JPS58178033A - Cylinder device - Google Patents

Cylinder device

Info

Publication number
JPS58178033A
JPS58178033A JP6023382A JP6023382A JPS58178033A JP S58178033 A JPS58178033 A JP S58178033A JP 6023382 A JP6023382 A JP 6023382A JP 6023382 A JP6023382 A JP 6023382A JP S58178033 A JPS58178033 A JP S58178033A
Authority
JP
Japan
Prior art keywords
piston
piston rod
cylinder
oil
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6023382A
Other languages
Japanese (ja)
Other versions
JPH0241663B2 (en
Inventor
Tomio Imaizumi
今泉 富雄
Fujio Tanigawa
富士夫 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP6023382A priority Critical patent/JPS58178033A/en
Priority to GB08309523A priority patent/GB2122305B/en
Publication of JPS58178033A publication Critical patent/JPS58178033A/en
Publication of JPH0241663B2 publication Critical patent/JPH0241663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To obtain desired oil pressure resistance characteristic in a cylinder device for a hydraulic buffer, by fixing a piston at one end of the piston rod movably in predetermined range while making the oil flow passing through the conducting path in the piston variable. CONSTITUTION:A small diameter section 21A is formed at the inner end of a piston rod 21 projecting through a rod guide 3 and a seal member 4 into a cylinder 1 then a piston 22 is fitted to said section 21A movably in the axial direction. Said range is limited by a limiting section consisting of a rising step 21B and a stopper 23. A path 24 conducting between the oil chambers B, C is formed on the piston 22 while an orifice 25 conducting between the path 24 and the oil chamber B is formed. A belleville spring 26 opening to the stopper 23 side is placed between the piston 22 and the stopper 23, to deform in accordance with the external force functioning onto the piston rod 21 thus to vary the oil pressure resistance.

Description

【発明の詳細な説明】 本発明はシリンダ内にピストンとピストンロッ(1) ドとからなるピストン−ピストンp2ドアセンブリ會摺
動可能に設け、該ピストン−ピストンロッドアセンブリ
の伸長行程および縮小行程において減衰力を発生させる
油圧緩衝器、ガススプリング等のシリンダ装置に関する
ものでおる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a piston-piston assembly consisting of a piston and a piston rod (1) in a cylinder so as to be slidable, and the piston-piston rod assembly is damped during the extension stroke and contraction stroke of the piston-piston rod assembly. This relates to cylinder devices such as hydraulic shock absorbers and gas springs that generate force.

第1図に従来技術によるシリンダ装置としての油圧緩衝
器を示す。
FIG. 1 shows a hydraulic shock absorber as a cylinder device according to the prior art.

同図において、lはシリンダで、該シリンダ1の一端は
キャップ2によυ施蓋されてお)、他端にはロッドガイ
ド3およびシール部材4が嵌着されている。5はシリン
ダ1内に摺動可能に設けたピストン、6はロッドガイド
3、シール部材4’t−貫通してシリンダ1内に突出し
て設けたピストンロッドを示し、前記ピストンはピスト
ンロッド6の先端に嵌入固着されている。
In the figure, l denotes a cylinder, one end of which is covered by a cap 2), and a rod guide 3 and a seal member 4 fitted to the other end. Reference numeral 5 indicates a piston that is slidably provided within the cylinder 1; 6 indicates a piston rod that extends through the rod guide 3 and the seal member 4't and protrudes into the cylinder 1; the piston is located at the tip of the piston rod 6; It is inset and fixed.

