JPS58186363A - Linear motor - Google Patents

Linear motor

Info

Publication number
JPS58186363A
JPS58186363A JP6757582A JP6757582A JPS58186363A JP S58186363 A JPS58186363 A JP S58186363A JP 6757582 A JP6757582 A JP 6757582A JP 6757582 A JP6757582 A JP 6757582A JP S58186363 A JPS58186363 A JP S58186363A
Authority
JP
Japan
Prior art keywords
pole teeth
magnetic pole
phase
pitch
movable element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6757582A
Other languages
Japanese (ja)
Other versions
JPH0456545B2 (en
Inventor
Hiromi Onodera
博美 小野寺
Noriaki Wakabayashi
若林 則章
Kiichiro Yamada
喜一郎 山田
Taiji Sugizaki
杉崎 泰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6757582A priority Critical patent/JPS58186363A/en
Priority to US06/486,965 priority patent/US4504750A/en
Priority to DE8383302275T priority patent/DE3366213D1/en
Priority to EP83302275A priority patent/EP0093547B1/en
Publication of JPS58186363A publication Critical patent/JPS58186363A/en
Publication of JPH0456545B2 publication Critical patent/JPH0456545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To improve the efficiency of a linear motor and to increase the thrust of the motor by forming the pitch of a plurality of pole teeth formed on a running path, on which a rotor moves, equal to the pitch of the rotor pole teeth, and displacing the pitch phase between row phases at the specific value in a rotor moving direction. CONSTITUTION:A plurality of pole teeth of pitch P is formed on the end of each field leg facing a running path, the phase relationship is set to the same phase as the pole teeth formed on the field legs 511-513 of a core 51, in the same phase as the pole teeth formed on the legs 521-523 of a core 52, and the phase of the pole teeth of the adjacent legs of the cores 51, 52 are displaced at 1/2P. The path 4 is formed of a magnetic material, and a plurality of pole teeth at the same pitch P as that of the pole teeth of a rotor 5 are formed on the surface opposed to the pole teeth formed on the rotor 5. A plurality of rows of pole teeth of the path 4 are formed along the moving direction of the rotor, the phase relationship of the teeth rows 41-43 is displaced at n/m.P toward the moving direction of the rotor 5, and the rows 41 and 42 are displaced at 1/3.P phase.

Description

【発明の詳細な説明】 本発明は可動子が直線的に移動するりニアモータに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a near motor in which a mover moves linearly.

第1図は従来のりニアモータの一例を示す構成図で、^
は縦断面図、(至)は内のC−C線断面図、(qは(ハ
)のA−A@断面図、ρはB−B線断面図である。第1
図において、1は磁性材で構成された走行路、2はこの
走行路に僅かな空隙を介して対向する可動子で、この例
では3相のりニアモータを示している。可動子2は、そ
れぞれ3個の界磁腕211.212,213,221.
222゜223をもった一対の鉄心21.22と、この
一対の鉄心21,22の間に介在されて上記の僅かな空
隙にバイアス磁束を供給する役目をもつ永久磁石2oお
よび一対の鉄心21.22の互に隣り3t、−、: 合う界磁腕211,221と212,222と213.
223にまだがって巻回された3個の励磁巻線31.3
2.33で構成されている。また、各界磁腕の走行路1
に面した端部には、走行路1に設けた歯のピッチPと同
一ピッチの3個の磁極歯a、b、cが設けられている。
Figure 1 is a configuration diagram showing an example of a conventional linear motor.
is a vertical cross-sectional view, (to) is a cross-sectional view taken along the line C-C, (q is a cross-sectional view taken along the line A-A of (c), and ρ is a cross-sectional view taken along the line B-B.
In the figure, 1 is a running path made of magnetic material, and 2 is a movable element facing this running path with a slight gap in between. In this example, a three-phase linear motor is shown. The movable element 2 has three field arms 211, 212, 213, 221 .
A pair of iron cores 21, 22 having angles of 222° and 223, a permanent magnet 2o that is interposed between the pair of iron cores 21 and 22 and has the role of supplying bias magnetic flux to the above-mentioned slight gap, and a pair of iron cores 21.22. 22 mutually adjacent 3t, -,: matching field arms 211, 221 and 212, 222, 213.
Three excitation windings 31.3 wound along 223
2.33. In addition, the running path 1 of each field arm
Three magnetic pole teeth a, b, and c having the same pitch as the pitch P of the teeth provided on the running path 1 are provided at the end facing the travel path 1 .

ここで鉄心21゜22の各界磁腕のうち同一鉄心に設け
られた211゜212.213(221,222,22
3)の磁極歯位相は互いに(N十n/m ) P (た
だし、Nは整数、mはリニアモータの相数、nはm )
 nなる整数で、この例では(6+%)P)ずれて配置
され、また、第1図(qに示す様に鉄心21と22の互
に隣り合う各界磁腕に設けた磁極歯どうしは同一位相で
ある。走行路1は、第1図pに示す様に可動子2の鉄心
21.22に設けた磁極歯と同一ピッチPの磁極歯列1
1.12を有し、磁極歯列11と磁極歯列12は前記可
動子2の移動方向に%Pだけ位相をずらせて配列してい
る。
Here, 211°212, 213 (221, 222, 22
The magnetic pole tooth phases of 3) are mutually (N0n/m) P (where N is an integer, m is the number of phases of the linear motor, and n is m)
n is an integer, and in this example, the magnetic pole teeth provided on each adjacent field arm of the iron cores 21 and 22 are the same, as shown in FIG. 1 (q). As shown in FIG.
1.12, and the magnetic pole tooth row 11 and the magnetic pole tooth row 12 are arranged with a phase difference of %P in the moving direction of the movable element 2.

