JPS58185432A - Spherical secondary particle of calcium silicate and preparation thereof - Google Patents

Spherical secondary particle of calcium silicate and preparation thereof

Info

Publication number
JPS58185432A
JPS58185432A JP57069140A JP6914082A JPS58185432A JP S58185432 A JPS58185432 A JP S58185432A JP 57069140 A JP57069140 A JP 57069140A JP 6914082 A JP6914082 A JP 6914082A JP S58185432 A JPS58185432 A JP S58185432A
Authority
JP
Japan
Prior art keywords
secondary particles
slurry
crystals
calcium silicate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57069140A
Other languages
Japanese (ja)
Other versions
JPH0327487B2 (en
Inventor
Teru Takahashi
輝 高橋
Kazuo Shibahara
数雄 柴原
Toyohiko Sakota
迫田 豊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Osaka Packing Seizosho KK
Original Assignee
Ohara Inc
Osaka Packing Seizosho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc, Osaka Packing Seizosho KK filed Critical Ohara Inc
Priority to JP57069140A priority Critical patent/JPS58185432A/en
Publication of JPS58185432A publication Critical patent/JPS58185432A/en
Publication of JPH0327487B2 publication Critical patent/JPH0327487B2/ja
Priority to JP4108129A priority patent/JP2571993B2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement

Abstract

PURPOSE:To prepare spherical secondary particles of calcium silicate consisting essentially of tobermorite, by slurrying a milk of lime, and crystalline silicic acid raw material and water, and subjecting the resultant mixture to the hydrothermal synthetic reaction by stirring under pressure and heating. CONSTITUTION:A milk of lime having >=5ml sedimentation velocity and silicic acid consisting essentially of a crystal material as a main component are mixed with water in an amount of 15 times or more based on the solid substance to form a raw material slurry, which is then subjected to the hydrothermal synthetic reaction in a reaction vessel equipped with a stirrer at >=5kg/cm<2> saturated steam pressure under pressure at 180-190 deg.C with stirring. Thus, secondary particles of calcium silicate consisting essentially of hollow spherical tobermorite crystals having 10-120mum outside diameter, <=100mg breaking load, <=30% of hollowness and <=0.12g/cm<3> density of molded articles prepared from naturally settled particles are obtained.

Description

【発明の詳細な説明】 本発明は珪酸カルシウム球状二次粒子及びその製法に関
し、更に鮮しくはトベル七うイト結晶を主成分とする珪
酸カルシウム球状二次粒子及びその製法に関し、その目
的とする所は外力に対して最も安定で強固な形状會有し
即ち球状であって、その自然沈成形体密度を低くするた
めに球の内部全組乃至中空状としたトベLfライト結晶
の二次粒子及びその製法全提供せんとするにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to spherical secondary particles of calcium silicate and a method for producing the same, and more particularly to spherical secondary particles of calcium silicate containing tobel heptaite crystals as a main component and a method for producing the same. The area has the most stable and strong shape against external forces, that is, it is spherical, and in order to lower the density of the spontaneously precipitated compact, the entire interior of the sphere or the secondary particles of the Tobel Lfite crystal are made hollow. We would like to provide the complete information on the manufacturing process and its manufacturing method.

本明細書に於いて雌伏なる語には雌状ばかりでなくだ円
形状vcはその表面の少なくとも一部が凸凹状になって
いるものも包含する。
In this specification, the term "female" includes not only a female shape but also an elliptical shape VC in which at least a portion of its surface is uneven.

珪酸カルシウム成形体は工業的には耐火断熱材、吸着材
、建材等の多方面に応用されており、これ等は珪酸カル
シウム成形体の**とする比強度が高いこと、耐火性の
高いこと、断熱性のあること、軽量であること、高誘電
体であること等がら各方面への発展が期待される無機材
料である。その特徴的な性質の基因する所の主な点扛珪
酸カルシウムの結晶の形膳とその集合状s!ニよると考
えられている。
Calcium silicate molded bodies are industrially applied in many fields such as fire-resistant insulation materials, adsorbents, and building materials, and these are due to their high specific strength (**) and high fire resistance. It is an inorganic material that is expected to be developed in various fields due to its heat insulating properties, light weight, and high dielectric properties. The main points responsible for its characteristic properties are the shape of calcium silicate crystals and their aggregates! It is believed that it depends on

而して本発明者等は蒙珪酸カルシウムの結晶の特殊な集
合状−である所の二次粒子の製造とその構!!に関して
研究を重ねて来を結果、珪酸カシシする#1.い球状二
次粒子の開発に成功しこれに基ず〈発明を完成し、すで
に特許第986812号(特公昭5今−今968号)と
して特許され友。
Therefore, the present inventors have developed a method for producing secondary particles, which are a special aggregate of calcium monosilicate crystals, and their structure! ! As a result of repeated research on silicate #1. Based on this, he succeeded in developing spherical secondary particles and completed the invention, which has already been patented as Patent No. 986,812 (Special Publication No. 5-Ima-Ima-968).

この特許発明は、特定の構造を有するトベルtライトの
球状二次粒子が水に均一に懸濁した水性スラリーに係る
ものでありその球状二次粒子は、lO〜150μm程度
の外径を有しトベルtライト結晶が不規則に三次元的に
絡合して形成されている。
This patented invention relates to an aqueous slurry in which spherical secondary particles of Tobelt light having a specific structure are uniformly suspended in water, and the spherical secondary particles have an outer diameter of about 10 to 150 μm. It is formed by irregularly intertwining Tbelt t-lite crystals in a three-dimensional manner.

このトベル七ライト結晶の球状二次粒子はこれ【水に分
散せしめて成形し乾燥するだけで、この特許出願時には
存在しなかった軽量にして優れた強度を有するトペルし
ライト結晶の成形体tm構造来るものである。この理由
は該成形体が上記球状二次粒子が相互に連結して圧縮変
形された状−で構成されているためと考えられている。
This spherical secondary particle of Tobel heptalite crystal can be obtained by simply dispersing it in water, molding it, and drying it to create a molded product of Tobel heptalite crystal tm structure, which has a light weight and excellent strength that did not exist at the time of this patent application. It is coming. The reason for this is thought to be that the molded body is composed of the spherical secondary particles that are interconnected and compressed.

即ち成形体の構成要素が外力に対して最も安定で強固な
形状である球状を呈する二次粒子から成っていることに
基づくものと考えられている。
That is, it is believed that this is based on the fact that the constituent elements of the molded body are composed of secondary particles exhibiting a spherical shape, which is the most stable and strong shape against external forces.

また本発明者等は上記とは別に、珪酸カルシウム結晶の
うちトベル七ライト結晶とは異なるワラストナイト族珪
酸カルシウム結晶についての新しい球状二次粒子を開発
し、すでに出願している(特開昭53−146997号
)。このワラストすイト族珪酸カルシウム結晶から成る
球状二次粒子はlO〜70μ調の外径を有し、その結晶
の集合した二次粒子の構造は珪酸カルシウムの針状結晶
が壇の外周部で不amに三次元的に密に絡合して薄肉の
球殻tなし、その内部が空洞となった二次粒子でその見
掛密度が0.09〜0.13 fl /c41−個の粒
子の破壊荷重がlθ〜100qという特徴ある構造を有
し自然沈降成形体密度が非常に小さいものである。この
球状二次粒子を水に分散せしめたスラリーから製造され
る成形体は特に軽量にして極めて強度の大きいものであ
る。この場合tj糟状状二次粒子中空であると共和その
強度も大きいことに起因するものと考えられている。尚
験#吠二次粒子はその外殻部は、ワラストすイト族珪酸
カルシウムの針状結晶が密に絡合して形成されているた
めに強固で強度も大きいのである。
In addition to the above, the present inventors have developed new spherical secondary particles for wollastonite group calcium silicate crystals, which are different from tobel heptalite crystals among calcium silicate crystals, and have already filed an application (Japanese Patent Application Laid-Open No. No. 53-146997). The spherical secondary particles made of the wollastite group calcium silicate crystals have an outer diameter of 10 to 70 μm, and the structure of the secondary particles in which the crystals are aggregated is that the acicular crystals of calcium silicate are formed at the outer periphery of the platform. A secondary particle that is three-dimensionally tightly entangled with am, has no thin spherical shell, and has a hollow interior, and has an apparent density of 0.09 to 0.13 fl/c41-particles. It has a unique structure with a breaking load of 1θ to 100q, and the density of the naturally settled molded product is extremely low. A molded article produced from a slurry in which these spherical secondary particles are dispersed in water is particularly lightweight and extremely strong. In this case, it is thought that this is due to the fact that the hollowness of the tj-shaped secondary particles increases the strength of the resonance. The outer shell of the secondary particle is made up of closely intertwined needle-like crystals of wollastite calcium silicate, making it strong and strong.

本発明者等は珪酸η1しシリムについて更(巾広く研究
金続けて来たが、この引続く研究に於いて、トベLEラ
イト結晶から成る全く新しい構造【有する球状二次粒子
の開発に成功し友。即ち本発明は、「 トベLeライト
結晶を主成分とする珪酸カルシウム結晶から成る内部が
粗乃至中空のほぼ球状の二次粒子であって、その外径が
10〜120μへその破壊荷重が100q以下、その中
空率が30%以F及びその自然沈降成形体密度が0.1
217d以下であることt−’II黴とする珪酸カシシ
リム球状二次粒子」及び [沈降客種5−以上の石灰乳と結晶質珪酸原料と′に固
形分に対する水の量が15重量倍以上となる工うに混合
調製して得られる原料スラリーを、面圧下加熱攪拌しな
がら水熱合成反応全行なわしめてトベLEライト結晶を
主成分とする珪酸カルシウム結晶のスラリーとなし、次
いでこれを乾燥することを特徴とする珪酸カルシウム球
状二次粒子の製法」に係るものである。
The present inventors have continued to conduct extensive research on silicic acid η1, and in this subsequent research, they succeeded in developing spherical secondary particles with a completely new structure consisting of tobelite crystals. Namely, the present invention is based on "substantially spherical secondary particles with a rough or hollow interior made of calcium silicate crystals containing tobelite crystals as a main component, and whose outer diameter is 10 to 120μ. 100q or less, the hollow rate is 30% or more F, and the density of the naturally settled molded body is 0.1
217d or less t-'II spherical secondary particles of cassilicate silicate as mold' and [sedimentation customer type 5- or more milk of lime and crystalline silicic acid raw material', the amount of water relative to the solid content is 15 times or more by weight or more. The raw material slurry obtained by mixing and preparing the slurry is subjected to a complete hydrothermal synthesis reaction while heating and stirring under surface pressure to form a slurry of calcium silicate crystals whose main component is Tobe LEite crystals, and then this is dried. The present invention relates to a method for producing characterized calcium silicate spherical secondary particles.