次に、7はシリンダ1のキャップ2側において摺動可能
に挿嵌されたフリーピストンで、核フリーピストン7と
キャップ2との間にはピストンロッド6のシリンダl内
への進入体積分を補償するための気体室Aが形成され、
該気体室Aには所定(9) 圧力の気体が刺入されている。またフリーピストン7と
ピストン5との間およびピストン5とシール部材4との
間には油室B、Cが形成されて、油液で満たされている
。8はピストン5に穿設したオリフィスで、核オリフィ
ス8により油室B、Cは小さな流路面積をもって常時連
通している。
Next, 7 is a free piston that is slidably fitted on the cap 2 side of the cylinder 1, and the space between the core free piston 7 and the cap 2 compensates for the volume of the piston rod 6 entering into the cylinder l. A gas chamber A is formed for
Gas at a predetermined (9) pressure is inserted into the gas chamber A. Further, oil chambers B and C are formed between the free piston 7 and the piston 5 and between the piston 5 and the seal member 4, and are filled with oil fluid. Reference numeral 8 denotes an orifice bored in the piston 5, and the core orifice 8 constantly communicates the oil chambers B and C with a small flow path area.

なお、9,10はそれぞれピストン5およびフリーピス
トン7に設けられたシール部材、II。
Note that 9 and 10 denote seal members II provided on the piston 5 and the free piston 7, respectively.

12はそれぞれピストン50基端部およびキャップ2に
取付けたブラケットヲ示す。
Reference numerals 12 indicate brackets attached to the base end of the piston 50 and the cap 2, respectively.

従来技術による油圧緩衝器は前述の構成を有するもので
、ピストンロッド6に図中矢印a方向に外力が加わると
、ピストンロッド6はピストン5と共に伸長する方向に
変位する。このため油室C内が高圧となって、該油MC
内の油液がオリフィス8を介して油室B内に流入する。
The hydraulic shock absorber according to the prior art has the above-mentioned configuration, and when an external force is applied to the piston rod 6 in the direction of the arrow a in the figure, the piston rod 6 is displaced in a direction in which it extends together with the piston 5. Therefore, the pressure inside the oil chamber C becomes high, and the oil MC
The oil inside flows into the oil chamber B through the orifice 8.

この油液がオリフィス8を通過する際の油圧抵抗力によ
って、ピストン5は減速せしめられる。
The piston 5 is decelerated by the hydraulic resistance force when this oil passes through the orifice 8.

一方、ピストンロッド6に図中矢示す方向に外力が加わ
ると、ピストン6iiピストン5と共に細小する方向に
変位し、このとき油室B内の油液がオリスイス8を通過
して油室C内に流入する際の油圧抵抗力によって、ピス
トン5の緩衝作用が行なわれる。
On the other hand, when an external force is applied to the piston rod 6 in the direction shown by the arrow in the figure, the piston 6ii and the piston 5 are displaced in the direction of decreasing in size, and at this time, the oil in the oil chamber B passes through the oriswiss 8 and flows into the oil chamber C. The damping effect of the piston 5 is performed by the hydraulic resistance force generated when the piston 5 is moved.

第2図にピストン5の速度に対する油圧抵抗力の関係を
示す。同図から明らかなように、ピストン5に設けたオ
リフィス8の流路面積は一定であるから、ピストン5の
速度に対する油圧抵抗力の特性は一定で、その伸長行程
、縮小行程共に同じである。従って、例えばピストン5
の速度が低速域にあるときには僅かの油圧抵抗力しか生
じず、高速域になると極めて大きな油圧抵抗力を発生さ
せる必要がある等、油圧抵抗力特性音ピストン5の速度
域に応じて変化させるような制御を行なうことは、前述
の従来技術による油圧緩衝器では不可能でおった。従っ
て、油圧抵抗力の特性設定における自由度は限られ、油
圧緩衝器の用途に応じて最適の特性設定を行々うことか
で1!!々い欠点がおった。
FIG. 2 shows the relationship between the hydraulic resistance force and the speed of the piston 5. As is clear from the figure, since the flow path area of the orifice 8 provided in the piston 5 is constant, the characteristics of the hydraulic resistance force with respect to the speed of the piston 5 are constant, and are the same in both the extension stroke and the contraction stroke. Therefore, for example, piston 5
When the speed of the piston 5 is in a low speed range, only a small hydraulic resistance force is generated, and in a high speed range, it is necessary to generate an extremely large hydraulic resistance force. Such control has not been possible with the hydraulic shock absorber according to the prior art described above. Therefore, the degree of freedom in setting the characteristics of the hydraulic resistance force is limited, and it is important to set the characteristics optimally according to the application of the hydraulic shock absorber. ! There were many shortcomings.