このように構成した装置において、前記永久磁石20は
第1図中)に示すような方向に着磁されて21の各界磁
腕211.212,213を通り磁極歯a、b、cから
僅かな空隙を介して対向する走行路1の磁極歯列11を
通り磁極歯列12から僅かな空隙を介して鉄心22の各
磁極歯、各界磁腕221.222.223を通って永久
磁石20に戻る。つまり前記可動子2の磁極歯と走行路
1の磁極歯との間の空隙にバイアス磁束が存在している
わけである。いま、前記励磁巻線31に励磁電流を流す
と、この励磁電流による磁束が前記バイアス磁束に重畳
する。いま、鉄心21側の界磁腕211と走行路1との
間の磁束が増加する方向に励磁巻線31に励磁電流を流
すと、鉄心22側の界磁腕221と走行路1との間の磁
束は減少する。この結果、可動子2の界磁腕211と走
行路1とが互いに引き合い、その空隙のレラクタンスが
最も小さくなる第1図四に示す位置で可動子2は保持さ
れる。
In the device configured in this way, the permanent magnet 20 is magnetized in the direction shown in FIG. It passes through the magnetic pole tooth rows 11 of the traveling path 1 facing each other with a gap therebetween, returns to the permanent magnet 20 from the magnetic pole tooth row 12 through each magnetic pole tooth of the iron core 22 and each field arm 221, 222, 223 through a slight gap. . In other words, bias magnetic flux exists in the gap between the magnetic pole teeth of the movable element 2 and the magnetic pole teeth of the running path 1. Now, when an excitation current is passed through the excitation winding 31, the magnetic flux due to this excitation current is superimposed on the bias magnetic flux. Now, when an excitation current is passed through the excitation winding 31 in a direction in which the magnetic flux between the field arm 211 on the iron core 21 side and the running path 1 increases, the magnetic flux between the field arm 221 on the iron core 22 side and the running path 1 increases. The magnetic flux of decreases. As a result, the field arm 211 of the movable element 2 and the travel path 1 are attracted to each other, and the movable element 2 is held at the position shown in FIG. 1, where the reluctance of the gap is the smallest.

次に励磁巻線32に励磁電流を鉄心21側の界磁腕21
2と走行路1の間の磁束が増大する方向5 、、 ・ に流すと両者は互に引き合うので可動子2は右側に移動
する。ここで可動子2の移動量は、界磁腕211の磁極
歯a、b、cと界磁腕212の磁極歯a、b、cとの間
の位相が3APずれているので、hpだけ移動すること
になる。
Next, an excitation current is applied to the excitation winding 32 to the field arm 21 on the iron core 21 side.
When the magnetic flux between the magnetic flux 2 and the running path 1 is increased in the direction 5, . . . , they attract each other, so the mover 2 moves to the right. Here, the amount of movement of the mover 2 is hp since the phase between the magnetic pole teeth a, b, c of the field arm 211 and the magnetic pole teeth a, b, c of the field arm 212 is 3 AP. I will do it.

以下、同様にして、励磁巻線33,31.32゜33、
・・・・・・と順次励磁電流を流せば、可動子は3/i
IPを最小移動量として右側に順次移動する。また、励
磁巻線33.32.31の順で励磁電流を流せば可動子
2は左側に移動する。
Hereinafter, in the same manner, the excitation windings 33, 31.32°33,
If the excitation current is passed in sequence, the mover becomes 3/i
Sequentially move to the right using IP as the minimum movement amount. Furthermore, if the excitation current is passed through the excitation windings 33, 32, and 31 in this order, the movable element 2 will move to the left.

一方、励磁巻線31,32.33に流す励磁電流の流れ
方向を前記の場合と逆にすると、第1図(B)において
界磁腕221と走行路1との間の磁束が増大し、両者間
で引き合うこととなる。したがって、励磁巻線32,3
3,31 、・・・・・・に前記の場合と逆の方向に順
次励磁電流を流せば、同様に可動子2は3APを最小移
動量として右側に移動する。また、励磁巻線33,32
,31.・・・・・・の順に前記の場合とは逆方向の電
流を流せば、可動子2は3APを最小移動量として左側
に移動する。ここで、走行路1の磁極歯列11と12と
は%Pだけ歯の位相がずれて形成されているので、励磁
巻線に流す励磁電流の流れ方向を正方向とした場合と負
方向(逆方向)とした場合とでは、可動子2の停止位置
は互に重なることはなく、1/6Pだけずれることにな
る。つまり励磁巻線31,32゜33に流す励磁電流の
切り換えと、その励磁電流の流す方向を変えて順次励磁
巻線を励磁していくことにより、最小移動量176P″
′c町動子2が移動する。また、上記説明において単相
励磁でのみ説明してきだが、多相励磁にすることで、推
力を増大させることができる。
On the other hand, if the flow direction of the excitation current flowing through the excitation windings 31, 32, 33 is reversed from the above case, the magnetic flux between the field arm 221 and the running path 1 increases in FIG. 1(B), There will be a competition between the two. Therefore, the excitation windings 32,3
3, 31, . . . , if an excitation current is applied sequentially in the opposite direction to that in the above case, the movable element 2 similarly moves to the right with 3AP as the minimum movement amount. In addition, excitation windings 33, 32
, 31. . . . If a current is applied in the reverse direction to that in the above case, the movable element 2 moves to the left with 3 AP as the minimum movement amount. Here, since the magnetic pole tooth rows 11 and 12 of the running path 1 are formed with the tooth phase shifted by %P, the flow direction of the excitation current flowing through the excitation winding is the positive direction and the negative direction ( In the opposite direction), the stop positions of the movers 2 do not overlap with each other and are shifted by 1/6P. In other words, by switching the excitation current flowing through the excitation windings 31, 32 and 33, and changing the direction of the excitation current to sequentially excite the excitation windings, the minimum movement amount is 176P''.
'c Machi Moko 2 moves. Furthermore, although the above description has been made using only single-phase excitation, the thrust can be increased by using multi-phase excitation.

