JPS5817805B2 - Method of manufacturing vibration damping alloy - Google Patents

Method of manufacturing vibration damping alloy

Info

Publication number
JPS5817805B2
JPS5817805B2 JP49076939A JP7693974A JPS5817805B2 JP S5817805 B2 JPS5817805 B2 JP S5817805B2 JP 49076939 A JP49076939 A JP 49076939A JP 7693974 A JP7693974 A JP 7693974A JP S5817805 B2 JPS5817805 B2 JP S5817805B2
Authority
JP
Japan
Prior art keywords
vibration damping
alloy
present
damping ability
ability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49076939A
Other languages
Japanese (ja)
Other versions
JPS516120A (en
Inventor
阿部博
河合光雄
中川雅俊
天野景隆
藤田隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP49076939A priority Critical patent/JPS5817805B2/en
Publication of JPS516120A publication Critical patent/JPS516120A/en
Publication of JPS5817805B2 publication Critical patent/JPS5817805B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は、例えばコンプレッサやその他の機器の部材と
して使用し、これらの機器から発生する振動、騒音を減
少させるに好適な犬なる振動減衰能を有する振動及び騒
音防止部材として使用されるのに適した振動減衰合金の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a vibration and noise prevention member having a vibration damping ability suitable for use as a member of a compressor or other equipment, for example, to reduce vibrations and noise generated from these equipment. The present invention relates to a method of manufacturing a vibration damping alloy suitable for use as a vibration damping alloy.

最近公害問題として重視されているものの一つに各種の
機器から発生する騒音がある。
One of the pollution problems that has recently been emphasized is the noise generated from various types of equipment.

このため現在各種の機器の製造にあたってはこれらの機
器より発生する振動、騒音を少しでも減少させるような
努力が払われている。
For this reason, when manufacturing various types of equipment, efforts are currently being made to reduce the vibrations and noise generated by these equipment.

ところで、゛各種の機器より発生する振動、騒音を減少
させるには種々の方法があるが、その一つに大なる振動
減衰能を有する材料を機器の部材として使用し、振動を
吸収させる方法がある。
By the way, there are various ways to reduce the vibrations and noise generated by various types of equipment, one of which is to use materials with a large vibration damping ability as equipment components to absorb vibrations. be.

従来、このような振動減衰部材としてはプラスチックが
ある。
Conventionally, such vibration damping members include plastics.

しかし、プラスチックは機械的強度、耐熱性ともに低い
ので使用範囲が限定されるという欠点があった。
However, plastics have a drawback in that their range of use is limited because they have low mechanical strength and low heat resistance.

そこでこのような欠点を除去するために金属材料で犬な
る振動減衰能を有するものが望まれ、マンガン(Mn
’)を40〜60%含む銅”(Cu)合金が開発された
Therefore, in order to eliminate such drawbacks, a metal material with excellent vibration damping ability is desired, and manganese (Mn
A copper (Cu) alloy containing 40-60% of copper has been developed.

ところが、このMn−Cu系合金は室温付近の温度では
振動減衰能は太きいが、振動減衰能の遷移温度は50〜
80℃と低く、この温度以上では振動減衰能が急激に低
下してしまう。
However, although this Mn-Cu alloy has a large vibration damping ability at temperatures around room temperature, the transition temperature of the vibration damping ability is 50~50°C.
The temperature is as low as 80° C., and above this temperature, the vibration damping ability decreases rapidly.

このため、コンプレッサの弁座などのように、通常10
0℃程度の温度にさらされる機器の振動減衰部材として
は適さないという欠点があった。
For this reason, there are usually 10
It has the disadvantage that it is not suitable as a vibration damping member for equipment exposed to temperatures of about 0°C.

一方、上記合金以外に鋳鉄やマグネシウム(Mg )等
も犬なる振動減衰能を有する材料であるが、鋳鉄は冷間
圧延による薄板の製造やプレス成形等の塑性加工ができ
ず、またMgは、機械的一度が小さい等、機器の部材と
して実用性に乏しいという欠点がある。
On the other hand, in addition to the above-mentioned alloys, cast iron and magnesium (Mg) are also materials that have excellent vibration damping ability, but cast iron cannot be processed into thin plates by cold rolling or plastically processed such as press forming. There are drawbacks such as a small mechanical strength and poor practicality as a component of equipment.