本発明は前述した従来技術の欠点を解消したものであっ
て、その特徴とするところは、ピストン6ピストンロッ
ドに移動可能に挿嵌し、ピストンロッドには前記ピスト
ンの移動範囲を規制する一対の規制部全敗け、ピストン
には該ピストンにより画成されるシリンダ内の2個の油
室全連通する連通路とオリフィスと金設け、さらに、ピ
ストンと−の規制部との間にピストンと共にピストンロ
ッド上を移動する弾性部材上介装し、前記内油室間に所
定値以上の差圧が生じたときに前記弾性部材が変形して
ピストンと当接することによって前記連通路が閉塞され
、油圧抵抗力の特性変化を生じさせることができるシリ
ンダ装置を提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art, and is characterized by the fact that the piston 6 is movably inserted into the piston rod, and the piston rod has a pair of pistons that restrict the range of movement of the piston. The restriction part was completely destroyed, and the piston was provided with a communication passage, an orifice, and a metal plate that completely communicated with the two oil chambers in the cylinder defined by the piston, and there was also a piston rod with the piston between the piston and the - restriction part. An elastic member is disposed on the inner oil chamber, and when a pressure difference of more than a predetermined value occurs between the inner oil chambers, the elastic member deforms and comes into contact with the piston, thereby closing the communication passage and reducing hydraulic resistance. The object of the present invention is to provide a cylinder device capable of causing a change in force characteristics.

以下、第3図ないし第10図に基づき本発明のシリンダ
装置を油圧緩衝器を例にと9説明する。
Hereinafter, the cylinder device of the present invention will be explained using a hydraulic shock absorber as an example, based on FIGS. 3 to 10.

まず、第3図において、第1図と同一構成要素について
は同一符号を付してその説明を省略するものとするに、
ピストンロッド21にはその先端部に小径部21Aが形
成されておシ、該小径部21Aにシリンダlの内壁に沿
って摺動するビス(5) トン22がその軸方向に移動自在に挿通せしめられてい
る。そして、ピストンロッド21には立上シ状段部21
Bが形成されると共に、小径部21A先端にストツノ!
23が固着して設けられ、峡段部21Bとストツノ42
3とでピストン22の移動範囲を規制する規制部を形成
している。
First, in FIG. 3, the same components as in FIG. 1 are given the same reference numerals and their explanations are omitted.
The piston rod 21 has a small diameter portion 21A formed at its tip, and a screw (5) 22 that slides along the inner wall of the cylinder I is inserted into the small diameter portion 21A so as to be movable in the axial direction. It is being The piston rod 21 has an upright shoulder portion 21.
B is formed, and a straight horn is formed at the tip of the small diameter portion 21A!
23 is fixedly provided, and the isthmus part 21B and the strut horn 42
3 forms a restriction portion that restricts the movement range of the piston 22.

24はピストン22に穿設され、油室Bと油室Cとを連
通させる流路面積の大きな通路、25はピストン22に
穿設され、油室Bと通路24とに開口するオリフィスを
示す。また、ピストン22とストッパ23との間にはス
トッパ23側に拡開する弾性部材としての皿ばね26が
介装されている。そして、核皿はね26は組付状態にお
いて、その外周縁部がストッパ23よ如僅かに半径方向
外方に突出した状態となっている。また、ピストン22
にはその内周側と外M@とにそれぞれストッパ23の方
向に突出する円環状の突部22A。
24 is a passage formed in the piston 22 and has a large flow area that communicates the oil chamber B and the oil chamber C, and 25 is an orifice formed in the piston 22 and open to the oil chamber B and the passage 24. Further, a disc spring 26 as an elastic member that expands toward the stopper 23 is interposed between the piston 22 and the stopper 23. In the assembled state, the nucleus plate spring 26 has its outer peripheral edge slightly protruding outward in the radial direction like the stopper 23. In addition, the piston 22
has an annular protrusion 22A that protrudes toward the stopper 23 on its inner circumferential side and outer M@.

