この時の+順はtjpJ9
図に示す。クリープ被害は鬼気抵抗により検出し、疲労
被11は硬さの測定により検出するものとする。クリー
プ**については前述しまた通り1す第9図(a)のマ
スター曲線によりクリープ時量比r求め、このクリープ
時間比に基き同図(b)より余#命t、を求め、crt
によってφC=L/LtOr釆める1)一方、ビッカー
ス硬さHマにより同図(C)に示すマスター曲線を用い
て疲労被害に対する余寿命Nrケ求める。これによって
寿命消費率φf=N/N’fヶ求める双方の4命消費率
φC9φl得次段階で予め爽験呈で求めておいた疲労と
クリ−1との11畳下にふ・げる被害曲縁に両刃の1[
(r適用させ、全体の被筈倉検出して余寿命會推定する
。第9図(d)がその被害曲線會示すと共に両方の寿命
消費率φC1φtの通用を示す。
The cases of thermal fatigue and creep have been explained above, and next, the remaining life diagnosis when eddy electric fatigue and creep are equal to 1 tatami will be explained. The + order at this time is tjpJ9
As shown in the figure. Creep damage is detected by resistance, and fatigue damage 11 is detected by measuring hardness. As for creep **, as described above, calculate the creep time ratio r using the master curve in Figure 9 (a), calculate the remaining life t from Figure 9 (b) based on this creep time ratio, and calculate crt
φC=L/LtOr.1) On the other hand, the remaining life Nr against fatigue damage is determined by Vickers hardness H using the master curve shown in the same figure (C). As a result, the life consumption rate φf=N/N'f is obtained.The 4 life consumption rate φC9φl of both parties is obtained.In the next step, the fatigue and crease 1, which were determined in advance by the refreshing test, will be reduced to 11 tatami. Double-edged 1 [
(By applying r, the entire expected storage area is detected and the remaining life is estimated. FIG. 9(d) shows the damage curve and shows the application of both life consumption rates φC1φt.

この鮫後の操作つまり被害面#Mを用いて寿命を推定す
る方法の畦細會第1θ図を用いて説明する。
The method of estimating lifespan using this post-shark operation, ie, damage surface #M, will be explained using the detailed diagram 1θ.

運転開始後運転時間【及び繰返し数N音記録しておく。After starting operation, record the operating time and the number of repetitions.

定期点検時にピンカース硬さ)IVと電気抵抗Pと會測
矩してこれらの値力・ら谷々疲労被害、クリープ板前に
基く被書度φ1.φck推定する。
At the time of periodic inspection, the Pinkers hardness (IV) and electrical resistance P are measured, and these values are calculated based on the fatigue damage and the degree of writtenness φ1. Estimate φck.

に1では上記説明し友通りである。次に、各仮沓度φt
、φcffi被害曲婦上にプロットする。即ち(Di=
m’、φ(: In”とすrL[、第10図上の点n1
が被害点となる。原点tと被害点mと紫Il#で幀ひ、
史に被害曲縁1で延長して被害面−との交点knとする
。tからmに至るに景した時間はt。
In Part 1, the above explanation is correct. Next, each tentative degree φt
, φcffi is plotted on the victim. That is, (Di=
m', φ(: In" and rL[, point n1 on Fig. 10
becomes the damage point. Find the origin t, the damage point m, and the purple Il#,
The damage curve edge 1 is extended to the history and the intersection with the damage surface - is defined as kn. The time taken from t to m is t.

繰返し数はNでおるので、余寿命は t 、 = t−17はNr=N□ 1m                1 mと表わせ
る。
Since the number of repetitions is N, the remaining life is t, and = t-17 can be expressed as Nr = N□ 1m 1 m.

運転開始からの時間tや繰返し数Nが不明の場合には更
に運転を継続して次の定期点検時にビッカース硬δHV
と電気抵抗Pとt測定して各々2つのデータを待ておく
と共に両足期点慣関の運転時間【及び繰返し数Nt紀鍮
する拳によって余寿命會京める◆ができる。第101上
で2回目の点検時における被害点1−0とし、1回目の
被害点mとを結ぶ@線と被害曲線との交点(nとすると
この場合の傘寿ffiは L’ = Lroo    またu N r’ = N
 mo−nl Om O となる。
If the time t from the start of operation or the number of repetitions N is unknown, continue operation and check the Vickers hardness δHV at the next periodic inspection.
By measuring the electric resistance P and t and waiting for two data respectively, the remaining life can be determined by measuring the operating time of both feet and the number of repetitions Nt. Let the damage point at the time of the second inspection be 1-0 on No. 101, and the intersection of the @ line connecting the first damage point m with the damage curve (n), the umbrella life ffi in this case is L' = Lroo and u N r' = N
It becomes mo-nl Om O.