ところで、この種のりニアモータの推力の向上をはかる
には、可動子の鉄心に設けられた磁極歯と走行路に設け
られた磁極歯との間のバイアス磁束を大きくする事が非
常に有効である。バイアス磁束を大きくするひとつの手
段は、バイアス磁束を与える永久磁石で発生する磁束の
総量を増やす事、別の手段として、永久磁石で発生する
磁束のうち、リニアモータの推力に寄与していないもれ
71\− 磁束(リーケージフラックス)を極力減らす事等がある
By the way, in order to improve the thrust of this type of linear motor, it is very effective to increase the bias magnetic flux between the magnetic pole teeth provided on the iron core of the mover and the magnetic pole teeth provided on the travel path. . One way to increase the bias magnetic flux is to increase the total amount of magnetic flux generated by the permanent magnets that provide the bias magnetic flux.Another method is to increase the total amount of magnetic flux generated by the permanent magnets that does not contribute to the thrust of the linear motor. 71\- Magnetic flux (leakage flux) may be reduced as much as possible.

以上の点から第1図に示すような構造の従来例をみると
、鉄心21と22との互いに隣り合う3対の界磁膜21
1と221,212と222゜213と223との間の
距離W1  が狭い為に、この間でのもれ磁束の量が非
常に多く、磁気回路全体のもれ磁束のうち最も大きな割
合を占めている。
Considering the conventional structure shown in FIG. 1 from the above points, three pairs of field films 21 and 22 adjacent to each other are
Since the distance W1 between 1 and 221, 212 and 222, 213 and 223 is narrow, the amount of leakage magnetic flux between these is extremely large, and accounts for the largest proportion of the leakage flux in the entire magnetic circuit. There is.

そのため永久磁石の磁束が有効に使われず、無駄が多く
、モータとして効率が良いとは言えない。
Therefore, the magnetic flux of the permanent magnet is not used effectively, and there is a lot of waste, so it cannot be said that the motor is efficient.

ここで前記距離W1を大きくすれば、もれ磁束を小さく
することも可能ではあるが、それに応じて走行路1の幅
寸法W2もまた大きくしなければならない。走行路10
幅寸法W2の増加は走行路1の全長に亘るので、走行路
重量の増加分は大きい。そのため、このモータを組み込
んだ装置は重量の増加をまぬがれない。また、とのモー
タを組み合せて構成するXYプロッタなどでは、一方の
軸のモータで他方の軸のモータをその走行路ごと移動位
置決めさせるため、走行路の重量の増加はプロッタ特開
昭58−186363 (3) としての作図速度などに多大な悪影響を及ぼす。
Although it is possible to reduce the leakage magnetic flux by increasing the distance W1, the width W2 of the running path 1 must also be increased accordingly. Driving route 10
Since the increase in the width dimension W2 extends over the entire length of the running path 1, the increase in the weight of the running path is large. Therefore, a device incorporating this motor inevitably increases in weight. In addition, in an XY plotter constructed by combining a motor with a motor, the motor of one axis moves and positions the motor of the other axis along its traveling path, so the increase in weight of the traveling path is caused by the increase in the weight of the plotter. (3) This has a great negative effect on the drawing speed, etc.

次に第1図に示す従来例の可動子の磁極歯の加工は、寸
法精度が出にくいという欠点がある。一般に可動子の磁
極歯の加工は、加工刃を磁極歯ピッチずつ送って歯形成
してゆくが、リニアモータの相数が増えて5相、6相、
川・・となると、同一の鉄心に設けた位相の異なる磁極
歯の種類が6種類、6種類、・・・・・・と増え、その
位相差も2π/6゜2π/6.・・・・・・と細かくな
る為、加工途中で何度も加工刃の送りピッチを変える必
要があって加工精度が出にくいという欠点があり、結果
的にリニアモータの位置決め精度の劣化を招きゃすい。
Next, the machining of the magnetic pole teeth of the movable element in the conventional example shown in FIG. 1 has the disadvantage that dimensional accuracy is difficult to achieve. Generally, when machining the magnetic pole teeth of a mover, the machining blade is fed by the magnetic pole tooth pitch to form the teeth, but as the number of phases of the linear motor increases,
When it comes to rivers, the number of types of magnetic pole teeth with different phases provided on the same iron core increases to 6 types, 6 types, etc., and the phase difference is also 2π/6°2π/6. Because the process is so fine, it is necessary to change the feed pitch of the processing blade many times during processing, which makes it difficult to achieve high processing accuracy.As a result, the positioning accuracy of the linear motor deteriorates. Casui.

本発明は以上の従来例の欠点を排除し、無駄が少なく高
効率で高推力の、壕だ精度の面からも改善されたリニア
モータを提供するものであり、以下、図面を以って詳し
く説明してゆく。
The present invention eliminates the above-mentioned drawbacks of the conventional examples and provides a linear motor that is less wasteful, has high efficiency, high thrust, and is improved in terms of groove accuracy. I'll explain.