22Bが形成されている。22B is formed.

本発明に係るシリンダ装置は前述の構成を有するもので
、第4図ないし第9図に基づきその作動(6) について説明する。
The cylinder device according to the present invention has the above-described configuration, and its operation (6) will be explained based on FIGS. 4 to 9.

まず、ピストンロッド21に第3図中a方向に外力が作
用すると、ピストンロッド21はシリンダlから突出す
る方向に変位する。このとき、ピストンロッド22はシ
リンダl内壁と摺接しているから、所定の摩擦力が付与
された状態にあり、ピストンロッド21のみが移動して
ピストン22の突部22Aとストン/423との間に皿
はね26が挾持された第4図の状態になる。この状態で
さらに矢示a方向に外力が作用すると、ピストンロッド
21と共にピストン22がシリンダ1内全摺動変位する
。このとき、油室C内の油液は流路24内に流入し、ピ
ストン22の突部22Bと皿はね26との間の隙間によ
って形成される流路りおよびオリフィス25を介して油
室Bg流れるが、流路りの開口面積が大きいから油液の
流動抵抗は発生させない。
First, when an external force acts on the piston rod 21 in the direction a in FIG. 3, the piston rod 21 is displaced in the direction of protruding from the cylinder l. At this time, since the piston rod 22 is in sliding contact with the inner wall of the cylinder l, a predetermined frictional force is applied to it, and only the piston rod 21 moves to move between the protrusion 22A of the piston 22 and the stone/423. The plate spring 26 is held in the state shown in FIG. 4. If an external force is further applied in the direction of arrow a in this state, the piston 22 together with the piston rod 21 is completely slid within the cylinder 1 . At this time, the oil in the oil chamber C flows into the flow path 24 and passes through the flow path formed by the gap between the protrusion 22B of the piston 22 and the disc spring 26 and the orifice 25 into the oil chamber. Bg flows, but since the opening area of the flow path is large, no flow resistance of the oil fluid is generated.

次に、ピストンロッド21に大きな外力が作用し、ピス
トン22の速度が増速せしめられると、油室C内は高圧
となって、油室Bとの間の差圧が増大する。このため、
ピストン22は第5図に示したようにさらにスト、パ2
3側に変位し、皿ばね26を変形させるから、流路りの
流路面積が小さくなって油圧抵抗が発生し始める。
Next, when a large external force acts on the piston rod 21 and the speed of the piston 22 is increased, the pressure inside the oil chamber C becomes high and the differential pressure between it and the oil chamber B increases. For this reason,
As shown in FIG.
3 side and deforms the disc spring 26, the flow path area of the flow path becomes smaller and hydraulic resistance begins to occur.

そして、ピストンロッド21にさらに大きな外力が加わ
り、ピストン22の摺動速度が極めて大きくなると、油
室C内はさらに高圧となって、ビ/()ン22に対する
押圧力が皿はね26のはね力よシ大きくなると、突部2
2Bが皿はね26と当   接することにな如、流路り
は閉塞される。従って、油室Cから油室Bへの油液の流
通はオリフィス25のみによシ行なわれるから、油圧抵
抗力は急激に増大する。
Then, when a larger external force is applied to the piston rod 21 and the sliding speed of the piston 22 becomes extremely large, the pressure inside the oil chamber C becomes even higher, and the pressing force against the bottle 22 is increased by the pressure of the countersunk spring 26. As the tension increases, the protrusion 2
As 2B comes into contact with the plate spring 26, the flow path is blocked. Therefore, since the oil fluid flows from the oil chamber C to the oil chamber B only through the orifice 25, the hydraulic resistance increases rapidly.