本発明者らは、このような従来合金の欠点を改善するた
め高温度においても犬なる振動減衰能を有し、且つ耐熱
性と耐食性に優れ、しかも機械的強度が犬で塑性加工性
に優れた振動減衰合金を開発し、先に提案した。
In order to improve these drawbacks of conventional alloys, the present inventors developed a new alloy that has excellent vibration damping ability even at high temperatures, has excellent heat resistance and corrosion resistance, has excellent mechanical strength, and has excellent plastic workability. A vibration damping alloy was developed and proposed earlier.

この合金は重量%でA11〜8%および/またはCr2
〜30%、Si0.5%以下1.Mn1%以下、残部F
eおよび附随的不純物からなるFe系振動減衰合金であ
る。
This alloy has a weight percentage of A11-8% and/or Cr2
~30%, Si0.5% or less1. Mn 1% or less, balance F
This is a Fe-based vibration damping alloy consisting of e and incidental impurities.

本発明は先に開発したこの耐熱性と耐食性に優れたFe
系振動減衰合金について更にその振動減衰能を向上させ
るため一連の研究を行なった結果見い出したものである
The present invention is based on the previously developed Fe, which has excellent heat resistance and corrosion resistance.
This was discovered as a result of a series of studies conducted to further improve the vibration damping ability of system vibration damping alloys.

すなわち本発明は重量%で (a) 0.1〜3.0%のCrと、 (b) 0.1〜12%のAIと、 (c)7%以下のW、Ta 、5%以下のNb 、V
That is, the present invention contains (a) 0.1-3.0% Cr, (b) 0.1-12% AI, (c) 7% or less W, Ta, 5% or less Nb, V
.

4%以下のM O+ S s + G 、e及び3%以
下のMnのうち少なくとも一種(ただし、−W 、 T
a 。
At least one of 4% or less M O + S s + G, e and 3% or less Mn (however, -W, T
a.

Nb、■2M09Geのいずれも含まない場合にはSi
O,5%以下およびMn1%以下の範囲を除く)を含む
F e −C,r −A I系合金に、700℃〜12
00℃の焼きなまし処理を施したことを特徴とする振動
減衰合金の製造方法である。
If it does not contain either Nb or ■2M09Ge, Si
700℃~12
This is a method for producing a vibration damping alloy characterized by subjecting it to annealing treatment at 00°C.

以下本発明において上記合金元素の添加理由とその限定
理由について説明する。
The reason for adding the above-mentioned alloying element and the reason for its limitation in the present invention will be explained below.

主要成分元素たるCrおよびAIは共に組織をフェライ
ト化させて振動減衰能を向上させる作用をなす元素であ
る。
Both Cr and AI, which are the main component elements, have the effect of making the structure ferrite and improving the vibration damping ability.

かかるこれら元素は振動域、良能を向上させる効果の他
、付加的な効果として更に耐食性と耐熱性を向上させる
ことから、その添加範囲はCrが0.1〜30%、AI
が0.1〜12%にする必要がある。
These elements have the effect of improving vibration range and performance, and additionally improve corrosion resistance and heat resistance, so the addition range is 0.1 to 30% Cr,
needs to be 0.1 to 12%.

本発明により製造される振動減衰合金の添加元素である
W、 Ta 、Nb 、V 、Mo 、 S i 、
Ge。
Additional elements of the vibration damping alloy produced according to the present invention are W, Ta, Nb, V, Mo, Si,
Ge.

Mnはいずれも振動減衰能の向上に寄与するものであっ
て、上記した範囲の下限に満たない場合には十分な振動
減衰能が得られない。
All Mn contributes to improving the vibration damping ability, and if the lower limit of the above range is not reached, sufficient vibration damping ability cannot be obtained.

また、上記した範囲を越えると振動減衰能はかえって低
下するのみならず、塑性加工性および靭性が著しく劣化
する。
Moreover, when the above-mentioned range is exceeded, not only the vibration damping ability is reduced, but also the plastic workability and toughness are significantly deteriorated.

また、Cr、AIの他、SiのみまたはMnのみ或いは
それら両者のみしか含まない場合に、Si0.5%以下
の範囲およびMn1%以下の範囲を除くのは、その範囲
ではSi、Mnは脱酸剤、脱硫剤としてしか働かず、振
動減衰能の向上に寄与しないためである。
In addition, in addition to Cr and AI, when it contains only Si, only Mn, or only both, excluding the range of Si 0.5% or less and the range of Mn 1% or less, in that range Si and Mn are deoxidized. This is because it only works as a desulfurizing agent and a desulfurizing agent, and does not contribute to improving vibration damping ability.