従来の珪酸カルシウム結晶から成る球状二次粒子の最も
基本的な一法はたとえば上記特許第986812号にも
示されている通り、珪酸原料、石灰原料及び水からfI
IIIKされた原料スラリーを攪拌上加圧加熱して合成
反応を行ってm造するものであり、この方法で得られる
球状二次粒子はその珪酸カシシリム結晶の種llには無
関係に内部には空洞はほとんど存在しないか又は存在し
ても自然沈降成形体密度の大きいものである。しかし乍
らこの製法に於いて珪酸カシシウム結晶の種頂としてワ
ラストナイト族珪酸カルシウムの球状二次粒子tm*す
る場合に、特に石灰原料としてこの当時使用され友こと
の無い極めて分散安定性の優れた石灰乳を使用し且つ珪
酸原料として、結晶質珪酸原料ta択使用するときには
、極めて軽量にしてしかも中空状の二次粒子が収得され
ることが本発明者等に工9見出され、すでに上記特開昭
53−146997号として出願されているのである。
One of the most basic conventional methods for producing spherical secondary particles composed of calcium silicate crystals is, for example, as shown in the above-mentioned patent No. 986812, in which fI is produced from a silicate raw material, a lime raw material, and water.
The slurry of the IIIK raw material is stirred and heated under pressure to perform a synthesis reaction. is hardly present, or even if it is present, the density of the naturally precipitated molded product is high. However, in this production method, when spherical secondary particles tm* of wollastonite group calcium silicate are used as seed heads of calcium silicate crystals, they are used as lime raw materials at that time and have extremely excellent dispersion stability. The present inventors have discovered that when milk of lime is used and crystalline silicate raw material is selectively used as the silicic acid raw material, extremely lightweight and hollow secondary particles can be obtained, and have already been reported. It has been filed as the above-mentioned Japanese Patent Application Laid-Open No. 146997/1983.

而1.て本発明者等の引き続く研究に依9次のことが明
らかとなっ九。上記特開昭53−146997号と同様
の原料ケ用いてトベル七ライト結晶から成る#吠二次粒
子を製造しようと着想して、同様に操作した所、ワラス
トナイト族珪酸カルシウム結晶の場合同じ様な内部が中
空の球状二次粒子は収得されず、若干内部の方がトベj
Llライトの存装置が粗な球状二次粒子が得られること
が判明した。本発明はこの新しい知見に基づいて完成さ
れている。
1. As a result of continued research by the present inventors, the following has become clear. I came up with the idea of producing secondary particles made of tobel heptalite crystals using the same raw materials as in JP-A No. 53-146997, and the same procedure was performed for wollastonite group calcium silicate crystals. A spherical secondary particle with a hollow interior like this was not obtained, and the interior was slightly larger.
It was found that coarse spherical secondary particles were obtained using the Ll light device. The present invention has been completed based on this new knowledge.

本発明のトベルtライト結晶から成る球状二次粒子は次
の様な点により特徴づけられる。
The spherical secondary particles made of Tobert t-lite crystals of the present invention are characterized by the following points.

(1)  先ずトベLvニライト結晶を主成分とし、こ
れ単独の場合とこれに他の珪酸カルシウム結晶例えばり
一ノトラフ、ト結晶が混在している場合が含まれる。以
下混在している場合も含めて単にトベLvニライトとい
う。
(1) First, the main component is Tobe Lv nyrite crystal, which includes cases where it is used alone and cases where other calcium silicate crystals such as Riichino trough and Tobe crystal are mixed together. Hereinafter, even if they are mixed, they will simply be referred to as Tobe Lv Nilight.

(zl  本発明二次粒子は電子−壷鏡又は光学#l1
wI鏡下では計上Ltライト結晶が三次元的に絡合して
いるのが観察され、その二次粒子は10〜120μ調の
外径をもつほぼ球状を呈している。
(zl The secondary particles of the present invention are electron-pot mirrors or optical #l1
Under the wI mirror, it was observed that the Lt light crystals were three-dimensionally entangled, and the secondary particles were almost spherical with an outer diameter of 10 to 120 μm.

尚外径は次の方法で測定したものである。The outer diameter was measured by the following method.

〈二次粒子の外径の測定方法〉 反射光で撮影した100倍のトペシ七ライト結晶を主体
とする球状二次粒子の光学順徽鏡写真より、定方向径を
測定し、粒子径の範囲及び平均粒子径(メジアシ径)を
求めた。後記実施例1の本発明二次粒子の100倍光学
1lIII!鏡写真を示す第1図から本発明の二次粒子
が球状体であってその外径が約lO〜120μ調であり
その平均粒子径は38μmであることが判る。
<Method for measuring the outer diameter of secondary particles> The directional diameter was measured from a 100x optical mirror photograph of spherical secondary particles mainly composed of topeshi heptalite crystals taken with reflected light, and the range of particle diameters was determined. And the average particle diameter (medial diameter) was determined. 100x optical magnification of the secondary particles of the present invention in Example 1 described later! It can be seen from FIG. 1, which is a mirror photograph, that the secondary particles of the present invention are spherical, have an outer diameter of about 10 to 120 μm, and have an average particle diameter of 38 μm.

(3)  本発明の二次粒子はその粒子−個の破壊荷重
が100q以下であるという特徴を有す。この破壊荷重
は二次粒子の構造就中トベL七ライト結晶の充填密度、
二次粒子の外径及びその見掛密度に関係するものと考え
られる。たとえば球状二次粒子の外殻に於ける珪酸カル
シウム結晶の充填密度が小さく粗であるときは比較的大
荷重でも球状二次粒子が破壊することなく友だ圧縮によ
る偏平化の傾向を示すのみであり、所謂変形抵抗が小さ
いものである。−刃型発明の二次粒子の如く内部が粗乃
至若干中空となっているものは変形抵抗が大きいので荷
重に対しては殆んど変形(6ないが、その−個当りの破
壊荷重は100q以ドという一定範囲内にあり、この範
囲内の一定荷重を超えると急激にひび割れを発生E2破
壊する性質を持ち、上記偏平化を示さない。
(3) The secondary particles of the present invention are characterized in that the breaking load per particle is 100q or less. This breaking load is determined by the structure of the secondary particles, especially the packing density of Tobe L heptalite crystals,
This is thought to be related to the outer diameter of the secondary particles and their apparent density. For example, if the packing density of calcium silicate crystals in the outer shell of a spherical secondary particle is small and coarse, the spherical secondary particle will not break even under a relatively large load and will only show a tendency to flatten due to friendly compression. This means that the so-called deformation resistance is small. -Those with rough or slightly hollow interiors, such as the secondary particles of the blade-shaped invention, have high deformation resistance, so they hardly deform under load (6, but the breaking load per piece is 100q) It is within a certain range of E2, and when a certain load within this range is exceeded, it has the property of rapidly cracking and breaking, and does not exhibit the above-mentioned flattening.

上記破壊荷重と框、珪酸カルシウム結晶の球状二次粒子
に荷重會加えていったとき該二次粒子の球殻の少くとも
一部にひ、び割れが生ずるときの荷重を云い、たとえば
破壊荷重が10〜100Jllpであるということは、
鰺二次粒子に荷重’imえてい:つたとき、該二次粒子
がlO〜100qの間の一定の荷重が加えられたときに
該二次粒子の球殻の少なくとも−fllhKひび鋼重が
生ずるということを表わし、また破壊荷重が1000q
というときは10001の荷重が加えられたときに該二
次粒子の球殻の少くとも一部にひび割れが生ずるという
ことを表わす。
When a load is applied to the spherical secondary particles of calcium silicate crystals in combination with the above-mentioned breaking load, it refers to the load at which cracks occur in at least a portion of the spherical shell of the secondary particles.For example, the breaking load is 10 to 100 Jllp, which means that
When a load is applied to the secondary particles of mackerel, when a constant load between 10 and 100q is applied to the secondary particles, at least -fllhK cracks occur in the spherical shell of the secondary particles. This means that the breaking load is 1000q
This means that at least a portion of the spherical shell of the secondary particle cracks when a load of 10001 is applied.

く破壊荷重の測定方法〉 該二次粒子三個を正三角形状にスうイドグラス上にのせ
、その上に装バークラス全1!置し、カバーグラス上に
荷重を加えながら600倍の光学順像鏡にて観察し、該
二次粒子の球殻の一部にひび割れが生じるか否かを観察
して測察\1測定し、ひび割れが生じたときの荷重で表
わす。
Method for measuring fracture load: Place the three secondary particles in an equilateral triangle shape on a glass glass, and place the bar on top of the glass. Place the particles on the cover glass and observe with a 600x optical forward mirror while applying a load to observe and measure whether cracks occur in a part of the spherical shell of the secondary particles. , expressed as the load when cracking occurs.

(4)本発明の球状二次粒子の内部は粗乃至中空であっ
て、中空率は30%以下である。ここで中空率とは次の
方法で測定されたものである。
(4) The interior of the spherical secondary particles of the present invention is coarse to hollow, and the hollowness ratio is 30% or less. Here, the hollowness ratio is measured by the following method.

自然沈降成形体の一部を切り出し、これをカナダパル寸
ム(米用薬品工業製)で固定し、次いでこf′Lを研磨
しt後十シレシで上記カナタバLITへを除去して研磨
試料tio友。この試料を走査型電子wIAwjk鏡に
て写真撮影し、球状二次粒子の断面エリ半径ir)及び
中空部の半径(〆)t#ll定し次式エリ中空率を求め
た。
A part of the natural sedimentation molded body was cut out, and this was fixed with Canada Pal Dimensions (manufactured by Yakuhin Kogyo, USA), and then the part f'L was polished, and after that, it was removed to the above-mentioned Kanataba LIT with a ten-scraper to prepare a polished sample. friend. This sample was photographed using a scanning electron wIAwjk mirror, and the cross-sectional edge radius ir) of the spherical secondary particles and the radius of the hollow portion (end) t#ll were determined, and the edge hollowness ratio was determined by the following formula.