一方、ピストンI:+2ド21に第3図中の矢示す方向
に外力が作用すると、ピストンロッド21はシリンダ1
内に進入し、段部21Bはピストン22に当接する位置
にまで変位する。そして、この状態でピストンロッド2
1と共にピストン22がシリンダ1内を摺動変位すると
、油室Bが高圧となる。この結果、皿はね26はこの油
圧力によυピストン22側に突部22Aと当接する位置
まで変位した第7図の状態となる。このため、油室Bか
ら油室Cへの油液の流通はピストン22の突部22Bと
皿はね26との間に形成される流路りとオリフィス25
だけとなるが、流路りの開口面積が大きいから油圧抵抗
力が発生しない。
On the other hand, when an external force acts on the piston I:+2 door 21 in the direction shown by the arrow in FIG.
The stepped portion 21B is displaced to a position where it comes into contact with the piston 22. In this state, piston rod 2
When the piston 22 slides inside the cylinder 1 together with the piston 1, the pressure in the oil chamber B becomes high. As a result, the disk spring 26 is displaced by this hydraulic pressure toward the υ piston 22 to a position where it comes into contact with the protrusion 22A, as shown in FIG. 7. Therefore, the oil flows from the oil chamber B to the oil chamber C through the flow path formed between the protrusion 22B of the piston 22 and the disc spring 26, and through the orifice 25.
However, since the opening area of the flow path is large, no hydraulic resistance is generated.

そして、ピストンロッド21に大きな外力が加わると、
皿はね26はピストン22に近接する側に変形した第8
図の状態となシ、流路りの流路面積が小さくなυ、油圧
抵抗力が発生し始める。
Then, when a large external force is applied to the piston rod 21,
The disk spring 26 has an eighth shape deformed toward the side closer to the piston 22.
In the state shown in the figure, the flow area of the flow path becomes small υ, and hydraulic resistance begins to occur.

ピストンロッド21に作用する外力が極めて大きくな如
、油室Bと油室Cとの差圧が皿はね26のばね力よシ太
きくなると、第9図に示したように、皿ばね26が突部
22B、!=M接し、流路りが閉塞されるから、油圧抵
抗力も急激に増大する。
When the external force acting on the piston rod 21 is extremely large, and the differential pressure between the oil chambers B and C becomes greater than the spring force of the disc spring 26, the disc spring 26 as shown in FIG. is the protrusion 22B,! =M, and the flow path is blocked, so the hydraulic resistance force also increases rapidly.

そこで、ピストン22の速度と油圧抵抗力との関係全第
10図に示す。同図から明らかなように、ピストン22
の低速域ではオリフィス25と流路りとが流路面積とな
るから、流路面積は比較的太きく、油圧抵抗力は小とな
シ、ピストン22はあ(9) まシ減速されない、そして、ピストン22の速度が大き
くな夛、油fiB 、 0間の差圧が皿はね26のはね
力F−濡えたときに流路りは閉塞され、流路面積はオリ
フィス25だけとなるから油圧抵抗力の特性が変化し、
ピストン22の減速は極めて大きくなる。従って、オリ
フィス25の流路面積、皿ばね26の形状、枚数、ばね
力等を適宜のものとすることによ〃、所望の油圧抵抗力
特性t−得ることができる。
Therefore, the relationship between the speed of the piston 22 and the hydraulic resistance force is shown in FIG. As is clear from the figure, the piston 22
In the low speed range, the orifice 25 and the flow path have a flow path area, so the flow path area is relatively large, the hydraulic resistance is small, and the piston 22 is not decelerated (9). , because the speed of the piston 22 is high, the differential pressure between the oil fiB and 0 causes the spring force F of the disk spring 26 to become wet, the flow path is blocked and the flow path area becomes only the orifice 25. The characteristics of hydraulic resistance change,
The deceleration of the piston 22 becomes extremely large. Therefore, by appropriately selecting the flow path area of the orifice 25, the shape, number, spring force, etc. of the disc spring 26, a desired hydraulic resistance characteristic t- can be obtained.