第2図は本発明の一実施例を示す構成図で、(八は縦断
面図、(B)は(8)のD−D線断面図、(Qは^のE
−E線断面図、鋤は丙のF −F線断面図である。
FIG. 2 is a configuration diagram showing an embodiment of the present invention, (8 is a vertical sectional view, (B) is a sectional view taken along line D-D of (8), (Q is E of ^)
The sectional view is taken along line -E, and the plow is a sectional view taken along line F-F of C.

この第2図において、可動子6は複数個の界磁9へ− 脚(この実施例では511.512,512と521.
522,523の各々3個)をもった一対の鉄心51,
62、この一対の鉄心51.52の間に介在され、バイ
アス磁束を供給する役目をもつ永久磁石60および一対
の鉄心51.52の互に隣り合う界磁膜511と621
(612と522.513と623)にまたがって巻回
された複数個(ここでは61,62.63の3個)の励
磁巻線で構成されている。また、各界磁膜(511,5
12,513,521,522゜623)の走行路に面
した端部には、ピッチPの複数の磁極歯を形成し、各磁
極歯の位相関係は、第2図(qに示す様に鉄心51の界
磁膜611゜512.513に設けた磁極歯を同一位相
とし、鉄心62の界磁膜621.522.523に設け
た磁極歯を同一位相とし、鉄心51.62の互に隣り合
う界磁膜611と521 (512と622゜513と
523)の磁極歯の位相をイ・Pずらして配置している
。また、走行路4は磁性材よりなり、前記可動子6に設
けた磁極歯と対向する面に101、 可動子5の磁極歯と同一ピッチPの磁極歯を複数個設け
ている。ここで前記走行路4の磁極歯は前記可動子5の
移動方向に沿って複数列(この実施例では41,42.
43の3列)の磁極歯列が存在し、この磁極歯列41,
42.43の位相関係は、可動子6の移動方向にn7m
−P (mはりニアモータの相数、nはm)nなる関係
の整数)ずれて配置され、この実施例では磁極歯列41
と42(42と43.43と41)でハP位相をずらせ
て配置している。
In FIG. 2, the movable element 6 is connected to a plurality of field legs 9 (in this embodiment, 511, 512, 512, 521.
A pair of iron cores 51, each having three cores 522 and 523);
62, a permanent magnet 60 that is interposed between the pair of iron cores 51.52 and has the role of supplying bias magnetic flux, and field films 511 and 621 adjacent to each other of the pair of iron cores 51.52.
It is composed of a plurality of excitation windings (in this case, three, 61, 62, and 63) wound over (612, 522, 513, and 623). In addition, each field film (511, 5
12, 513, 521, 522° 623) facing the running path, a plurality of magnetic pole teeth with a pitch P are formed, and the phase relationship of each magnetic pole tooth is as shown in Fig. 2 (q). The magnetic pole teeth provided on the field films 611, 512, 513 of the iron core 62 have the same phase, and the magnetic pole teeth provided on the field films 621, 522, 523 of the iron core 62 have the same phase, and the iron cores 51, 62 are adjacent to each other. The magnetic pole teeth of the field films 611 and 521 (512 and 622 degrees, 513 and 523) are arranged with a phase shift of A/P.Furthermore, the running path 4 is made of a magnetic material, and the magnetic poles provided on the movable element 6 A plurality of magnetic pole teeth 101 having the same pitch P as the magnetic pole teeth of the movable element 5 are provided on the surface facing the teeth.Here, the magnetic pole teeth of the traveling path 4 are arranged in multiple rows along the moving direction of the movable element 5. (In this example, 41, 42.
There are three rows of magnetic pole teeth 41, 43).
The phase relationship of 42.43 is n7 m in the moving direction of the mover 6.
-P (the number of phases of the linear near motor, n is an integer in the relationship m), and in this embodiment, the magnetic pole tooth row 41
and 42 (42 and 43.43 and 41) are arranged with the phase shifted.

このように構成したりニアモータにおいて、永久磁石5
oが第2図^に示すような方向に着磁されているものと
すれば、可動子6と走行路4との間には、同図の601
に示す方向に磁束が発生している。つまり鉄心61.走
行路4.鉄心62の向きのバイアス磁束が存在する。い
ま、界磁膜511.521に巻回されている励磁巻線6
1に励磁電流を流すと、この励磁電流により発生する磁
束がバイアス磁束と重畳し、界磁膜611と走行路4の
磁極歯列41との間の磁束が増大し、界11  l−、
、’ 磁脚521と走行路4の磁極歯列41との間の磁束が減
少する。この結果、可動子5の界磁脚611と走行路4
の磁極歯列41とが互いに引き合い、その空隙のレラク
タンスが最も小さくなる第2図内に示す位置で可動子6
は保持される。次に界磁脚612と522に)回されて
いる励磁巻線に励磁電流を流すと、今度は界磁脚512
と走行路4の磁極歯列42との間の磁束が増大し互いに
引き合うので可動子6は右側に移動する。ここで可動子
6の移動量は、走行路に設けられた磁極歯列41.42
の位相が可動子の移動方向に%Pずらして配列している
為、3/iPだけ移動することとなる。以下同様にして
、励磁巻線63.61.62゜63、・・・・・・と順
次励磁電流を流せば、可動子6は%・Pを最小移動量と
して右側に順次移動する。
In such a configuration or in a near motor, the permanent magnet 5
Assuming that o is magnetized in the direction shown in Figure 2^, between the mover 6 and the running path 4, there is a magnet 601 in the same figure.
Magnetic flux is generated in the direction shown in . In other words, iron core 61. Driving path 4. A bias magnetic flux exists in the direction of the iron core 62. The excitation winding 6 currently wound around the field film 511 and 521
When an excitation current is passed through 1, the magnetic flux generated by this excitation current is superimposed on the bias magnetic flux, and the magnetic flux between the field film 611 and the magnetic pole tooth row 41 of the running path 4 increases, and the field 11 l-,
,' The magnetic flux between the magnetic leg 521 and the magnetic pole tooth row 41 of the running path 4 decreases. As a result, the field leg 611 of the mover 5 and the traveling path 4
The movable element 6 is positioned at the position shown in FIG. 2, where the magnetic pole tooth rows 41 of
is retained. Next, when an excitation current is passed through the excitation windings turned around the field legs 612 and 522, this time the field legs 512
The magnetic flux between the magnetic pole tooth row 42 of the travel path 4 increases and they attract each other, so the movable element 6 moves to the right. Here, the amount of movement of the mover 6 is the magnetic pole tooth row 41, 42 provided on the travel path.
Since the phases of the movable element are shifted by %P in the direction of movement of the movable element, the movable element moves by 3/iP. Similarly, if the excitation current is sequentially applied to the excitation windings 63, 61, 62, 63, . . . , the movable element 6 will sequentially move to the right with %.P as the minimum movement amount.