また焼きなまし処理も十分な振動減衰能を得るための必
須要件であり、これにより内部応力の除去および結晶粒
の成長が促進され、磁壁の移動性が高められ、もって振
動減衰能が向上する。
Annealing treatment is also an essential requirement for obtaining sufficient vibration damping ability, and this removes internal stress and promotes crystal grain growth, increasing the mobility of domain walls, thereby improving vibration damping ability.

すなわち焼きなまし処理を施すことにより、添加元素で
あるW、Ta、Nb、V、Mo、Si、Ge。
That is, by annealing, the additive elements W, Ta, Nb, V, Mo, Si, and Ge.

Mnが結晶格子間に固溶するC、Oなどの侵入型不純物
を化合物化して固定し、結晶格子間に存在する不純物を
減少せしめて機械的外力による磁壁の移動を容易にして
更に優れた振動減衰能を得る。
Mn converts and fixes interstitial impurities such as C and O, which are solid solutions between crystal lattices, and reduces impurities existing between crystal lattices, making it easier to move domain walls due to external mechanical force, resulting in even better vibration. Obtain damping ability.

即ち、上記添加するW、Ta、Nb、V、Mo。That is, W, Ta, Nb, V, and Mo added above.

Si、Ge、Mnなどは侵入不純物であるCやOと反応
してこれらを炭化物または酸化物として固定する作用を
なすものである。
Si, Ge, Mn, etc. act to react with C and O, which are intruding impurities, and fix them as carbides or oxides.

その他、この焼きなまし処理においてMnを除く他の添
加元素は体心立方格子構造化(フェライト化)を促進す
る作用をなし、更に優れた振動減衰能を発揮し得る。
In addition, other additive elements other than Mn in this annealing treatment function to promote formation of a body-centered cubic lattice structure (ferrite formation), and can exhibit even more excellent vibration damping ability.

かかる焼きなまし処理の温度は上述した目的から700
〜1200℃の範囲にすることが必要である。
The temperature of such annealing treatment is 700°C for the above-mentioned purpose.
It is necessary to keep the temperature in the range of ~1200°C.

なお、本発明により製造される合金には、前述の各成分
元素の他に不純物としてC2Pその他の元素が付随的に
含まれるが、これら不純物元素の含有量は全体として0
.5%以下であることが望ましい。
The alloy produced according to the present invention additionally contains C2P and other elements as impurities in addition to the above-mentioned component elements, but the content of these impurity elements is 0 as a whole.
.. It is desirable that it is 5% or less.

次に本発明の実施例を比較例と共に説明する。Next, examples of the present invention will be described together with comparative examples.

表−1〜表−4に示す試料A1〜A28が本発明の実施
例であり、表−5に示す試料A29〜A37は比較例で
ある。
Samples A1 to A28 shown in Tables 1 to 4 are examples of the present invention, and samples A29 to A37 shown in Table 5 are comparative examples.

この比較例のうち屋29は、Cr 、 A Iを含まな
いもの、A 30、.116.31は本発明に規定する
組成範囲を外れるもの、A32〜A34は焼なまし処理
を十分に行なっていないものである。
Uchiya 29 of this comparative example contains one that does not contain Cr and AI, A 30, . No. 116.31 is outside the composition range specified in the present invention, and A32 to A34 are not sufficiently annealed.

更にA35は本発明者が先に提案したF e −Cr
−A I系合金で、またA、 36.116.37は、
先に提案した合金の組成範囲を外れるもので、これらは
何れも侵入型不純物を化合物化させて固定する添加元装
を含まないものである。
Furthermore, A35 is Fe-Cr which was proposed earlier by the present inventor.
-A I-based alloy, and A, 36.116.37 is
These alloys are outside the composition range of the previously proposed alloys, and none of them contain additives that convert interstitial impurities into compounds and fix them.

上記各人に示す組成の合金はほぼ1600℃の温度で真
空溶解後鋳造したもので、その鋳造材を鋳造、圧延して
厚さ約1朋の板とし、その板より幅10rnrn、長さ
100朋の試験片を切出し、これに各人に示すような焼
きなましのための熱処理を施してから曲げ振動を与えて
対数減衰率δを室温で測定した。
The alloy with the composition shown above was melted and cast in vacuum at a temperature of approximately 1600°C, and the cast material was cast and rolled into a plate with a thickness of about 1 mm, and from that plate the width was 10rnrn and the length was 100mm. My test piece was cut out, subjected to heat treatment for annealing as shown to each person, and then subjected to bending vibration and the logarithmic damping rate δ was measured at room temperature.