なお、前述の実施例では本発明に係るシリンダ装置を油
圧緩衝器として使用する場合につき述べたが、ガススプ
リングとして用いることができることは勿論でおる。ま
た、前述の実施例ではオリフィス25を油室Bと通路2
4との間に設けるものとして述べたが、油室Be c 
I’lJ]を直接連通させるものであってもよい。また
、皿はね26はピストン22とスト、パ23との間に介
装するものと嘔PVt竿q査唱す肖六計1に誓fhば7
1J−ビ、If、)rln) ン7は必ずしも設ける必要はない。さらに、前記器ばね
26はストツノ母23より突出するものとして述べたが
、これに代えストッ・母23に圧導入用の通路を設ける
ことによシ、前記器ばね26の突出部分を不要としうる
In the above embodiments, the cylinder device according to the present invention is used as a hydraulic shock absorber, but it goes without saying that it can also be used as a gas spring. Further, in the above embodiment, the orifice 25 is connected to the oil chamber B and the passage 2.
4, but the oil chamber Be c
I'lJ] may be directly communicated. In addition, the countersunk 26 is interposed between the piston 22 and the striker 23.
1J-bin, If, ) rln) It is not necessarily necessary to provide the pin 7. Further, although the spring 26 has been described as protruding from the stopper spring 23, the protruding portion of the spring 26 can be made unnecessary by providing a pressure introduction passage in the stopper spring 23 instead. .

以上詳細に述べた如く、本発明に係るシリンダ装置によ
れば、ピストンをピストンロッドに移動可能に挿嵌し、
ピストンロッドには前記ピストンの移動範囲を規制する
一対の規制部を設け、ピストンには該ピストンによシ画
成されるシリンダ内の2個の油室全連通する連通路とオ
リフィスとを設け、さらに、ピストンと−の規制部との
間にピストンと共にピストンロッド上全移動する弾性部
材を介装する構成としたから、ピストンの速度が前記内
油室間に生じる差圧が弾性部材の弾性変化を生じさせる
値の前後において油圧抵抗力の特性に変化を生じさせる
ことができ、例えばピストンの低速域では油圧抵抗力が
小さく、ピストンの高速域では大きな油圧抵抗力全発生
させる等、シリンダ装置の用途によシ所望の油圧抵抗力
特性の制(11) 第 御が可能となる。
As described in detail above, according to the cylinder device according to the present invention, the piston is movably inserted into the piston rod,
The piston rod is provided with a pair of regulating portions that regulate the movement range of the piston, and the piston is provided with a communication passage and an orifice that fully communicate with the two oil chambers in the cylinder defined by the piston, Furthermore, since an elastic member is interposed between the piston and the negative regulating part and moves along the piston rod together with the piston, the differential pressure generated between the inner oil chamber due to the speed of the piston changes the elasticity of the elastic member. It is possible to cause a change in the characteristics of the hydraulic resistance force before and after the value that causes it. For example, the hydraulic resistance force is small in the low speed range of the piston, and the large hydraulic resistance force is generated in the high speed range of the piston. (11) It becomes possible to control the desired hydraulic resistance characteristics depending on the application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術によるシリンダ装置としての油圧緩衝
器全示す縦断面図、第2図は第1図の油圧緩衝器のピス
トン速度に対する油圧抵抗力特性を示す線図、第3図な
いし第10図は本発明の実施例を示すもので、第3図は
シリンダ装置としての油圧緩衝器の縦断面図、第4図な
いし第9図はそれぞれ異なる作動状態を示す第3図の部
分拡大図、第10図はピストン速度に対する油圧抵抗力
特性を示す線図である。 1・・・シリンダ、21・・・ピストンロッド、21B
・・・段部、22・・・ピストン、23・・・ストツノ
臂、24・・・通路、25・・・オリフィス、26・・
・皿ばね、B。 C・・・油室。  M    VN 第7図
FIG. 1 is a vertical sectional view showing the whole hydraulic shock absorber as a cylinder device according to the prior art, FIG. 2 is a diagram showing the hydraulic resistance characteristics of the hydraulic shock absorber of FIG. 1 with respect to piston speed, and FIGS. 3 to 10 The figures show an embodiment of the present invention; FIG. 3 is a longitudinal sectional view of a hydraulic shock absorber as a cylinder device; FIGS. 4 to 9 are partially enlarged views of FIG. 3 showing different operating states; FIG. 10 is a diagram showing hydraulic resistance force characteristics with respect to piston speed. 1... Cylinder, 21... Piston rod, 21B
... Stepped part, 22 ... Piston, 23 ... Stroke arm, 24 ... Passage, 25 ... Orifice, 26 ...
・Disc spring, B. C... Oil room. M VN Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)  シリンダ内に摺動可能に設けられ、該シリン
ダt−2個の油室に画成するピストンと、該ピストンに
軸方向に移動可能に挿嵌されたピストンロッドと、該ピ
ストンロッドに設けられ、前記ピストンの移動範囲を規
制する一対の規制部と、前記ピストンに形成され、前記
内油室間を連通させる連通路およびオリフィスと、前記
ピストンと前記各規制部の一方の規制部との間に介装さ
れ、前記ピストンと共に前記ピストンロッド上全移動し
、前記内油室間に所定値以上の差圧が生じたときに変形
してビス十ンと当接することによ如前記連通路を閉塞す
る弾性部材とからなるシリンダ装置。
(1) A piston that is slidably provided in a cylinder and defines t-2 oil chambers of the cylinder, a piston rod that is fitted into the piston so as to be movable in the axial direction, and a pair of regulating parts provided in the piston to regulate a movement range of the piston; a communication passage and an orifice formed in the piston to communicate between the inner oil chamber; and one regulating part of the piston and each of the regulating parts. It is interposed between the piston and the piston rod, and when a pressure difference of more than a predetermined value is generated between the inner oil chambers, it deforms and comes into contact with the screw, thereby making the connection. A cylinder device consisting of an elastic member that closes a passage.
(2)前記弾性部材は皿ばねである特許請求の範囲(1
)項記載のシリンダ装置。
(2) Claim (1) wherein the elastic member is a disc spring.
) Cylinder device described in section 2.
JP6023382A 1982-04-10 1982-04-10 Cylinder device Granted JPS58178033A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6023382A JPS58178033A (en) 1982-04-10 1982-04-10 Cylinder device
GB08309523A GB2122305B (en) 1982-04-10 1983-04-08 Fluid spring or damper with slidable piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023382A JPS58178033A (en) 1982-04-10 1982-04-10 Cylinder device