また、励磁巻線63,62,61.・・・・・・順で励
磁電流を流せば可動子5は左側へ移動する。
In addition, excitation windings 63, 62, 61 . If the excitation current is applied in this order, the mover 5 will move to the left.

一方、励磁巻線61,62,63に流す励磁電流の流れ
方向を前記の場合と逆にすると、鉄心62の界磁脚52
1 (622,523)と走行路4の特開昭58−18
6363 (4) 磁極歯列41(42,43)との間の磁束が増大し、両
者間で引き合うこととなる。したがって励磁巻線61,
62,63.・・・・・・に前記の場合と逆方向の励磁
電流を順次流せば、同様に可動子5は3APT5最小移
動量として右側に移動する。また、励磁巻線63,62
,61.・・・・・・の順に前記の場合とは逆方向の電
流を流せば、可動子6は3APを最小移動量として左側
に移動する。ここで可動子5の界磁脚611と512(
612と622゜613と523)井枠會とに設けた磁
極歯の位相は、可動子6の移動方向に%・Pだけずらし
て配置しているので、励磁巻線に流す励磁電流の流れ方
向を正方向とした場合と、負方向(逆方向)とした場合
とでは、可動子6の停止位置は互に重なることはなく、
1/6Pだけずれることになる。つまり励磁巻線61,
62,63に流す励磁電流の切り換えと、その励磁電流
の流す方向を変えて順次励磁巻線を励磁していくことに
より最小移動量1/6Pで可動子6が移動する。まだ、
上記説明において単相励磁でのみ説明してきたが、多相
励磁13 t=。
On the other hand, if the direction of the excitation current flowing through the excitation windings 61, 62, and 63 is reversed from the above case, the field legs 52 of the iron core 62
1 (622,523) and running route 4 JP-A-58-18
6363 (4) The magnetic flux between the magnetic pole tooth row 41 (42, 43) increases, and the two become attracted to each other. Therefore, the excitation winding 61,
62, 63. . . . If an excitation current in the opposite direction to that in the above case is sequentially applied, the movable element 5 similarly moves to the right as the minimum movement amount of 3APT5. In addition, excitation windings 63, 62
,61. . . . If a current is applied in the opposite direction to that in the above case, the movable element 6 moves to the left with a minimum movement amount of 3 AP. Here, the field legs 611 and 512 (
612 and 622° 613 and 523) The phases of the magnetic pole teeth provided in the frame assembly are shifted by % P in the direction of movement of the movable element 6, so the direction of flow of the excitation current flowing through the excitation winding The stop positions of the mover 6 do not overlap in the case where is set in the positive direction and when it is set in the negative direction (reverse direction),
The difference will be 1/6P. In other words, the excitation winding 61,
The movable element 6 moves by a minimum movement amount of 1/6P by switching the excitation currents passed through the coils 62 and 63 and by changing the direction of the excitation currents and sequentially exciting the excitation windings. still,
In the above explanation, only single-phase excitation has been explained, but multi-phase excitation 13 t=.

にすることで、第1図で説明した従来例と同様に推力を
増大させることができるのは言うまでもない。
It goes without saying that by doing so, the thrust can be increased in the same way as in the conventional example explained in FIG.

次に本発明のリニアモータにおける構造上の特長を説明
する。
Next, the structural features of the linear motor of the present invention will be explained.

第2図において、一対の鉄心61と62との間隔Wを広
くできる。このWを広く取ることにより、可動子6の鉄
心61の界磁脚から鉄心62の界磁脚へのもれ磁束を極
端に減少させることができる為、磁久磁石60で発生す
る磁束を有効に利用することができる。この為、バイア
ス磁束が増大し、推力の向上につながる。なお、この構
造の場合、Wは可動子の移動方行の寸法である為、走行
路の幅も変らず、走行路の重量には殆んど影響がない。
In FIG. 2, the distance W between the pair of iron cores 61 and 62 can be increased. By widening this W, the leakage magnetic flux from the field leg of the iron core 61 of the mover 6 to the field leg of the iron core 62 can be extremely reduced, so the magnetic flux generated by the magnet 60 can be effectively used. It can be used for. For this reason, the bias magnetic flux increases, leading to an improvement in thrust. In addition, in the case of this structure, since W is the dimension in the moving direction of the mover, the width of the running path does not change, and the weight of the running path is hardly affected.