3 中空率が30%以下ということは、球状二次粒子の内部
が中空であってもその中空I11#i特に大きくはな匹
こと?示している。しかも小さな中空部が随所に存在し
て所謂内部が粗になっている場合も包含される。
3 Does the hollowness ratio of 30% or less mean that even if the inside of the spherical secondary particle is hollow, the hollow I11#i is not particularly large? It shows. Moreover, it also includes cases where small hollow portions are present here and there and the so-called interior is rough.

第3図に示された球状二次粒子の内部は粗であり、中空
率は0%であり、第4図に示された球状二次粒子の中空
率は0〜25%である。
The interior of the spherical secondary particles shown in FIG. 3 is rough and the hollowness is 0%, and the hollowness of the spherical secondary particles shown in FIG. 4 is 0 to 25%.

たとえば特開昭’)3−146997号の実施例に記載
の9ラストナイト族珪酸カルシウム結晶から成る球状二
次粒子の中空率は60%以上であり、本発明の球状二次
粒子と#本釣に異なる構at有している。
For example, the hollowness ratio of the spherical secondary particles made of 9-lastonite group calcium silicate crystals described in the example of JP-A No. 3-146997 is 60% or more, and the spherical secondary particles of the present invention and the They have different structures.

(5)本発明の二次粒子の自然沈降成形体密度が0.1
21 /d以下好I L<tio、l 01/d以下で
ある特徴を有する。この自然沈降成形体密度 1け次の
方決に依り測定した。
(5) The density of the spontaneous sedimentation molded body of the secondary particles of the present invention is 0.1
21 /d or less, preferably I L < tio, l 01 /d or less. The density of this naturally settled molded body was measured according to the following method.

300ccトールビーカーにスラリー200 CCと非
イオシ、アニオシ界面活性剤(グラシアツブNF−50
、三洋化成製、濃度20%)o、+ccケ投入混合後、
48時間放置自然沈降させ次いでこれt−100″Cで
48時間乾燥させて自然沈降成形体を得た。これの体積
及び重さを測定し密度を求めた。
Slurry 200cc in a 300cc tall beaker with non-iodine and aniodine surfactant (Glacia Tub NF-50)
, made by Sanyo Chemical, concentration 20%) o, +cc After mixing,
The molded product was allowed to naturally settle for 48 hours, and then dried at t-100''C for 48 hours to obtain a naturally precipitated molded product.The volume and weight of the product were measured to determine the density.

この自然沈降成形体の密度が小さいということは、球状
二次粒子自体がかなり軽量であり、該二次粒子からは、
密度0.1・f /dim度で実用的強度を有する成形
体を製造できることt示している。たとえば特許第98
6812号に記載のトベル七ライト結晶の球状二次粒子
は自然沈降成形体密度が大きく、このため上記公知のト
ベルしライト結晶の二次粒子からは密度0.11/c4
程度の成形体tall造することはできない。
The low density of this natural sedimentation molded body means that the spherical secondary particles themselves are quite lightweight, and from the secondary particles,
This shows that it is possible to produce a molded article with a density of 0.1·f 2 /dim and a practical strength. For example, Patent No. 98
The spherical secondary particles of the Tobel heptalite crystal described in No. 6812 have a high density of naturally precipitated compacts, and therefore the density of the above-mentioned known tobel heptalite crystal is 0.11/c4.
It is not possible to make a molded body of this size.

:6)本発明の二次粒子の平均見掛密度は約0.14−
0.21f/c4、就中主トL、テ0.16〜0.2 
Of / t4の範囲にあり、かなり軽量なものである
:6) The average apparent density of the secondary particles of the present invention is about 0.14-
0.21f/c4, especially main To L, Te 0.16~0.2
It is in the Of/t4 range and is quite lightweight.

但(7ヒ記平均見掛密度は次の橡な方法で測定したもの
である。
However, (7) The average apparent density was measured using the following unsophisticated method.

く平均見掛密度の測定方法〉 トベルしライト結晶のスラリーをアセトシによりスラリ
ー中の水と置換させ、90”Oで24時間乾燥させ、球
状二次粒子を破損することなく粉体となす。この粉体r
tttts定し、ビーカー中に入れる。次にピルレット
を使用し水を該雌伏二次粒子に含浸させ、ちょうど水が
球状二次粒子に含浸しt時(球状二次粒子の粘性が急に
増加するとき)の水の置を読みと9VMtとする。この
測定から球状二次粒子の平均見掛密度(ρ)上次式によ
り算出したものである。
Method for Measuring Average Apparent Density> Water in the slurry of Tobelite crystals is replaced by acetoxylation and dried at 90"O for 24 hours to form a powder without damaging the spherical secondary particles. powder r
tttts and place it in a beaker. Next, use a pilllet to impregnate the spherical secondary particles with water, and read the position of the water at time t (when the viscosity of the spherical secondary particles suddenly increases) when the water has just impregnated the spherical secondary particles. It is assumed to be 9VMt. From this measurement, the average apparent density (ρ) of the spherical secondary particles was calculated using the following equation.

FCI) i 但しplFiトベL七ライトライト重であって2.57
6  である。
FCI) i However, plFi Tobe L is 7 light heavy and 2.57
It is 6.

本発明の球状二次粒子はたとえば次の様な方法水の量が
15倍(重量)以上となる様に混合して原料スラリーと
なし、これを加圧下加熱攪拌しながら水熱合成反応せし
めるとトペレtライトま几はこf′Lt主成分とするり
一ノトライトとの混合結晶から成る本発明の球状二次粒
子のスうり−とすることが出来る。この際の沈降容積5
−以上とは水対わ灰の固形分の比を120倍に調製した
石灰乳5O−t−その直径1.33で容積が50−以上
の円柱状容器に入れ、20分間静置した後に石灰が沈降
した容置t−一で示すものである。沈降容積が5−以上
という極めて良く分散した懸濁性の優れた石灰乳を得る
には生石灰を常温より高い温度の温水中で良く攪拌しな
がら消和することによって達成される。特に高い沈降容
積を得るためには消和温度を高くしたり、ホr:三り寸
−等で急速に攪拌したり、長時間攪拌したりすることに
よっても達成出来る。
The spherical secondary particles of the present invention can be produced by, for example, the following method: Mix the amount of water at least 15 times (by weight) to form a raw material slurry, and subject this to a hydrothermal synthesis reaction while heating and stirring under pressure. The spherical secondary particles of the present invention, which are composed of a mixed crystal of f'Lt as a main component and silinotolite, can be used. Sedimentation volume at this time 5
- The above means 5Ot of lime milk prepared with a solid content ratio of water to ash of 120 times. Put it in a cylindrical container with a diameter of 1.33 and a volume of 50 or more, let it stand for 20 minutes, and then lime milk. is shown in the container t-1 in which it has settled. Milk of lime with a sedimentation volume of 5 or more, which is extremely well dispersed and has excellent suspendability, can be obtained by slaked quicklime in hot water at a temperature higher than room temperature while stirring well. In order to obtain a particularly high sedimentation volume, this can also be achieved by increasing the slaking temperature, stirring rapidly in a vortex or the like, or stirring for a long period of time.

まtもう一方の原料として使用する珪酸原料は平均粒径
が1〜20μm好ましくは10μ飼以下の微粒子の結晶
質珪酸を主体とするものが使用出来る。該結晶質珪酸と
してはAg2O,の含有量が少々高いものでも使用出来
、友とえば’j203が5%程度含有されたものでも使
用出来る。純度としてはSs CJ2  が90%以上
のものが通常使用される。
The silicic acid raw material used as the other raw material can be one mainly composed of fine particles of crystalline silicic acid with an average particle diameter of 1 to 20 .mu.m, preferably 10 .mu.m or less. As the crystalline silicic acid, one having a slightly high content of Ag2O can be used, for example, one containing about 5% of 'j203 can also be used. As for the purity, those having Ss CJ2 of 90% or more are usually used.

石灰と珪酸との配合七シ比はトベルtライト生成に望ま
しいtル比通常0.70〜Q、95 (CtsO/SJ
 (’2七ル比)好ましくは0.75〜0.904%!
度である。
The mixing ratio of lime and silicic acid is usually 0.70 to Q,95 (CtsO/SJ
('27 ratio) Preferably 0.75 to 0.904%!
degree.

これ等石灰乳と珪酸原料を混合し、水対1形分比i15
倍以上好ましくは18〜30惰とする。
These lime milk and silicic acid raw materials are mixed, and the water to 1 form ratio is i15.
It is preferably 18 to 30 times or more.

かくして得られた原料スラリーを次いで加圧下加熱攪袢
しながら水熱合成反応上行なわしめる。この際の圧力、
温度及び攪拌速度等の反応条件は蒙反応に用いる反応容
器、攪拌機等により適宜に決定される。水#1戻反応件
#i飽和水蒸気圧が5kl/d以上で通常行なわれ、た
とえば12#/dの場合は19)”Cj、10に9/1
4では183℃程度である。反応時間は温度、圧力を高
めることにエリ短縮出来るが、経済的には反応時間は短
かい方が良いが操業時の安全性を加味すると10時間以
内が望ましく、たとえば12#/dで3時間、8#/d
で6時間程度である。
The raw material slurry thus obtained is then subjected to a hydrothermal synthesis reaction while heating and stirring under pressure. The pressure at this time,
Reaction conditions such as temperature and stirring speed are appropriately determined depending on the reaction vessel, stirrer, etc. used for the reaction. Water #1 return reaction #i is normally carried out when the saturated water vapor pressure is 5 kl/d or more, for example, in the case of 12 #/d, 19)"Cj, 10 to 9/1
4, it is about 183°C. The reaction time can be shortened by increasing the temperature and pressure, but from an economic standpoint, the shorter the reaction time, the better, but considering safety during operation, it is desirable to keep it within 10 hours.For example, 3 hours at 12 #/d. , 8#/d
It takes about 6 hours.

該水熱合成反応時に於ける攪拌は、使用原料、反応容器
、反応条件等に従って適宜に決定する。
Stirring during the hydrothermal synthesis reaction is appropriately determined according to the raw materials used, reaction container, reaction conditions, etc.