11点から運転条件が変わり疲労被害のみが加わる様に
なつ九場合にはm点からφf軸に平行に直巌紫引いて被
害曲線との交点Pt求め、両点m。
In the case where the operating conditions change from point 11 and only fatigue damage is added, draw a straight line from point m parallel to the φf axis to find the intersection point Pt with the damage curve, and both points m.

Pからφf@に降した点會各々m’ 、 p’と丁rL
ば、で表わさjLる。
The points dropped from P to φf@ are respectively m', p' and drL.
It is expressed as jL.

01点からクリープ被害のみが加わる様になる場合は同
様にして縦軸に関してITI“ q/点倉求め、この時
宗寿命t、1次式で得る。
If only creep damage is added from point 01, ITI" q/point storage is similarly calculated on the vertical axis, and the time life t is obtained using a linear formula.

疲労とクリープとが継続して加わるが、m点から運転モ
ードが変わるなどして条件が変った場合には次の様にし
て求める。運転時間tと繰返し数Nr記録して、ビッカ
ース硬δと電気抵抗とを創建し、既に説明した手順と同
様にして被W廣會求める。この時被害点が図のr点にき
たと丁rtに、直#1nIrc/)処長吻と被害曲線の
交点をSとして、余に節は と氷まるのでるる。
Fatigue and creep continue to be applied, but if the conditions change such as by changing the operating mode from point m, it is determined as follows. The operating time t and the number of repetitions Nr are recorded, the Vickers hardness δ and the electrical resistance are established, and the W width is determined in the same manner as the procedure already explained. At this time, when the damage point reaches point r in the diagram, the intersection point of the director's proboscis and the damage curve is set as S, and the other node is frozen.

以上の寿命予知法の手順をフロー図で示し友のが第11
図でおる。この図を用いて手順を略述する。運転を開始
すると運転条件である温度、時間、繰返し数を記録する
。定期点検時に破損の恐nのある部分のビッカース硬さ
を測定して疲労寿命費費率φfを求める。11ffJ時
に電気抵抗Pt−創建してクリープ時間比會推足し、ク
リープ痔命消費率参C1−求める。lI#砧Y内費率φ
f、φcl被害曲麹に適用して傘寿it絆価し、余寿命
’r@Nrが共に十分大きい場合には運転を継続し、余
寿命t、またF′iNrが小さいと判断さt′L7を場
合には運転に停止し、補習筐′fc、は部品の堆誉倉行
なう。
The steps of the above life prediction method are shown in a flow diagram.
Illustrated. The procedure will be briefly described using this figure. When the operation starts, the operating conditions such as temperature, time, and number of repetitions are recorded. At the time of periodic inspection, the Vickers hardness of the parts where there is a risk of breakage is measured and the fatigue life cost ratio φf is determined. At 11ffJ, the electrical resistance Pt is established and the creep time ratio is added to calculate the creep hemorrhoid life consumption rate C1. lI # Kinuta Y internal expense rate φ
f and φcl are applied to the damaged koji to determine the umbrella life and bond value, and if the remaining life 'r@Nr are both sufficiently large, operation is continued and the remaining life t and F'iNr are judged to be small t'L7 In such a case, the operation will be stopped and the spare parts will be stored in the warehouse.