なお、本発明のリニアモータにおい−て、可動子5の一
対の鉄心51.52に設けた磁極歯と走行路に設けた磁
極歯との対向面積は、磁極歯の幅はせまくなるが、磁極
歯の枚数を可動子の移動方向に極めて容易に増やせるの
で自在に設計できる。
In the linear motor of the present invention, the opposing area between the magnetic pole teeth provided on the pair of iron cores 51 and 52 of the mover 5 and the magnetic pole teeth provided on the running path is such that although the width of the magnetic pole teeth becomes narrow, the magnetic pole teeth Since the number of teeth can be extremely easily increased in the moving direction of the movable element, it can be designed freely.

その為、バイアス磁束が増大しすぎて磁気飽和が14・
・ 発生するのを避けることも容易である。また、可動子の
磁極歯の枚数をその移動方向に増やしても、走行路の幅
寸法は何ら変る事がない為、走行路の重量増加も殆んど
ない。
Therefore, the bias magnetic flux increases too much and the magnetic saturation reaches 14.
・It is also easy to avoid occurrence. Further, even if the number of magnetic pole teeth of the mover is increased in the moving direction, the width of the running path does not change at all, so there is almost no increase in the weight of the running path.

このように本発明のりニアモータは、効率を高めて推力
を増大させることが出来、またそれによって走行路の重
量の増加もないという特長をもっている。なお、本発明
者の試作に依れば本発明のリニアモータは従来例と同等
の走行路幅、及び重量、はソ同等の可動子寸法、及び重
量で推力は30チ〜40%増大することが確認されてい
る。従って前述の如(XYプロッタなどに本発明のりニ
アモータは最もよく適合するものと言える。
As described above, the linear motor of the present invention has the advantage of being able to increase efficiency and thrust, and thereby not increasing the weight of the running road. According to the inventor's prototype, the thrust of the linear motor of the present invention increases by 30 to 40% with the same moving path width and weight as the conventional example, but with the same mover size and weight. has been confirmed. Therefore, it can be said that the linear motor of the present invention is most suitable for the XY plotter as described above.

さらに、従来例の可動子磁極歯の加工精度が出にくいと
いう欠点に対しても、本発明のりニアモータの可動子6
の構造は非常に有利である。すなわち、可動子5の複数
個の界磁胛のうち同一の鉄心にある界磁脚に設けた各磁
極歯位相は同一としているので、リニアモータの相数が
増えて何相となろうと、同一の鉄心に設けた磁極歯は、
位相に関して1種類であり、加工刃の送りピッチを変え
るのは、ただ一対の鉄心における位相差%・Pを設ける
時だけで済む。その為、本発明のりニアモータの可動子
の構造は、磁極歯の加工における作業性を改善し、寸法
精度を容易に高めうる非常に優れたものである。
Furthermore, in order to overcome the drawback that the machining accuracy of the movable magnetic pole teeth of the conventional example is difficult to achieve, the movable element 6 of the linear motor of the present invention
The structure of is very advantageous. In other words, the phase of each magnetic pole tooth provided on the field leg of the same iron core among the plurality of field legs of the mover 5 is the same, so no matter how many phases the linear motor increases, the phase is the same. The magnetic pole teeth provided on the iron core of
There is only one type of phase, and the only need to change the feed pitch of the machining blade is to provide the phase difference % P between the pair of iron cores. Therefore, the structure of the mover of the linear motor of the present invention is very excellent in that it can improve workability in machining magnetic pole teeth and easily increase dimensional accuracy.

なお、以上の説明では、本発明のりニアモータは、ステ
ップモータとして動作を説明したが、位置検出手段、無
接点給電手段等を設け、電子整流子リニアモータとして
使用しても本発明の利点を何ら損うものではない。
In the above explanation, the linear motor of the present invention operates as a step motor, but even if it is equipped with a position detection means, non-contact power supply means, etc. and used as an electronic commutator linear motor, the advantages of the present invention will not be obtained. It's not a loss.

第3図および第4図は本発明のりニアモータの他の実施
例を示す要部構成図である。
FIGS. 3 and 4 are main part configuration diagrams showing other embodiments of the linear motor of the present invention.

第2図の実施例では、一対の鉄心51.52の間に永久
磁石6oを介在させノ(イアス磁束を与えるようにした
ものであるが、第3図に示すように鉄心51と鉄心62
との間の磁路に巻線60を巻回させ、これによって)く
イアス磁束を与えるようにしても良い。また、一対の界
磁脚611と621(612と5222.513と62
3)とにまたかって巻回される励磁巻線61,62,6
3は、第4図に示すように各界磁脚611,521に別
々に巻線611,612を巻回し、これらを直列接続す
るか、あるいは、これらに別々に励磁電流を流すように
してもよい。界磁脚612.522゜513.623に
ついても同様である。
In the embodiment shown in FIG. 2, a permanent magnet 6o is interposed between a pair of iron cores 51 and 52 to provide magnetic flux, but as shown in FIG.
The winding 60 may be wound in the magnetic path between the two, thereby providing a biased magnetic flux. In addition, a pair of field legs 611 and 621 (612 and 5222, 513 and 62
3) Excitation windings 61, 62, 6 wound across the
3, as shown in FIG. 4, windings 611 and 612 may be wound separately around each field leg 611 and 521, and these may be connected in series, or excitation current may be passed through them separately. . The same applies to the field legs 612.522°513.623.