たとえば直径150ag容量31!の反応容器で擢形攪
拌員を使用して12峠/d、191”00条件で合成す
る場合は、攪拌速度は+ o o r、p、m程度で良
い。攪拌操作としては反応容器自身會回転したり、振動
し友9、気体や液体を圧入したりする各種の攪拌操作を
例示出来る。本発明の水熱反応はバッチ式反応でも連続
反応でも良く、連続反応を行う場合には連続的に原料ス
うり−を反応容11jK圧入し反応が終rした合成スラ
リー(珪酸カルシウム結晶スラリー)を常圧下に排出す
れば良い。
For example, diameter 150ag capacity 31! When synthesis is carried out under the conditions of 12 touge/d and 191''00 using a scale-shaped stirrer in a reaction vessel, the stirring speed may be approximately + o o r, p, m. Various stirring operations such as rotating, vibrating, and pressurizing gas or liquid can be exemplified.The hydrothermal reaction of the present invention may be a batch reaction or a continuous reaction. The raw material slurry may be pressurized into the reaction volume to a volume of 11K, and the synthetic slurry (calcium silicate crystal slurry) after the reaction is discharged under normal pressure.

この排出の際に二次粒子が損なわれないようにする必要
がある。また原料スうり°−の水比tさげて反応容器中
で反応せしめ、反応後所定量の水管圧入して排出する方
法全行なっても良い。
It is necessary to ensure that the secondary particles are not damaged during this discharge. Alternatively, the whole process may be carried out, in which the water ratio of the raw materials is reduced, the reaction is carried out in a reaction vessel, and after the reaction, a predetermined amount of water is press-fitted into a water pipe and discharged.

この珪酸カルシウムの合成に際しては、反応促進剤や触
謀等會適宜添加することは可能であり、また沈澱防止剤
4s加出来る。これ等としては苛性ソーダや苛性カリ等
の′PLカリや’PLカリ金属の各種填ar例示出来、
更には石綿、セう三ツクファイバー等の無機繊維も例示
出来る。
When synthesizing this calcium silicate, it is possible to add a reaction accelerator, a catalyst, etc. as appropriate, and 4s of a suspending agent can be added. Examples of these include various fillers of 'PL potash' and 'PL potash metals' such as caustic soda and caustic potash.
Further examples include inorganic fibers such as asbestos and fiber.

上記の水熱合成反応によって、トペル七ライトの結晶よ
り成る本発明の球状二次粒子が多数本に分散したスラリ
ーが得られる。このスうり−【二次粒子の形状を損なわ
ないように乾蝿することにより本発明のトベルtライト
球状二次粒子の粉体を得ることが出来る。まt鍍スラリ
ー又は該粉体全二次粒子の形状tIi1にわないように
800℃以上で焼成することKよりワラストナイト雌状
二次粒子の粉体t−得ることが出来る。
The above hydrothermal synthesis reaction yields a slurry in which a large number of spherical secondary particles of the present invention made of topel heptalite crystals are dispersed. By drying this powder without damaging the shape of the secondary particles, it is possible to obtain a powder of Tobelt-lite spherical secondary particles of the present invention. A powder of wollastonite female secondary particles can be obtained by firing at 800° C. or higher so that the entire secondary particles of the plated slurry or the powder do not conform to the shape tIi1.

本発明の球状二次粒子が水に分散しtスラリーはこれを
所望の形状に成形し、ただ単に乾燥するのみで、成形体
とすることが出来る。この際の水の量は広い範囲で適宜
に決定すれば良いが、4常[形勢に対し3〜50倍好ま
しくは5〜30倍程度である。
The t-slurry in which the spherical secondary particles of the present invention are dispersed in water can be made into a molded body by simply molding it into a desired shape and drying it. The amount of water at this time may be appropriately determined within a wide range, but is usually about 3 to 50 times, preferably about 5 to 30 times the situation.

本発明の#状二次粒子を水に分散乃至懸濁せしめたスラ
リーから軽量で強度の大きいトベル七うイト成形体紮@
造することが出来る。
A lightweight and strong tovel seven-piece molded body is made from a slurry in which the #-shaped secondary particles of the present invention are dispersed or suspended in water.
can be built.

本発明に於いてはt記スラリーに必#に応じ各種の補強
添加副音添加することが出来る。この際の補強添加剤と
しては広く各種のものが使用出来、その代表的なもの會
例示すると例えばパルプ、麻、各種びJ有機又は無機の
合成及び天然繊維、セメシト、粘ヒ、石膏、珪砂、珪藻
土、パーライト、水ガラス、コロイダルシリ力、アルミ
ナリル、リチウムシリケート、澱粉、樹脂等全例示出来
る。有機質繊維としてはパルプ、麻等の天然繊維やアイ
0シ、テトロンの如き各種の合成繊維が使用出来、また
無機質繊維としては石綿、シリカファイバー、グラスフ
ァイバー、ロックウール、黒船繊維、各種ウィスカー等
が使用出来る。また鉄骨、金網等も使用0丁能である。
In the present invention, various reinforcing additions and subtones can be added to the slurry according to necessity. A wide variety of reinforcing additives can be used in this case, and representative examples include pulp, hemp, various organic and inorganic synthetic and natural fibers, cement, clay, gypsum, silica sand, Examples include diatomaceous earth, perlite, water glass, colloidal silicate, aluminalyl, lithium silicate, starch, and resin. As organic fibers, natural fibers such as pulp and hemp, and various synthetic fibers such as IOSHI and Tetron can be used.As inorganic fibers, asbestos, silica fiber, glass fiber, rock wool, Kurofune fiber, and various whiskers can be used. Can be used. Also, steel frames, wire mesh, etc. cannot be used.

これ等各種の補強添加剤【使用することにより、その補
強添加剤の種IIに応じて目的物成形体の劃り耐熱性、
硬度等t−1&c向上せしめることが出来る。
These various reinforcing additives [By using them, depending on the type II of the reinforcing additives, the tearing heat resistance of the target molded product,
Hardness etc. t-1&c can be improved.

本発明のトベルtライト球状二次粒子から得られるトペ
Il/r、うイト成形体d、従来のトベル七ライト球状
二次粒子からg*されるトベL七うイト成形体に比し次
の様な優れた特徴【有す。
The tobe Il/r obtained from the tobel t-light spherical secondary particles of the present invention, the utite molded body d, are compared with the tobe L 7-ite molded body obtained by g* from the conventional tobel t-lite spherical secondary particles, as follows. It has various excellent characteristics.

A>  o、11.lcam度の密度の成形体でありな
から3#/d以上纒)の実用的曲げ強度を有す。尚従来
めトベLeライト球状二次粒子からは0.1f /di
i度の軽量な#L形体は襲壷出来ず、0.111dm度
のトベLvニライト成形体は、本発明の球状二次粒子の
開発によりはじめて可能となる。
A> o, 11. Since it is a molded product with a density of 1 cam, it has a practical bending strength of 3 #/d or more. In addition, from conventional Tobe Le light spherical secondary particles, it is 0.1 f/di.
A lightweight #L-shaped body with an i degree cannot be produced, but a 0.111 dm Tobe Lv nyrite molded body is only possible with the development of the spherical secondary particles of the present invention.

B)トベルtライトから成っているにもかかわらず耐熱
度が高く、850℃に加熱してもiH縮率F12%以下
である。
B) Although it is made of Tobelt light, it has high heat resistance, and even when heated to 850°C, the iH shrinkage rate is F12% or less.

C) 優生配向しており、特に嵩密度が0.317d以
Fで配向度が大きい。優先配向度は次の方法で測定さr
ttものである。
C) It has a eugenic orientation, and the degree of orientation is particularly high when the bulk density is 0.317 d or more. The degree of preferred orientation is measured by the following method.
It is a tt thing.

成形体の−WLt−採取して微粉砕し無配向粉末試料を
作り、一方上記成形体からプレス方向に直角な面をもつ
別の試料を作る(配向試料)。
-WLt- of the compact is sampled and pulverized to produce a non-oriented powder sample, while another sample having a surface perpendicular to the pressing direction is made from the compact (oriented sample).

次いで2つ・の試料のトベルtライト結晶の(002)
及び(220)面のX線回折強度をそれぞれ測定する。
Then, the (002) of two samples of tobelt-lite crystals
and (220) plane X-ray diffraction intensities are measured.

優先配向度(P)は 見られる。The preferred orientation degree (P) is Can be seen.

ここで7(002)と7(220)は無配向粉末試料の
回折強度で7’(002)と7’(220)は配向試料
の回折強度である。
Here, 7(002) and 7(220) are the diffraction intensities of the non-oriented powder sample, and 7'(002) and 7'(220) are the diffraction intensities of the oriented sample.

本発明球状二次粒子は見掛密度が極端に低く耐熱性が高
く、且つこれを水或いは溶液中に懸濁さすことにより、
容易に成形体とすることが出来、その成形体は耐火建材
、断熱材に極めて好適なものであり、また請二次粒子か
ら成る粉体は、充填剤、各種吸着剤、脱臭剤、農薬、塗
料、−三力士粉、顔料、触媒担体、各種薬品の担体等の
用適がある。
The spherical secondary particles of the present invention have extremely low apparent density and high heat resistance, and by suspending them in water or a solution,
It can be easily made into a molded product, and the molded product is extremely suitable for fire-resistant building materials and insulation materials.The powder made of secondary particles can also be used as fillers, various adsorbents, deodorizers, agricultural chemicals, It has applications such as paints, sumo wrestler powder, pigments, catalyst carriers, and carriers for various chemicals.

以下に実施例を示して本発明の特徴とする所を説明する
。但(、下記例に於いて部又は%とあるは特に説明しな
いかぎり重量部又は重量%を示す。
The features of the present invention will be explained below with reference to Examples. However, in the following examples, parts or % refer to parts by weight or % unless otherwise specified.