この種合金の対数減衰率の値は振幅依存性が大きいので
測定に際しては全ての試料に一定の振幅振動を与えた。
Since the value of the logarithmic damping rate of this type of alloy has a strong amplitude dependence, a constant amplitude vibration was applied to all samples during the measurement.

測定結果を表中に併せて示しである。The measurement results are also shown in the table.

なお、各人においては、双晶型振動減衰合金(Cu−4
0Mn=2A1合金であって、690’cxihの水焼
入れの後、200℃X12h。
In addition, for each person, twinned vibration damping alloy (Cu-4
0Mn=2A1 alloy, 200°C x 12h after water quenching for 690'cxih.

440℃Xlhの熱処理を施したもの)の対数減衰率δ
Logarithmic attenuation rate δ of heat treated at 440℃Xlh
.

を基準とし、それに対する比δ/δ0で各試料の振動減
衰能を表わしている。
is used as a reference, and the vibration damping ability of each sample is expressed as the ratio δ/δ0.

前記表より明らかなように、本発明に係る振動減衰合金
は室温においては比較例の合金に比べて優れた振動減衰
能を有していることが判る。
As is clear from the above table, it can be seen that the vibration damping alloy according to the present invention has superior vibration damping ability at room temperature compared to the alloy of the comparative example.

表−1の実施例はCr、AIの他に一種の元素を添加し
たものであって、このような組成の場合にはCr t
A Iを合計量で10%以上とすることが望ましい。
In the examples shown in Table 1, one type of element is added in addition to Cr and AI, and in the case of such a composition, Cr t
It is desirable that the total amount of AI be 10% or more.

また、表−2の実施例では、Ta。Nb 、Vを添加し
ておらず、表−3の実施例ではW、Moを添加していな
いが、これらの組成の場合にはCr、AIを合計量で0
.5%以上含有させることが望ましい。
Furthermore, in the examples shown in Table 2, Ta. Nb and V are not added, and in the examples shown in Table 3, W and Mo are not added, but in the case of these compositions, the total amount of Cr and AI is 0.
.. It is desirable to contain 5% or more.

また表−2のA9、表−3のA17、表−4のA25の
ように多くの元素を添加する場合にはCr 、 A I
はそれぞれ0.1%以上含ませれば十分な振動減衰能が
得られ、特にこのように低AIのものは溶接性にも優れ
ている。
In addition, when adding many elements like A9 in Table 2, A17 in Table 3, and A25 in Table 4, Cr, AI
Sufficient vibration damping ability can be obtained by containing 0.1% or more of each, and in particular, such a low AI material has excellent weldability.

ところで、本発明に係る合金は室温で大きい振動減衰能
を有するだけでなく、Cu−40MCu−4O合金に比
べて高温においても優れた振動減衰能を示すという特徴
がある。
By the way, the alloy according to the present invention not only has a large vibration damping ability at room temperature, but also exhibits an excellent vibration damping ability at high temperatures compared to the Cu-40MCu-4O alloy.

その実験データを図に示す。The experimental data is shown in the figure.

図は本発明の実施例の試料A15、扁28、A27と前
記Cu−40Mn−2AI合金について、前記測定方法
に準じて室温から300℃までの振動減衰能の温度特性
を測定した結果である。
The figure shows the results of measuring the temperature characteristics of vibration damping ability from room temperature to 300° C. according to the measurement method described above for Samples A15, Flat 28, and A27 of Examples of the present invention, and the Cu-40Mn-2AI alloy.

図から明らかなように、Cu−40Mn−2AI合金は
約50℃付近から急激に振動減衰能が低下するのに対し
、本発明のものは室温から300℃程度まで全くその特
性は劣下せず、優れた温度特性を有している。
As is clear from the figure, the vibration damping ability of the Cu-40Mn-2AI alloy rapidly decreases from around 50°C, whereas the properties of the present invention do not deteriorate at all from room temperature to around 300°C. , has excellent temperature characteristics.

なお表−5の比較例の試料通29〜A31はCr、AI
を全く含まないもの、またはCr、AIの含有量が多す
ぎるものであって、これらは振動減衰能が小さい。
In addition, samples 29 to A31 of the comparative example in Table 5 are Cr, AI
Those containing no Cr or AI at all, or those containing too much Cr or AI, have a low vibration damping ability.