ここで、一対の鉄心61と62との間隔Wを極端に広く
し、かつ、一対の界磁脚611と621(612と62
2.513と623)とにまたがって励磁巻線を巻回す
ると、励磁巻線長が長くなり銅損は増加する。リニアモ
ータの功率の観点からは、銅損は小さい方が望ましい。
Here, the distance W between the pair of iron cores 61 and 62 is made extremely wide, and the pair of field legs 611 and 621 (612 and 62
If the excitation winding is wound across 2.513 and 623), the length of the excitation winding becomes longer and the copper loss increases. From the viewpoint of efficiency of the linear motor, it is desirable that the copper loss be small.

第4図に示す実施例は励磁、巻線長を短くできるので銅
損を減少させるのに非常に効果が犬である。
The embodiment shown in FIG. 4 is very effective in reducing copper loss because the excitation and winding lengths can be shortened.

第6図は、第2図、第3図及び第4図に示す本発明のり
ニアモータの実施例の走行路4の構造を容易に、かつ精
度良く実現する為の実施例である。
FIG. 6 shows an embodiment for easily and accurately realizing the structure of the running path 4 of the embodiment of the linear motor of the present invention shown in FIGS. 2, 3, and 4.

第6図の^は走行路の平面図、(B)は(〜のG−G線
断面図である。
In FIG. 6, ^ is a plan view of the running path, and (B) is a sectional view taken along the line GG of (~).

第5図において、エツチング等で複数のスリットを設け
た磁性材より成る薄板部材71(以後、これをエツチン
グ板と称す)を磁性材より成る基盤72に固着すること
により、等制約に磁極歯を形成し、走行路4を実現する
。ここでエツチング板子1のスリットは前記可動子6の
移動方向に沿って複数列(本実施例では711 、71
2.713の3列)設け、スリット列711 、712
,713の位相関係は、前記可動子の移動方向にn/m
*P(ただし、mはリニアモータの相数、nはm ) 
nなる整数であり、本実施例では互いに3y、 * P
 )ずらせて構成しである。
In FIG. 5, by fixing a thin plate member 71 (hereinafter referred to as an etching plate) made of a magnetic material in which a plurality of slits are formed by etching or the like to a base plate 72 made of a magnetic material, magnetic pole teeth can be formed with equal constraints. form and realize the running path 4. Here, the etching plate 1 has a plurality of slits (711, 71 in this embodiment) along the moving direction of the movable element 6.
2.3 rows of 713) provided, slit rows 711 and 712
, 713 is n/m in the moving direction of the movable element.
*P (where m is the number of phases of the linear motor, n is m)
n is an integer, and in this example, they are mutually 3y, *P
) The configuration is staggered.

エツチング板71の各スリットの寸法精度は、エツチン
グされる薄板の材質及び厚さ寸法tによって決まるエツ
チング精度に依存する。従ってリニアモータの相数が6
相、6相、・・・・・・と増加することによって、走行
路4の磁極歯列が6列、6列。
The dimensional accuracy of each slit in the etching plate 71 depends on the etching accuracy determined by the material and thickness t of the thin plate to be etched. Therefore, the number of phases of the linear motor is 6.
By increasing the number of phases, six phases, and so on, the magnetic pole tooth rows of the running path 4 become six rows and six rows.

・・・・・・と増加して複雑になっても、エツチング板
の製造の作業性は変わらず、精度を損うことなく、非常
に容易に製作できる。また、この実施例のエツチング板
のスリットは薄板を貫通しているが、ハーフエツチング
でもよいことは言うまでもなく、精度、製作の容易さで
は同様の利点をもつ。
Even if the number of etched plates increases and becomes more complex, the workability of manufacturing the etched plate remains the same, and it can be manufactured very easily without losing accuracy. Furthermore, although the slits in the etched plate in this embodiment pass through the thin plate, it goes without saying that half-etching may also be used, and has the same advantages in terms of accuracy and ease of manufacture.

なお、図示はしないが、エツチング板71を使わずに、
磁性材よりなる基盤72に直接ハーフエツチングして走
行路4を製作しても前記利点を何ら損なうことはない。
Although not shown in the figure, without using the etching plate 71,
Even if the traveling path 4 is manufactured by directly half-etching the base 72 made of a magnetic material, the above-mentioned advantages will not be impaired in any way.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(8)、 (B) 、 (Q 、(至)は従来の
IJ ニアモータの一例を示す各部の断面図、第2図^
e (B) t (Q 、 Cp)は本発明の一実施例
を示す各部の断面図、第3図および第4図は本発明のリ
ニアモータの他の実施例を示す要部構成図、第6図(8
)、(B)は本発明で使用しうる走行路の実施例を示す
要部平面図と要部断面図である。 4・・・・・・走行路、41 、42 、43.711
゜712 、713・・・・・・磁極歯列、6・・・・
・・可動子、50・・・・・・永久磁石、601・・・
・・・永久磁石の磁路、61゜62・・・・・・一対の
鉄心、511.512,413゜521.522.62
3・・・・・・界磁脚、60・・・・・・バイアス磁束
供給用の励磁巻線、61,62.63・・・・・・励磁
巻線、71・・・・・・スリット部材(エツチング板)
、72・・・・・・磁性材よりなる基盤。 代理人の氏名 弁理士 中 男 敏 男 ほか1名第2
図 !/    62   、< 第3図 第4図 、5/  6(/62 第5図 (Aン
Figure 1 (8), (B), (Q, (to)) are cross-sectional views of various parts showing an example of a conventional IJ near motor, Figure 2
e (B) t (Q, Cp) is a sectional view of each part showing one embodiment of the present invention, FIGS. 3 and 4 are main part configuration diagrams showing other embodiments of the linear motor of the present invention, and FIG. Figure 6 (8
) and (B) are a plan view and a sectional view of a main part showing an embodiment of a running path that can be used in the present invention. 4...Travel road, 41, 42, 43.711
゜712, 713...Magnetic pole tooth row, 6...
...Mover, 50...Permanent magnet, 601...
...Magnetic path of permanent magnet, 61°62...Pair of iron cores, 511.512,413°521.522.62
3... Field leg, 60... Excitation winding for supplying bias magnetic flux, 61, 62.63... Excitation winding, 71... Slit Parts (etching plate)
, 72... Base made of magnetic material. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
figure! /62, < Figure 3 Figure 4, 5/6 (/62 Figure 5 (A