実施例1 生石灰(ClIC195,0%) 42.25部180
°Cの温8507部中で消和し、本七三り寸−にて3分
間水中で分散させて得た石灰乳の沈降容積は19.9−
であった。上記石灰乳に平拘粒子径約9μ肩の珪石粉末
(5Io297.37%、A12C130,99%)5
3.21部を加えて全体の水量を固形分の22重量倍と
なるように混合して原料スラリーを得、これを飽和水蒸
気圧12#/d、温度19ビCで容積300 Q cc
、内径15a11のオードクレーブチ回転数174 r
、ム鯛で攪拌gek1転しながら3時間水熱合成反応を
行4って結晶スラリーtlIた。この結晶スラリ−i 
+ 00 ’Cで24時間乾燥してX線回折分析17を
所、トベルtライト結晶であることを確認し友。この結
晶スラリーをスうイドグラス上で乾燥して光学順像鏡で
観察すると第1図に示される通り外径が平均38μmの
球状二次粒子が認められた。また該スラリーに界面活性
剤を添加混合し、48時聞静置自然沈降せしめ次すでこ
れi + 000で48時間乾燥して得られた自然沈降
成形体の一部を切り出し、これをカナダバルサムで固定
し、次いでこれt−研磨した後生シレシで上記カナダバ
ルサムを除去して研磨試料を得た。
Example 1 Quicklime (ClIC195.0%) 42.25 parts 180
The sedimentation volume of milk of lime obtained by slaked in 8507 parts of water at a temperature of 19.9 °C and dispersed in water for 3 minutes at a temperature of 19.9 -
Met. Silica powder (5Io297.37%, A12C130,99%) with a flat particle diameter of about 9μ in the above lime milk 5
3.21 parts were added and mixed so that the total amount of water was 22 times the weight of the solid content to obtain a raw material slurry, which was heated to a volume of 300 Q cc at a saturated steam pressure of 12 #/d and a temperature of 19 BiC.
, inner diameter 15a11 au declave rotation speed 174 r
Then, a hydrothermal synthesis reaction was carried out for 3 hours while stirring with a mu-tai (Geki 1 rotation), and a crystal slurry was obtained. This crystal slurry i
It was dried at +00'C for 24 hours and subjected to X-ray diffraction analysis, which confirmed that it was a tobelt-lite crystal. When this crystal slurry was dried on a glass glass and observed with an optical mirror, spherical secondary particles with an average outer diameter of 38 μm were observed as shown in FIG. Further, a surfactant was added to the slurry and mixed, and allowed to settle naturally for 48 hours.Then, the slurry was dried for 48 hours at i + 000, a part of the resulting naturally settled molded body was cut out, and this was made into Canadian balsam. The sample was then fixed by T-polishing, and the Canada balsam was removed using a raw polisher to obtain a polished sample.

この試料會走査型電子順会鏡で観察すると第3図に示さ
れる通りトベルtライト結晶が@VC集合して球状二次
粒子tuffしていることが判明した。
When this sample was observed using a scanning electronic mirror, it was found that tobelt-light crystals were aggregated @VC to form spherical secondary particles tuff, as shown in FIG.

またこの二次粒子を分散して電子顕微鏡で観察すると第
2図に示される通=9長さ0.1〜1oP1巾0.1〜
2μmの板状結晶と長さ0.1〜10μ−巾0.05〜
0.5Pの針状結晶が認められた。
Furthermore, when these secondary particles are dispersed and observed with an electron microscope, the diameter shown in Figure 2 is 9 = 9 length 0.1 ~ 1oP 1 width 0.1 ~
2μm plate-shaped crystal, length 0.1~10μ-width 0.05~
Needle-shaped crystals of 0.5P were observed.

上記二次粒子の各特性#′i第1表の通りであった。Each characteristic #'i of the secondary particles was as shown in Table 1.

第  1  表 参考例1 実施例1で得た結晶スう11−iプレス成形し、120
℃で20時間乾燥して得た成形体の優先配向度は第2表
の通りであった。
Table 1 Reference Example 1 The crystals obtained in Example 1 were press-molded to 120
The degree of preferential orientation of the molded product obtained by drying at °C for 20 hours was as shown in Table 2.

第  2  表 次いで上記結晶スラリー85部(固形分)に添加材と1
−てガラス繊維71!S、パルプ511Ih及びポルド
ラシト七メント3!1Kt−加えて、同様にプレス成形
【7、l 20 ”Cで20時間乾燥して成形体tII
た。
Table 2 Next, 85 parts (solid content) of the above crystal slurry was added with additives and 1
-Glass fiber 71! S, Pulp 511Ih and Poldracito 7-mention 3!1Kt-In addition, press molding [7, l 20''C was dried for 20 hours to form a molded product tII.
Ta.

得られた成形体の物性は第3表の通りであった。The physical properties of the obtained molded body were as shown in Table 3.

第  3  表 実施例2 生石灰(C6095,1%) 41.42部180−0
17)温湯4??lI中で消和し、ホV:ミク寸−にて
5分間水中で分散させて得た石灰乳の沈降容積ti I
 7.5−であった。上記石灰乳に平拘粒子径約8.5
Pの珪石粉末(5s(’294−03%、#20.2.
37%)54.04部を加えて全体の水量【固形分の2
2重量倍となるように混合して原料スうり−を得、これ
を飽和水蒸気圧12#/d、温度191℃で容積300
Qcc、内径15傷のオートクし−って―転数174F
、戸0gl1で攪拌翼1に1g1転しながら3時間水勢
合成反応を行なって結晶ス5 ’J −f14た。この
結晶スラリーt−100℃で24時間乾燥してX線回折
分析[、た所、トベLtライト結晶であること’を確認
した。この結晶スラリーをスライドグラス上で乾燥【−
で光学顕微鏡で観察すると外径が平均52μ解の球状二
次粒子が認められた。まtwIスラリーに界面活性剤を
添加混合し、48時閏静置自然沈降せしめ次いでこれを
100℃で48時間乾燥1〜で得られた自然沈降成形体
の−g’を切り出し、これをカナダバルサムで固定し、
次いでこれを研磨した後生シレシで上記力′T4バL1
iムを除去して研磨試料を得た。この試料全走査型電子
顧**で観察すると第4図に示される通りトベル七うイ
ト結晶が粗に集合したもの及び内部が中空の球状二次粒
子を形成していることが判明した。
Table 3 Example 2 Quicklime (C6095, 1%) 41.42 parts 180-0
17) Warm water 4? ? Sedimentation volume of milk of lime obtained by slaked in water and dispersed in water for 5 minutes in water
It was 7.5-. The above milk of lime has a particle diameter of approximately 8.5.
P silica powder (5s ('294-03%, #20.2.
37%) 54.04 parts to reduce the total water volume [solid content 2
The raw material slurry was mixed so that the weight was 2 times the weight, and the volume was 300 at a saturated steam pressure of 12 #/d and a temperature of 191°C.
Qcc, auto truck with inner diameter 15 scratches - rotation speed 174F
A water synthesis reaction was carried out for 3 hours with 1 g of the mixture being transferred to the stirring blade 1 at 0 g/l of the door to obtain crystals. This crystal slurry was dried at -100° C. for 24 hours and analyzed by X-ray diffraction [which confirmed that it was Tobelite crystal. Dry this crystal slurry on a slide glass [-
When observed with an optical microscope, spherical secondary particles with an average outer diameter of 52 μm were observed. A surfactant was added to and mixed with the MatwI slurry, allowed to stand still for 48 hours, and allowed to naturally settle.Then, this was dried at 100°C for 48 hours.The natural sedimentation molded body obtained in steps 1 to 1 was cut out -g', and this was mixed into Canada balsam. Fix it with
Next, after polishing this, apply the above force 'T4 bar L1 with a raw polisher.
The imprint was removed to obtain a polished sample. When this sample was observed with a full-scanning electronic monitor, it was found that, as shown in FIG. 4, it was found that tobel heptaite crystals were coarsely aggregated and formed spherical secondary particles with hollow interiors.

ま友この二次粒子全分散して電子順像鏡で観察すると長
さ0.1〜lOμm、巾0.1〜2μmの板状結晶と長
さ0.1−10μ調、巾0.05〜0.5Pの針状結晶
が認められた。
When Mayuko's secondary particles are completely dispersed and observed with an electronic forward imaging mirror, they are plate-shaped crystals with a length of 0.1 to 10 μm and a width of 0.1 to 2 μm, and a length of 0.1 to 10 μm and a width of 0.05 to 10 μm. Needle-shaped crystals of 0.5P were observed.

上記二次粒子の各特性は第4表の遺りであった。The characteristics of the secondary particles were the same as those in Table 4.

第  4  表 参考例2 実施例2で得た結晶スラリー管プレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度はwL5表
の通りであった。
Table 4 Reference Example 2 The crystal slurry obtained in Example 2 was pressed into a tube and heated at 120°C.
The degree of preferential orientation of the molded product obtained by drying for 20 hours was as shown in Table wL5.

@5表 次いで上記結晶スラリー85部(固形分)#CII加材
と1〜でガラス繊維7w1k、パルプ5部及びボルトう
シトセメシト3部を加えて、同様にプレス成形し、12
0”Cで20時間乾燥して成形体tlB友。
@5 Table Next, 85 parts (solid content) of the above crystal slurry was added to the #CII filler material, 7 w1k of glass fiber, 5 parts of pulp, and 3 parts of bolt cement were press-molded in the same manner.
Dry at 0''C for 20 hours to form a molded body.

得られた成形体の物性は第6表の迩9であった。The physical properties of the obtained molded product were as shown in Table 6, 9.