上記評述し皮様に、本発明の方法は高温環境下で葡IL
忙受ける金職材料のビッカース快さや電気抵抗なとのパ
ラメータを得、こnに基いて鋏労被杏やクリープ被告、
或いは陶省が1畳した場合等の傘寿節を推定する拳がで
きるものであり、破損等による事故を未然に防く◆がで
きるなと夾際上臓に有利な効米會奏するものである。
As described above, the method of the present invention allows grape IL to be grown under high temperature environment.
We obtained the parameters such as Vickers comfort and electrical resistance of the material used in the metal work, and based on this, we determined whether the material was subjected to scissors, creep, etc.
Alternatively, it is possible to make a fist to estimate the life span of a 1 tatami mat, etc., and it is also useful for preventing accidents due to breakage, etc. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼な1し材の疲労過程中のピンカース硬さ変化
を示す図、第2図はビッカース硬さを応力繰返し数比で
整理し九図、第3図は予加工材のビッカース硬さを応力
繰返し数比で贅理した図、!iK4凶はビッカース快さ
で疲労寿f$會推定する方法の一例を示す図、第5図F
i焼なまし材のクリープ過程中の電気抵抗変化r示す図
、第6図は電気抵抗會クリープ時間比でli理した図、
第7図は焼なまし材のクリープ過程中の炭化物の凌集・
粗大化tかす図、第8図はクリープ被害を検出する方法
の一例を示す図、第9図(a)、 (b)、 (C)第
10図及び第11図は各々疲労とクリープとが11畳し
た場茅1 目 煉遣り狡N 業 2 目 文力係it飲比ノつ’Nf #’目 応力繰返り獣えI’/st J!I+ 固 ′    彦r     ha     ’/r今;l
悸す・N/Nf 茅5 目 7リーフ0 薯予Jail    (hト)ギl目 7ノー7° 埒j町 比  (1/、ンンクリ−7・膏
矛多量 め10口 φf 第11  め 手続補正書(方式) %式% 参件の表示 昭和57年 特許願第 70437  号発 明 の 
名 称  雀属材料の均分予知方法補正をする者 劃1と1欄係  特許出願人 イ1  所  東京都千代田区丸の内−丁目5番1号名
  4.15101株式会社 日 立 製 作 所代表
者 三 1)勝 茂 代   理   人 居  所  東京都千代田区丸の内−丁目5番1号補正
の 対象 明細書の図面の簡単な説明の欄 −I 341
Figure 1 shows the change in Pinkers hardness during the fatigue process of annealed material, Figure 2 shows the Vickers hardness organized by stress repetition rate, and Figure 3 shows the Vickers hardness of pre-processed material. An extravagant diagram of the stress repetition rate ratio! iK4Ko is a diagram showing an example of a method for estimating fatigue life f$ using Vickers comfort, Figure 5F.
Figure 6 shows the change in electrical resistance during the creep process of annealed material;
Figure 7 shows the collection of carbides during the creep process of annealed material.
Figure 8 shows an example of a method for detecting creep damage, Figures 9 (a), (b), (C), Figures 10 and 11 show how fatigue and creep are detected, respectively. 11 tatami tatoshi bahaya 1 meremari kou N karma 2 mebunryoku it drinking ratio 'Nf #'me stress repeated beast I'/st J! I+ hard' hikor ha'/rnow;l
Palpitation・N/Nf Chi 5 Eye 7 Leaf 0 Saiyo Jail (h) Gil Eye 7 No 7° Nij Town Ratio (1/, Nunkri-7・Large amount of plaster 10 mouths φf 11th procedure correction (method) % formula % Display of references 1982 Patent Application No. 70437 Invention
Name: Person who corrects the proportion prediction method for sparrow materials Columns 1 and 1 Patent applicant: 1 Address: 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo Name: 4.15101 Hitachi, Ltd. Representative 3 1) Osamu Katsu Shigeyo Residence No. 5-5 Marunouchi, Chiyoda-ku, Tokyo Subject of amendment Brief description of drawings in the specification - I 341

Claims (1)

【特許請求の範囲】 1 高眠壊境トで荷ムを受ける金属材料の寿命を予知す
る方法において、該金S羽料の硬さと電気抵抗とを求め
、#*消費率倉算出する事t−物像とする金属材料の寿
舖予知法。 2、硬さケ用いて疲労被害t−検出し、電気抵抗を用い
てクリープ被告を検出する拳に工り疲労とクリープとが
重畳した場合の寿命の予知を可能ならしめ窺特許請求の
範囲第1項記載の金属材料の寿命予知方法。 3、金属材料の硬さから既知のとッカース硬さと疲労寿
命消費率との関係に基いて疲労仮曹倉検出し、金属材料
の電気抵抗値から既知の電気抵抗値とクリ−7変形量と
の関係に轟いてクリープ変形iit推定し該推定クリー
プ賞形量から既知の応力とクリープとの関係を示すクリ
ープ曲1att用いて加えられていた応力を推定すると
共にクリープ損傷半倉推定し、lIt前記硬さから推定
した疲労損傷率と削紀亀気抵抗力・ら推定したクリープ
損m率と?既知の彼方とクリープとが龜営し7j場合の
被害曲線に溝付させる拳によって損傷ケ検出しこjLに
エリ余f#砧會推定する◆を特命とする金属拐料の寿命
予知方法。
[Claims] 1. In a method for predicting the life of a metal material subjected to a load at a high-sleep decomposition point, the hardness and electrical resistance of the gold S feather are determined, and the #*consumption rate is calculated. - A method for predicting the longevity of metal materials as objects. 2. It is possible to predict the life span of a fist in which fatigue damage is detected using hardness and creep is detected using electrical resistance.Claim No. The method for predicting the life of a metal material according to item 1. 3. Fatigue temporary Sokura is detected based on the relationship between the known hardness of the metal material and the fatigue life consumption rate, and the known electric resistance value and Cre-7 deformation amount are calculated from the electric resistance value of the metal material. Based on the relationship, the creep deformation IIT is estimated, and from the estimated creep value, the applied stress is estimated using a creep song 1att that shows the relationship between the known stress and creep, and the creep damage is estimated, What is the fatigue damage rate estimated from the hardness and the creep loss rate estimated from the drilling and cracking resistance? A method for predicting the lifespan of a metal scraper whose special mission is to detect damage by means of a fist that grooves the damage curve in the case where a known party and a creep are attacked.
JP57070437A 1982-04-28 1982-04-28 Predicting method of life of metallic material Granted JPS58189557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57070437A JPS58189557A (en) 1982-04-28 1982-04-28 Predicting method of life of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57070437A JPS58189557A (en) 1982-04-28 1982-04-28 Predicting method of life of metallic material