また試料A32,33,34はそれぞれ表−2のA14
、表−3のA22、表−4の扁26と組成は等しいが、
熱処理が不十分であって焼きなましの効果が現われてい
ないことを示している。
In addition, samples A32, 33, and 34 are respectively A14 in Table-2.
, the composition is the same as A22 in Table 3 and flat 26 in Table 4, but
This indicates that the heat treatment was insufficient and the annealing effect was not apparent.

またA35〜A37のFe−(’r−AI系合金は侵入
型不純物を化合物化させるW、Ta。
In addition, A35 to A37 Fe-('r-AI alloys contain W and Ta, which convert interstitial impurities into compounds.

Nb 、V 、Moなどの元素を含まないもので振動減
衰能δ/δ。
It does not contain elements such as Nb, V, Mo, etc. and has a vibration damping capacity of δ/δ.

が0.46以下であるのに対し、本発明はこの点を改善
して不純物を固定することにより磁壁の移動を更に容易
にして高い振動減衰能が得られる。
is 0.46 or less, whereas the present invention improves this point and fixes the impurities, thereby making it easier to move the domain wall and obtaining high vibration damping ability.

また、本発明導係る振動減衰合金の引張り強さは、例え
ば実施例♀試料A17が64.3 ’q/mA、A24
が63.7 kg/lna、A28が64.9kg/m
iであるのに対し、前記Cu−40Mn−2AI合金の
引張り強さは50.5kg/−であり、本発明に係る振
動減衰合金は機械的強度も優れている。
Further, the tensile strength of the vibration damping alloy according to the present invention is, for example, 64.3'q/mA for Example ♀ Sample A17, and 64.3'q/mA for A24
is 63.7 kg/lna, A28 is 64.9 kg/m
i, whereas the tensile strength of the Cu-40Mn-2AI alloy is 50.5 kg/-, and the vibration damping alloy according to the present invention also has excellent mechanical strength.

なお本発明に係る合金は耐食性にも優れた効果を有し、
例えば10%NaC1水溶液中に10分間隔の浸漬繰返
しによる発錆試験ではJIS 540Cが6回、本発明
実施例のAllが105回で夫々発錆が認められ、本発
明合金が優れた耐食性を有することが確認された。
The alloy according to the present invention also has excellent corrosion resistance,
For example, in a rusting test by repeated immersion in a 10% NaCl aqueous solution at 10-minute intervals, rusting was observed for JIS 540C at 6 times and for All of the present invention example at 105 times, indicating that the alloy of the present invention has excellent corrosion resistance. This was confirmed.

従って本発明に係る振動減衰合金は高温でも犬なる振動
減衰能を有するとともに、優れた機械的強さ、塑性加工
性、耐熱性、および耐食性をも併せ有するものである。
Therefore, the vibration damping alloy according to the present invention has excellent vibration damping ability even at high temperatures, and also has excellent mechanical strength, plastic workability, heat resistance, and corrosion resistance.

゛また、本発明に係る振動減衰合金において、切削加工
性向上のためのS、Pb、Ca等の元素および耐食性の
尚一層の向上のためのNi、Cu等の元素の少量の添加
は本発明の効果を何ら損うものではない。
゛Additionally, in the vibration damping alloy according to the present invention, addition of small amounts of elements such as S, Pb, Ca, etc. to improve machinability, and elements such as Ni, Cu, etc. to further improve corrosion resistance is according to the present invention. It does not in any way detract from the effect of

以上説明したように本発明によれば、耐熱性および耐食
性に優れ、振動減衰能が向上した振動減衰合金を得るこ
とができる。
As explained above, according to the present invention, it is possible to obtain a vibration damping alloy that has excellent heat resistance and corrosion resistance, and has improved vibration damping ability.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例の振動減衰能の温度特性を従来の双
晶型振動減衰合金と対比して示す曲線図である。
The figure is a curve diagram showing the temperature characteristics of the vibration damping ability of the embodiment of the present invention in comparison with a conventional twin-type vibration damping alloy.