第  6  表 実施例3 生石灰(Ca1l 95.6%) 45.’16部t8
0″Cの温湯547部中で消和し、本七三り寸−にて6
分間水中で分散させて得た石灰乳の沈降容積F128.
0−であった。上記石灰乳に平均粒子径約8.5μmの
珪石粉末< sio  94.03%、Al2032.
37%)59.44部を加えて全体の水量t−固形分の
20重量惰となるように混合して原料スラリーを得、こ
れを飽和水蒸気圧8#/d、温度175℃で容積300
0cc、内径153のオートクレーブで回転数17今r
、ム鰐で攪拌翼を一転しながら6時間水熱合成反応を行
々つて結晶スラリーを得た。この結晶スラリーを100
℃で24時間乾燥してX線回折分析した所、トぺんtラ
イト結晶であることを確認し友。この結晶スうり−をス
うイドグラス上で乾燥して光学顕微鏡で観察すると外径
が平均45Pの球状二次粒子が認められた。また該スう
I+−[!1lfIJ活性剤を添加混合し、48時間靜
装自然沈降せしめ次いでこれ′に100℃で48時間乾
燥E7て得られ友自然沈降成形体の−sIを切り出し、
これt力14バLgムで固定し、次いでこれを研磨1.
た後生シレシで上記力すダバL1jムを除去1.て研磨
試料t−Iiまた。この試料を走査型電子順Inで観察
するとトベII/Eライト結晶が粗に集合して球状二次
粒子全形成していることが判明し友。
Table 6 Example 3 Quicklime (Ca1l 95.6%) 45. '16 part t8
Dissolved in 547 parts of warm water at 0''C, and boiled in 6 ounces.
Sedimentation volume of milk of lime obtained by dispersing in water for minutes F128.
It was 0-. Silica stone powder with an average particle size of about 8.5 μm<sio 94.03%, Al2032.
37%) was added and mixed so that the total amount of water was t - the weight of solids was 20% to obtain a raw material slurry, which was heated to a volume of 300 at a saturated steam pressure of 8 #/d and a temperature of 175°C.
0cc, autoclave with inner diameter 153 and rotation speed 17 r.
A crystal slurry was obtained by carrying out a hydrothermal synthesis reaction for 6 hours while rotating the stirring blade using a mucrocodile. 100% of this crystal slurry
After drying at ℃ for 24 hours and performing X-ray diffraction analysis, it was confirmed that it was a topentrite crystal. When this crystalline slurry was dried on a glass glass and observed under an optical microscope, spherical secondary particles with an average outer diameter of 45P were observed. Also, I+-[! 1lfIJ activator was added and mixed, allowed to naturally settle for 48 hours, and then dried at 100°C for 48 hours to cut out -sI of the natural sedimentation molded product obtained.
This was fixed with a force of 14 Lg, and then polished 1.
After that, remove the above-mentioned Daba L1j with a raw brush.1. Also, polished sample t-Ii. When this sample was observed using a scanning electron microscope, it was found that Tobe II/E light crystals were coarsely aggregated to form all spherical secondary particles.

ま友この二次粒子?分散して電子顕微鏡で観察すると長
さく)、1〜%OP、巾0.1〜2μ解の板状結晶と長
さ0.1〜10μm、巾0.05〜0.5μ蛎の針状結
晶が認められた。
Mayu, this secondary particle? When observed under an electron microscope after being dispersed, it shows plate-like crystals with a width of 0.1-2 μm and a needle-like crystal with a length of 0.1-10 μm and a width of 0.05-0.5 μm. was recognized.

上記二次粒子の各特性は第7表の通りであった。The characteristics of the secondary particles were as shown in Table 7.

第  7  表 参考例3 実施例3で得た結晶スラリーをプレス成形し、120℃
で20時間乾燥して得た成形体の優先配向度Fill!
8表の通りであった。
Table 7 Reference Example 3 The crystal slurry obtained in Example 3 was press-molded and heated at 120°C.
The preferential orientation degree of the molded body obtained by drying for 20 hours with Fill!
It was as shown in Table 8.

第  8  表 次いで上記結晶スラリー85部(固形分)に添加材と【
−てガラス繊J17M、パルプ5部及びポルドラシトセ
メシト311に加えて、同様にプレス成形1〜、+20
°Cで20時間乾燥して成形体1得た。
Table 8 Next, 85 parts (solid content) of the above crystal slurry was added with additives and [
- In addition to glass fiber J17M, 5 parts of pulp, and Poldrasitosemeshito 311, press molding 1 to +20
A molded article 1 was obtained by drying at °C for 20 hours.

得られ几成形体の物性は第9表の通りであった。The physical properties of the obtained compacted body were as shown in Table 9.

第  9  表 実施例4 生石灰(ca095.0%) 45.83部t g o
−cの温湯550部中で消和し、ホを三り寸−にて7分
間水中で分散させて得友石灰乳の沈降容積は31.6−
であった。上記石灰乳に平拘粒子径約1.6Pの珪石粉
末(5JC’295−01%、Al2O,3,27%)
59.17部を加えて全体の水量t&!I形分の形勢重
量倍となるように混合して原料スラリーtII、これを
飽和水蒸気圧+ 24/d、8度191″Cで容積30
00 cc、内径1530オートクレーブで回転数11
2r、ム舞で攪拌翼を回転しながら3時間水熱合成反応
を行なって結晶スうり−を得た。この結晶スラリーe1
00℃で24時間乾燥してX線回折分析した所、トベル
tうイト結晶であることt確認した。この結晶スラリー
をスライドクラス上で乾燥して光学Jll徽纜で観察す
ると外径が平均24μ解の球状二次粒子が認められた。
Table 9 Example 4 Quicklime (ca095.0%) 45.83 parts t go
The sedimentation volume of Tokutomo lime milk is 31.6-
Met. Silica powder (5JC'295-01%, Al2O, 3.27%) with a particle size of about 1.6P in the above lime milk
Add 59.17 parts to total water volume t&! The raw material slurry tII was mixed so as to have double the weight of Form I, and this was heated to a volume of 30 at saturated water vapor pressure + 24/d, 8 degrees and 191"C.
00 cc, inner diameter 1530 autoclave, rotation speed 11
2R, a hydrothermal synthesis reaction was carried out for 3 hours while rotating the stirring blade at a constant speed to obtain a crystalline slurry. This crystal slurry e1
After drying at 00° C. for 24 hours and performing X-ray diffraction analysis, it was confirmed that the product was a ferrite crystal. When this crystal slurry was dried on a slide class and observed with an optical Jll lens, spherical secondary particles with an average outer diameter of 24 μm were observed.

また―スラリーに界面活性剤を添加混合し、48時間静
置自然沈降せしめ次いでこれを100℃で48時間乾燥
して得られt自然沈降成形体の一部を切り出し、これを
カナダバL寸ムで固定し、次いでこれt″研磨た後生シ
レンで上記力ナダバLtjムを除未して研磨試料tSた
。この試料を走査型電子m像鏡で観察するとトベ11ラ
イト結晶が粗に集合したもの及び内部が中空の堵状二次
粒子を形成していることが判明した。
In addition, a surfactant was added to the slurry and mixed, allowed to settle for 48 hours, and then dried at 100°C for 48 hours. A part of the resulting natural sedimentation molded product was cut out, and this was cut out using a Canada rubber L size. This was fixed, and then polished with t'', and the above-mentioned force Nadaba Ltj was removed using raw silane to obtain a polished sample tS. When this sample was observed with a scanning electron imager, it was found that Tobe 11ite crystals were coarsely aggregated and It was found that hollow hollow secondary particles were formed.

またこの二次粒子を分散して電子顕微鏡で観察すると長
さ0.1〜10II簿、巾0.1〜2#清の板状結晶と
長さ0.1〜10μ蛎、巾0.05〜0.5μ解の猷結
晶が認められ友。
Furthermore, when these secondary particles are dispersed and observed under an electron microscope, they are found to be plate-shaped crystals with a length of 0.1 to 10 microns and a width of 0.1 to 2 microns and a length of 0.1 to 10 microns and a width of 0.05 microns to The 0.5 μ solution Ayu crystal was recognized and became a friend.

上記二次粒子の各特性は810m1の迩りで6つ九〇 第  l O表 仁 参考例4 実施例4で得た結晶スうり−tjvス成形し、120℃
で20時間乾燥して得た成形体の優先配向度は第11慶
の通りであった。
Each characteristic of the above-mentioned secondary particles is 810 m1, and 6 pieces are obtained.
The degree of preferential orientation of the molded product obtained by drying for 20 hours was as shown in the 11th Kei.

第  II   @ 次いで上記結晶スラリー85部CII形分)に添加材と
してカラス繊lI[7部、バルブ5部及びポルトランド
セメント3部を加えて、同様にプレス成形し、120℃
で20時間乾燥して成形体tSた。
Part II @ Next, to 85 parts of the above crystal slurry (CII type), 7 parts of glass fiber I, 5 parts of bulb, and 3 parts of Portland cement were added as additives, and the mixture was press-molded in the same manner and heated at 120°C.
The molded product was dried for 20 hours.

得られた成形体の物性は第12表の通りであった。The physical properties of the obtained molded product were as shown in Table 12.

第  12  表 実施例5 生石灰(CaCJ 95.0%342.2311t−8
0℃の温湯507部中で消和し、ホtミク寸−にて6分
間水中で分散させて得た石灰乳の沈降容積#126.0
−であった。上記石灰乳に平均粒子径約1.6μmの珪
石粉末(5IO295,01%、Al2033.27%
)53.23部を加えて全体の水量tm形形勢22重量
倍となる↓うに混合して原料スラリーを得、仁れt飽和
水蒸気圧12kIg/d、温度191−Cで容積300
0cc、内径1530オートクレーブで回転数112F
、戸1mで攪拌翼t@転しながら5時間水熱合成反応を
行なって結晶スラリーを得た。この結晶スラリーtlo
o”cで24時間乾燥してX線回折分析した所、トベL
七5イト結晶に少量のり−ノトライト結晶が混合したも
のであることを確認し九〇この結晶スラリー【スライド
クラス−Fで乾燥して光学顕微鏡で観察すると外径が平
均31μmの球状二次粒子fIXgめられた。また酸ス
ラリーに界面活性N4t−添加混合し、48時閲静曽自
然沈降せしめ次いでこれ1100″Cで48時間乾燥し
て得られた自然沈#I成形体の一部t9’IQ出し、こ
れtカナダバルサムで固定し、次いでこれを研磨した後
生シレシで上記カナダバルサΔを除来して研磨試料を得
た。この試料を走査型電子顕微鏡で観察するとトペルt
ライト結晶と少量のリーノトうイト結晶が粗に集合した
もの及び内部が中空の球状二次粒子1形成していること
が判明した。
Table 12 Example 5 Quicklime (CaCJ 95.0% 342.2311t-8
Sedimentation volume of milk of lime obtained by slaked in 507 parts of warm water at 0°C and dispersed in water for 6 minutes at a hot water temperature #126.0
-It was. Silica stone powder (5IO295.01%, Al2033.27%) with an average particle size of about 1.6 μm is added to the above lime milk.
) 53.23 parts to make the total water volume tm shape 22 times the weight
0cc, inner diameter 1530 autoclave, rotation speed 112F
A hydrothermal synthesis reaction was carried out for 5 hours while rotating a stirring blade at a 1 m door to obtain a crystal slurry. This crystal slurry tlo
After drying for 24 hours at O”c and performing X-ray diffraction analysis, Tobe L
75 It was confirmed that it was a mixture of a small amount of glue-notolite crystals and 90 This crystal slurry [slide class - When dried with F and observed with an optical microscope, it was found that spherical secondary particles fIXg with an average outer diameter of 31 μm were observed. I was caught. In addition, the acid slurry was mixed with surfactant N4t, allowed to naturally settle for 48 hours, and then dried at 1100"C for 48 hours. A polished sample was obtained by fixing with Canada balsam, then polishing it, and removing the Canada balsa Δ using a raw sill. When this sample was observed with a scanning electron microscope, Topel t
It was found that light crystals and a small amount of linotite crystals were coarsely aggregated, and spherical secondary particles 1 with hollow interiors were formed.