Publications (2)

Publication Number Publication Date
JPS58189557A true JPS58189557A (en) 1983-11-05
JPH0142381B2 JPH0142381B2 (en) 1989-09-12

Family

ID=13431457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57070437A Granted JPS58189557A (en) 1982-04-28 1982-04-28 Predicting method of life of metallic material

Country Status (1)

Country Link
JP (1) JPS58189557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145327A (en) * 2004-11-18 2006-06-08 Sumitomo Kinzoku Technol Kk REMAINING LIFE DIAGNOSING METHOD OF Cr-Mo TYPE HEAT-RESISTANT STEEL
JP2017187408A (en) * 2016-04-07 2017-10-12 新日鐵住金株式会社 Quality assurance method of steel material and fatigue characteristics estimation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145327A (en) * 2004-11-18 2006-06-08 Sumitomo Kinzoku Technol Kk REMAINING LIFE DIAGNOSING METHOD OF Cr-Mo TYPE HEAT-RESISTANT STEEL
JP4522828B2 (en) * 2004-11-18 2010-08-11 住友金属テクノロジー株式会社 Remaining life diagnosis method for Cr-Mo heat resistant steel
JP2017187408A (en) * 2016-04-07 2017-10-12 新日鐵住金株式会社 Quality assurance method of steel material and fatigue characteristics estimation method

Also Published As

Publication number Publication date
JPH0142381B2 (en) 1989-09-12

Similar Documents

Publication Publication Date Title
Ngoula et al. Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry
Zeng et al. Elasto-plastic stress and strain behaviour at notch roots under monotonic and cyclic loadings
Bhatti et al. Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion
Carreño et al. Material model parameters for the Giuffrè-Menegotto-Pinto uniaxial steel stress-strain model
Jiang et al. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: experiment and theoretical modeling
Paul et al. Identification of post-necking tensile stress–strain behavior of steel sheet: An experimental investigation using digital image correlation technique
Hayhurst et al. Creep rupture of notched bars
JP4859557B2 (en) Method for judging the soundness of concrete buildings
EP1640702A1 (en) Method for predicting fatigue life of spot-welded structure
Noban et al. Load path sensitivity and fatigue life estimation of 30CrNiMo8HH
Kang et al. Evaluation of multiaxial spot weld fatigue parameters for proportional loading
Paul et al. A Simplified procedure to determine post-necking true stress–strain curve from uniaxial tensile test of round metallic specimen using DIC
WO2013026500A2 (en) System and method for generating a combined model for isothermal and anisothermal fatigue life
Gothivarekar et al. Advanced FE model validation of cold-forming process using DIC: Air bending of high strength steel
Skibicki et al. Evaluation of plastic strain work and multiaxial fatigue life in CuZn37 alloy by means of thermography method and energy‐based approaches of Ellyin and Garud
Frendo et al. Fatigue life assessment of welded joints under sequences of bending and torsion loading blocks of different lengths
JP7035903B2 (en) Fatigue life prediction method for mechanical joints
Wertz et al. An energy-based torsional-shear fatigue lifing method
Faria et al. Determination of the fatigue behavior of mechanical components through infrared thermography
Hayhurst et al. Creep rupture of the Andrade shear disk
JPS58189557A (en) Predicting method of life of metallic material
Lange et al. Examination of the mechanical properties of steel S460 for fire
Florin et al. Fast fatigue properties identification by “self-heating” method: Application to automotive welded joints
JP2005249597A (en) Evaluation method for fatigue life and its system
Berke et al. Damage accumulation in a novel high-throughput technique to characterize high cycle fatigue