Claims (1)

【特許請求の範囲】 0) ピッチがPの磁極歯をそれぞれ形成した複数個の
界磁腕をもつ一対の鉄心を可動子の移動方向に−Pだけ
位相をずらして配置し、かつ前記一対の鉄心の各々の複
数個の界磁腕を前記可動子の移動方向と直交する方向に
配置し、前記複数個の界磁腕のうち同一鉄心に設けられ
たものは、その磁極歯位相が同一となるように構成した
一対の鉄心と、これら一対の鉄心を通るバイアス磁束を
供給する手段と、前記界磁腕を励磁する為の手段とを含
めて前記可動子を構成し、その可動子が移動する走行路
には前記可動子の移動方向に沿って磁極歯列を複数列設
け、それら磁極歯列の各磁極歯のピッチを前記可動子の
磁極歯と同一ピッチとし、かつ前記各磁極歯列相互間の
ピッチ位相を前記可動子の移動方向に−、P(ただし、
mはIJ ニアモータの相数、nはm ) nなる関係
にある整数)ず21・ つずらせたことを特徴とするリニアモータ。 し)走行路は多数のスリットを形成したスリット部材と
、磁性材より成る基盤とを固着することにより形成され
ていることを特徴とする特許請求の範囲第1項記載のI
J ニアモータ。
[Scope of Claims] 0) A pair of iron cores each having a plurality of field arms each formed with magnetic pole teeth with a pitch of P are arranged with a phase shift of -P in the moving direction of the mover, and A plurality of field arms of each of the iron cores are arranged in a direction perpendicular to the moving direction of the movable element, and those of the plurality of field arms provided on the same iron core have the same magnetic pole tooth phase. The movable element includes a pair of iron cores configured such that A plurality of rows of magnetic pole teeth are provided along the moving direction of the movable element on the running path, and the pitch of each magnetic pole tooth of the magnetic pole tooth array is the same as the pitch of the magnetic pole teeth of the movable element, and each of the magnetic pole tooth arrays The mutual pitch phase is -, P (however,
m is the number of phases of the IJ near motor, and n is an integer having the following relationship: m) zu21. A linear motor characterized by being shifted. (b) The running path is formed by fixing a slit member having a large number of slits to a base made of a magnetic material.
J near motor.
JP6757582A 1982-04-21 1982-04-21 Linear motor Granted JPS58186363A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6757582A JPS58186363A (en) 1982-04-21 1982-04-21 Linear motor
US06/486,965 US4504750A (en) 1982-04-21 1983-04-20 Linear motor
DE8383302275T DE3366213D1 (en) 1982-04-21 1983-04-21 Linear motor
EP83302275A EP0093547B1 (en) 1982-04-21 1983-04-21 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6757582A JPS58186363A (en) 1982-04-21 1982-04-21 Linear motor

Publications (2)

Publication Number Publication Date
JPS58186363A true JPS58186363A (en) 1983-10-31
JPH0456545B2 JPH0456545B2 (en) 1992-09-08

Family

ID=13348871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6757582A Granted JPS58186363A (en) 1982-04-21 1982-04-21 Linear motor

Country Status (1)

Country Link
JP (1) JPS58186363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536468A (en) * 2005-04-15 2008-09-04 シーメンス アクチエンゲゼルシヤフト Synchronous linear motor with non-contact scanning of secondary side tooth structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098615A (en) * 1973-12-29 1975-08-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098615A (en) * 1973-12-29 1975-08-05

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536468A (en) * 2005-04-15 2008-09-04 シーメンス アクチエンゲゼルシヤフト Synchronous linear motor with non-contact scanning of secondary side tooth structure
JP4942736B2 (en) * 2005-04-15 2012-05-30 シーメンス アクチエンゲゼルシヤフト Synchronous linear motor with non-contact scanning of secondary side tooth structure

Also Published As

Publication number Publication date
JPH0456545B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
EP0093547B1 (en) Linear motor
EP1330864B1 (en) Xyz-axes table
US3599020A (en) Linear actuator with alternating magnetic poles
JP3916048B2 (en) Linear motor
JP4600712B2 (en) Linear motor
US6548919B2 (en) Linear motor
JP2004364374A (en) Linear motor
JP2002209371A (en) Linear motor
JPS591059B2 (en) linear pulse motor
JP2004297977A (en) Linear motor
JPH0135592B2 (en)
JP2002186244A (en) Permanent magnet linear motor
JPS58186363A (en) Linear motor
JP2785406B2 (en) Linear servo motor
JPH11313475A (en) Linear motor
JP4720024B2 (en) Permanent magnet synchronous motor
JPS6098863A (en) Linear motor
JPS5921272A (en) Linear motor
JPS60200757A (en) Hybrid type linear pulse motor
JPS61277362A (en) Three-phase linear inductor type synchronous motor
JPS6055852A (en) Polarized linear pulse motor
JPS60131068A (en) Linear motor
JPS60131069A (en) Linear motor
JPH04362334A (en) Magnetic damper equipment
JPH0433565A (en) Polyphase drive type linear brushless dc motor