上記二次粒子の各特性は第13表の迩9であった。The characteristics of the secondary particles were as shown in Table 13 (9).

第  13  表 参考例5 実施例うで得た結晶スうり−をプレス成形し、120−
Cで20時間乾燥し7て得たwIt形体の優先配向度F
i第14表の通りであつ友。
Table 13 Reference Example 5 The crystalline slurry obtained in Example 1 was press-molded to give a 120-
Preferred orientation degree F of the wIt form obtained by drying at C for 20 hours
iAs per Table 14, I am a friend.

第  14   m 次いで上記結晶スラリ−85fIIl(固形分)に添加
材としてガラス繊417部、パルプ5部及びポルドラシ
トtjシト5部を加えて、同様にプレス成形し120℃
で20時間乾燥して成形体を得た。
14th m Next, 417 parts of glass fiber, 5 parts of pulp, and 5 parts of Poldorasite were added to the crystal slurry 85fIIl (solid content) as additives, and the mixture was press-molded in the same manner at 120°C.
The molded product was obtained by drying for 20 hours.

得られた成形体の物性は第15表の通りであった。The physical properties of the obtained molded body were as shown in Table 15.

第  15  表 実施例6 生石灰< caO95,0%)今2.251t80℃の
温湯507部中で消和し、ホr:ミクサーにて2分間水
中で分散させて得た石灰乳の沈降容積は8.1−であっ
た。上記石灰乳に平均粒子径約9μ清の珪石粉末(St
C’297−37%、Al2030.99%)53.2
1部を加えて全体の水量tIl形分形勢2重量倍となる
ように混合して原料スラリーを得、こttt11i!和
水蒸気圧12#/d、温度191℃で容積3000 c
c、内径15aIIのオートクレーブで回転数174 
r、戸、解で攪拌興奮−転しながら3時開水熱合成反応
を行なって結晶スラリー【得た。この結晶スラリー’1
kloO℃で24時間乾燥してX線−折分析した所、ト
ベル七ライト結晶であること【礒1した。この結晶スラ
リーをスライドグラス上で乾燥して光学IIIIIk鏡
で観察すると外径が平均47μ鯛の球状二次粒子が認め
られた。また酸スラリーに界面活性剤r添加混合し、4
8時間静置自然沈降せしめ次いでこtL′fr100”
cで48時間乾燥して得られた自然沈降成形体の一部倉
切り出し、これをカナダバルサムで固定し、次いでこ1
Nti+tst、た後生シレシで上記カナダバルサムを
除去して研磨試料をSた。この試料を走査型電子順徽鏡
で観察するとトベルtうイト結晶が粗に集合して球状二
次粒子管形成していることが判明1−た。
Table 15 Example 6 Quicklime < caO 95.0%) The settling volume of milk of lime obtained by slaking 2.251 tons in 507 parts of warm water at 80°C and dispersing it in water for 2 minutes in a mixer was 8. It was .1-. The above milk of lime is mixed with silica powder (St
C'297-37%, Al2030.99%) 53.2
1 part was added and mixed so that the total water amount tIl was 2 times the weight to obtain a raw material slurry, ttt11i! Volume 3000 c at sum water vapor pressure 12#/d and temperature 191°C
c, rotation speed 174 in an autoclave with an inner diameter of 15aII
A crystal slurry was obtained by carrying out a hydrothermal synthesis reaction at 3 o'clock while stirring and rotating at the door and solution. This crystal slurry'1
After drying at 0°C for 24 hours and performing X-ray diffraction analysis, it was found to be tobel heptalite crystals. When this crystal slurry was dried on a slide glass and observed with an optical IIIk mirror, spherical secondary particles with an average outer diameter of 47 μm were observed. In addition, surfactant R was added to the acid slurry and mixed,
Let stand for 8 hours and let it settle naturally.
A part of the natural sedimentation molded product obtained by drying at c for 48 hours was cut out, fixed with Canada balsam, and then
After applying Nti + tst, the Canada balsam was removed using a fresh shaving machine, and the polished sample was polished. When this sample was observed with a scanning electron microscope, it was found that Tobeltite crystals were coarsely aggregated to form spherical secondary particle tubes.

ま友この二次粒子を分散して電子頑徽鏡で観察tルト長
J 0.1−10 P、 巾0.1〜2 uxaz(D
fE状結晶と長さ0.1−10 plll、巾0.05
〜0.5 ptm (1)針状結晶が認められ友。
Disperse the secondary particles and observe them with an electronic microscope.
fE-like crystal, length 0.1-10 pll, width 0.05
~0.5 ptm (1) Needle crystals were observed.

上記二次粒子の各特性は第16表の通りであった。The characteristics of the secondary particles were as shown in Table 16.

第16表 参考例6 SJjl施例6で傅之結晶スラリーtプレス成形し、+
2O−Cで20時間乾燥して得た成形体の優先配向度は
第17表の通りであっ友。
Table 16 Reference Example 6 Fuzhi crystal slurry T-press molding in SJjl Example 6, +
The preferential orientation degree of the molded product obtained by drying at 2O-C for 20 hours is as shown in Table 17.

第17表 次いで上記結晶スラリー85部(固形分]に添加材とし
て刀うス繊j171K、パルプ5部及びr%シルトシト
セメシト3部を加えて、同様にプレス成形し、120℃
て20時間乾燥して成形体t−得た。
Table 17 Next, to 85 parts (solid content) of the above crystal slurry were added as additives, 5 parts of fiber J171K, 5 parts of pulp, and 3 parts of r% silt and cemetite, and the mixture was press-molded in the same manner and heated at 120°C.
The molded product T- was obtained by drying for 20 hours.

得られた成形体の愉性は第18表の通りであった。The pleasantness of the obtained molded bodies was as shown in Table 18.

第  18  表 比較例 生石灰(C11095,0%)42.25Nt80”0
の温湯50711中で消和してII九石灰乳の沈降容積
は4.0−であっ友。上記石灰乳に平均粒子径約9Hm
 +2)11石1)末(5in297.37 %、Al
2030.99%)53.21111−加えて全体の水
量を固形分の22重臆倍となるように混合して原料スラ
リーを得、こf′Lt−飽和水Jifi圧12#i/d
、温度191℃で容積3000cc、内径1530オー
トクレーブでH転数17今r6戸、解で攪拌翼′に回転
しながら3時間水熱合成反応を行なって結晶スラリーt
lI友。この結晶スラリー會100℃で2今時間乾燥し
てX線回折分析した所、トベL七ライト結晶であること
を確認]−また。この結晶スラリーをスライドクラス上
で乾燥して光学顕徽鏡で観察すると外径が平均48μm
の球状二次粒子が認められた。
Table 18 Comparative example Quicklime (C11095, 0%) 42.25Nt80”0
The sedimentation volume of II nine lime milk was 4.0 when slaked in warm water 50711. The above milk of lime has an average particle size of about 9Hm.
+2) 11 stones 1) End (5in297.37%, Al
2030.99%) 53.21111-Additionally, the total amount of water is mixed to be 22 times the solid content to obtain a raw material slurry.
At a temperature of 191°C, in an autoclave with a volume of 3000 cc and an inner diameter of 1530 mm and an H rotation number of 17 r6 units, a hydrothermal synthesis reaction was carried out for 3 hours while rotating with a stirring blade' to form a crystal slurry.
lI friend. This crystal slurry was dried at 100° C. for 2 hours and analyzed by X-ray diffraction, and it was confirmed that it was Tobe L heptalite crystal. When this crystal slurry was dried on a slide class and observed with an optical microscope, the outer diameter was 48 μm on average.
spherical secondary particles were observed.

また該スラリーに界面活性剤t−添加混合し、48時闇
靜装自然沈降せしめ次いでこれt−100℃で48時間
乾燥して得られた自然沈降1形体の一部を切り出し、こ
れt力すタバt、tムで固定し、次いでこれを研磨した
後生シレシで上記力すタバシ寸ムを除去して研磨試料k
llycaこの試料を走査電子**鏡で観察するとトベ
LE5イト結晶が密に集合して球状二次粒子音形成して
いることが判明した・ またこの二次粒子を分散して電子顕微鏡で観察すると長
さ0.1〜10μ清、巾0.1〜2μ調の板状結晶と長
さ0.1−10 P、中0.05〜0.5μ解の針状結
晶が認められた。
Further, a surfactant was added to the slurry, and the slurry was allowed to naturally settle in the dark for 48 hours.Then, the slurry was dried at -100°C for 48 hours, and a part of the resulting natural sediment 1 form was cut out. Fix it with tabs t and t, then polish it, and then remove the tab size with a raw polisher and polish the sample k.
When this sample was observed with a scanning electron** mirror, it was found that Tobe LE5ite crystals were densely aggregated to form spherical secondary particles.Also, when these secondary particles were dispersed and observed with an electron microscope, Plate crystals with a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and needle-shaped crystals with a length of 0.1 to 10 μm and a diameter of 0.05 to 0.5 μm were observed.

上記二次粒子の各特性は第19表の通りであった。The characteristics of the secondary particles were as shown in Table 19.

第  l 9  表 参考例 比較例で得た結晶スラリーtプレス成形し、璽20”C
で20時間乾燥して得た成形体の優先配向度は第20表
の通りであった。
Table l9 Reference Example Crystal slurry obtained in Comparative Example t Press molded into a 20"C
The degree of preferential orientation of the molded product obtained by drying for 20 hours was as shown in Table 20.