Claims (1)

【特許請求の範囲】 1 重量%で (a) 0.1〜30%のCrと、 (b) 0.1〜12%のA1と、 (c)7%以下W、Ta、5%以下のNb、V、4%以
下のMo、Si、Ge及び3%以下のMnのうち少なく
とも一種(ただし、W、Ta。 Nb、V、Mo、Geのいずれも含まない場合にはSi
0.5%以下およびMn1%以下の範囲を除く)を含む
Fe−Cr−Al系合金に、700°C〜1200℃の
焼きなまし処理を施したことを特徴とする振動減衰合金
の製造方法。
[Claims] 1% by weight: (a) 0.1-30% Cr; (b) 0.1-12% A1; (c) 7% or less W, Ta, 5% or less At least one of Nb, V, 4% or less Mo, Si, Ge, and 3% or less Mn (however, W, Ta. If none of Nb, V, Mo, or Ge is included, Si
A method for producing a vibration damping alloy, characterized in that an Fe-Cr-Al alloy containing Mn (excluding the ranges of 0.5% or less and 1% or less) is annealed at 700°C to 1200°C.
JP49076939A 1974-07-05 1974-07-05 Method of manufacturing vibration damping alloy Expired JPS5817805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49076939A JPS5817805B2 (en) 1974-07-05 1974-07-05 Method of manufacturing vibration damping alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49076939A JPS5817805B2 (en) 1974-07-05 1974-07-05 Method of manufacturing vibration damping alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16776779A Division JPS591784B2 (en) 1979-12-24 1979-12-24 Alloys used as vibration and noise prevention members

Publications (2)

Publication Number Publication Date
JPS516120A JPS516120A (en) 1976-01-19
JPS5817805B2 true JPS5817805B2 (en) 1983-04-09

Family

ID=13619696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49076939A Expired JPS5817805B2 (en) 1974-07-05 1974-07-05 Method of manufacturing vibration damping alloy

Country Status (1)

Country Link
JP (1) JPS5817805B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615582Y2 (en) * 1975-01-13 1981-04-11
JPS5615583Y2 (en) * 1975-01-13 1981-04-11
JPS51120921A (en) * 1975-04-16 1976-10-22 Daido Steel Co Ltd High vibration preventive alloy
JPS526326A (en) * 1975-07-05 1977-01-18 Res Inst Electric Magnetic Alloys Vibration damping alloy and its production process
JPS5919180B2 (en) * 1977-11-16 1984-05-02 日新製鋼株式会社 Damping steel with high vibration damping ability
JP6370276B2 (en) * 2015-08-17 2018-08-08 日新製鋼株式会社 High Al content damping ferritic stainless steel material and manufacturing method
JP6370275B2 (en) * 2015-08-17 2018-08-08 日新製鋼株式会社 Damping ferritic stainless steel material and manufacturing method
CN109518094A (en) * 2018-12-03 2019-03-26 安徽恒明工程技术有限公司 A kind of heating wire and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976937A (en) * 1972-11-27 1974-07-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976937A (en) * 1972-11-27 1974-07-24

Also Published As

Publication number Publication date
JPS516120A (en) 1976-01-19

Similar Documents

Publication Publication Date Title
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
US4711761A (en) Ductile aluminide alloys for high temperature applications
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
DE2450607B2 (en) USE OF AN ALLOY TO MANUFACTURE PARTS WITH HIGH DAMPING CAPACITY AND HIGH ABSORPTION OF VIBRATIONS AND NOISE
JPS5817805B2 (en) Method of manufacturing vibration damping alloy
KR100227235B1 (en) Method for manufacturing a high formable, high strength, cold rolled steel sheet excellent in resistance to secondary working embrittlement
JP3706428B2 (en) Ferritic stainless steel for automotive exhaust system equipment
JPH11279693A (en) Good workability/high strength hot rolled steel sheet excellent in baking hardenability and its production
JP2536255B2 (en) Damping alloy
US4316743A (en) High damping Fe-Cr-Al alloy
JPS591784B2 (en) Alloys used as vibration and noise prevention members
JP2536256B2 (en) High strength damping alloy
JPH05255814A (en) Stainless steel thin sheet excellent in damping capacity and its manufacture
JPS5945748B2 (en) Damping steel plate for processing and its manufacturing method
JPS6059980B2 (en) Anti-vibration steel with high vibration damping ability and its manufacturing method
JP2792898B2 (en) Method for manufacturing cold-rolled steel sheet for deep drawing with excellent chemical conversion property
EP3795711B1 (en) Low cr ferritic stainless steel having excellent damping capacity and manufacturing method therefor
JPS638164B2 (en)
JPH0625379B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent toughness after heat treatment
JPS5944383B2 (en) Shindougensuigoukin
WO2023153185A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JPS5827325B2 (en) Method of manufacturing vibration damping alloy
JPS5919180B2 (en) Damping steel with high vibration damping ability
JPS60128245A (en) Vibration damping steel sheet having superior formability and its manufacture