第  20  表 次いで上記結罷スラリー85部(固形分)K添加材とし
てガラス繊維7部、パルプ5部及びポルドラ、yFtメ
シト3部を加えて、同様にプレス成形し、120℃で2
0時間乾燥して成形体上IIた。
Table 20 Next, 85 parts (solid content) of the above-mentioned sintered slurry were added with 7 parts of glass fiber, 5 parts of pulp, and 3 parts of Poldora and yFt Mesito as K additives, and press-molded in the same manner and heated at 120°C for 2 hours.
The molded product was dried for 0 hours.

得られた成形体の物性は第2星表の遁9であった。The physical properties of the obtained molded product were 9 in the second star chart.

第  21  表Table 21

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例10本発明のトベシtライト結晶域状二
次粒子の100倍の光学顕微鏡写真1.*2図は実施例
1の該粒子を分数した7500倍の電子顕微鏡写真を、
また第3図は実施例1の自然沈降成形体の研磨面の走査
型電子IlI象纜写真(600倍)を示す、第4v!J
は実施例2の自然沈降成形体の研磨面の走査型電子顕微
鏡写真(6004ft[r示す。 15 嬉  畜  ■ 館  211 嬉3− ゝ燐へ 摺r  今   ■
FIG. 1 is a 100x optical micrograph of the tobesite t-light crystal region-shaped secondary particles of the present invention in Example 10. *2 Figure is a 7500x electron micrograph of fractionated particles of Example 1.
Further, FIG. 3 shows a scanning electronic IllI pattern photograph (600 times) of the polished surface of the spontaneously precipitated molded product of Example 1, No. 4V! J
is a scanning electron micrograph (6004 ft [r shown) of the polished surface of the natural sedimentation molded product of Example 2.

Claims (1)

【特許請求の範囲】 ■ トベttライト結晶を主成分とする珪酸カルシウム
結晶から成る内部が粗乃至中空のほぼ球状の二次粒子で
あって、その外径がlO〜120μ病、その破壊何重が
100q以下、その中空率が30%以下及びその自然沈
降成形体密度が0.12 f /d以下であることを特
徴とする珪酸カルシウム球状二次粒子。 ■ 特許請求の範囲1g1項の二次粒子が水に均一に分
散したスラリー〇 ■ 特許請求の範囲第2項のスラリーを主成分とする珪
酸カルシウム成形体lII造用組成物。 ■ 沈降容積5−以上の石灰乳と結晶質珪酸原料とit
s彫分に対する水の量が15重量倍以上となるように混
合#1IIIシて得られる原料スラ13−t、an圧下
加熱攪拌しながら水熱合成反応を行なわしめてトベルし
ライト結晶を主成分とする珪酸カルシウム結晶のスうり
−となし、次いでこれを乾燥すること1に特徴とする珪
酸カルシウム球状二次粒子の製法。 ■ 沈降容積5耐以上の石灰乳と結晶質珪酸原料と全固
形分に対する水の量が15重量倍以上となるように混合
調製して得られる原料スラリー會加圧下加熱攪拌しなが
ら水熱合成反応を行なわしめてトベL’eライト結晶を
主成分とする珪酸カルシウム結晶のスラリーとすること
tII微とする41I#v#求の範囲第2項のスラリー
の製法。
[Scope of Claims] ■ Almost spherical secondary particles with a rough or hollow interior made of calcium silicate crystals whose main component is Tobettlite crystals, whose outer diameter is 10 to 120μ, and whose fracture is multilayered. 100q or less, a hollowness ratio of 30% or less, and a natural sedimentation compact density of 0.12 f /d or less. ■ A slurry in which the secondary particles of Claim 1g Item 1 are uniformly dispersed in water 〇 ■ A composition for forming a calcium silicate molded body II containing the slurry of Claim 2 as a main component. ■ Milk of lime with sedimentation volume of 5 or more, crystalline silicic acid raw material and it.
The raw material slurry 13-t obtained by mixing #1 III so that the amount of water is 15 times the weight or more based on the weight of the carving is subjected to a hydrothermal synthesis reaction while stirring under an pressure, and is stirred to make light crystals the main component. 1. A method for producing spherical secondary particles of calcium silicate, which comprises: 1) slurrying and then drying calcium silicate crystals; ■ A raw material slurry obtained by mixing milk of lime with a sedimentation capacity of 5 or more, crystalline silicic acid raw material, and the amount of water relative to the total solid content at least 15 times by weight is subjected to a hydrothermal synthesis reaction while heating and stirring under pressure. 41I#v# A method for producing a slurry according to item 2, in which a slurry of calcium silicate crystals containing Tobe L'eite crystals as a main component is obtained by carrying out the following steps.
JP57069140A 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof Granted JPS58185432A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57069140A JPS58185432A (en) 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof
JP4108129A JP2571993B2 (en) 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57069140A JPS58185432A (en) 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof
JP4108129A JP2571993B2 (en) 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4108129A Division JP2571993B2 (en) 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals

Publications (2)

Publication Number Publication Date
JPS58185432A true JPS58185432A (en) 1983-10-29
JPH0327487B2 JPH0327487B2 (en) 1991-04-16

Family

ID=26410322

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57069140A Granted JPS58185432A (en) 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof
JP4108129A Expired - Lifetime JP2571993B2 (en) 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4108129A Expired - Lifetime JP2571993B2 (en) 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals

Country Status (1)

Country Link
JP (2) JPS58185432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007596A1 (en) * 1986-06-06 1987-12-17 Promat Gesellschaft Für Moderne Werkstoffe Mbh Means for reducing the relative density and process for their production
US4917802A (en) * 1986-02-10 1990-04-17 Onoda Autoclaved Light Weight Concrete Co., Ltd Method for treating waste water
CN105439156A (en) * 2015-12-10 2016-03-30 内蒙古伊能煤炭转化与循环经济研究院 Method for preparing rubber and plastics filler by use of microsilica and carbide slag

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012587A (en) * 2001-08-02 2003-02-12 주식회사 리텍 An structural exterior material making method using waste sludge
JP4997395B2 (en) * 2006-02-28 2012-08-08 独立行政法人産業技術総合研究所 Hollow particles having unique shell and method for producing the same
JPWO2013073475A1 (en) * 2011-11-15 2015-04-02 国立大学法人 名古屋工業大学 Nano hollow particles and method for producing the same
JP5429945B2 (en) * 2011-12-14 2014-02-26 独立行政法人産業技術総合研究所 Hollow particles having unique shell and method for producing the same
KR102375297B1 (en) 2014-03-29 2022-03-15 도미따 세이야꾸 가부시끼가이샤 Powdered tobermorite type calcium silicate-based material and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399219A (en) * 1977-02-11 1978-08-30 Osaka Patsukingu Seizoushiyo K Calcium silicate molding
JPS5523788A (en) * 1979-06-18 1980-02-20 Sony Corp Coil and coil bobbin for motor or generator and manufacture of coil
JPS5529952A (en) * 1978-08-24 1980-03-03 Kawasaki Heavy Ind Ltd Automatic chocolate applicator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544968A (en) * 1977-06-15 1979-01-16 Mitsubishi Motors Corp Production of molded plastic article having thin metallic film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399219A (en) * 1977-02-11 1978-08-30 Osaka Patsukingu Seizoushiyo K Calcium silicate molding
JPS5529952A (en) * 1978-08-24 1980-03-03 Kawasaki Heavy Ind Ltd Automatic chocolate applicator
JPS5523788A (en) * 1979-06-18 1980-02-20 Sony Corp Coil and coil bobbin for motor or generator and manufacture of coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917802A (en) * 1986-02-10 1990-04-17 Onoda Autoclaved Light Weight Concrete Co., Ltd Method for treating waste water
WO1987007596A1 (en) * 1986-06-06 1987-12-17 Promat Gesellschaft Für Moderne Werkstoffe Mbh Means for reducing the relative density and process for their production
CN105439156A (en) * 2015-12-10 2016-03-30 内蒙古伊能煤炭转化与循环经济研究院 Method for preparing rubber and plastics filler by use of microsilica and carbide slag

Also Published As

Publication number Publication date
JP2571993B2 (en) 1997-01-16
JPH0327487B2 (en) 1991-04-16
JPH0640715A (en) 1994-02-15

Similar Documents

Publication Publication Date Title
US6136867A (en) Aqueous suspension of silica and of aluminium sulphate or of alum, processes for the preparation and uses of the said suspension
CN1753836A (en) Spherical calcium carbonate and method for production thereof
JPS58185432A (en) Spherical secondary particle of calcium silicate and preparation thereof
CN1525942A (en) Ultrafine modified aluminium hydroxide and its preparation
JP4181777B2 (en) Boehmite production method
US3915725A (en) Process for producing hollow spherical aggregates of xonotlite
JPH05506179A (en) Structured aggregate pigment
CN107381591B (en) Preparation method of petal-shaped sodalite at room temperature
US5370852A (en) Primary particles of amorphous silica composite material, secondary particles of amorphous silica composite material, shaped bodies thereof and processes for their preparation
CN1076372C (en) Process for preparing pigment for coated paper
JP4571367B2 (en) Mesopore-supporting calcium carbonate, method for producing the same, and coated paper using the same
EP0445301B1 (en) Composite primary particle of noncrystalline silica, composite secondary particle of noncrystalline silica, shaped form thereof and production thereof
JPH01122917A (en) Calcium silicate and production thereof
JPS58190852A (en) Calcium silicate formed body and manufacture
JP2003040618A (en) Composite material containing calcium carbonate and its producing method and coating paper using it
CN114671449B (en) Synthesis method of hollow calcium hydroxide microspheres
JP2782198B2 (en) Calcium silicate compact
JPH0122216B2 (en)
JP2004142954A (en) Surface porous calcium carbonate granular particle, manufacturing method therefor, and slurry consisting of the same
WO1990007472A1 (en) Lightweight molding and production thereof
JPS61186256A (en) Manufacture of calcium silicate molded body
JPS6140864A (en) Manufacture of lightweight calcium silicate formed body
Ruiz-Hitzky Modulation of inorganic matrices for functional nanoarchitectures fabrication: the simultaneous effect of moisture and temperature in the preparation of metakaolin based geopolymers
JPH07187653A (en) Amorphous aluminosilicate and its production
JPS6022643B2 (en) Calcium silicate hydrate aggregate