Publications (2)

Publication Number Publication Date
JPS58178033A true JPS58178033A (en) 1983-10-18
JPH0241663B2 JPH0241663B2 (en) 1990-09-18

Family

ID=13136247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023382A Granted JPS58178033A (en) 1982-04-10 1982-04-10 Cylinder device

Country Status (1)

Country Link
JP (1) JPS58178033A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155353A (en) * 1989-11-13 1991-07-03 Nkk Corp Small d.c. motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760234A (en) * 1980-09-29 1982-04-12 Mitsubishi Electric Corp Continuous measuring apparatus for temperature distribution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760234A (en) * 1980-09-29 1982-04-12 Mitsubishi Electric Corp Continuous measuring apparatus for temperature distribution

Also Published As

Publication number Publication date
JPH0241663B2 (en) 1990-09-18

Similar Documents

Publication Publication Date Title
JPS58221032A (en) Cylinder device
WO2019239521A1 (en) Pressure shock absorber
JP2019108975A (en) Hydraulic damper with hydraulic compression stop assembly
JPH06185562A (en) Hydraulic buffer
US11655875B2 (en) Damping valve and shock absorber
US20050139440A1 (en) Damper
JPS58178035A (en) Cylinder device
JPH02278026A (en) Hydraulic shock absorber
JPS58178033A (en) Cylinder device
JP6972352B2 (en) Buffer
JPS58178036A (en) Cylinder device
JP2009287653A (en) Damping-force adjusting structure of hydraulic damper
JPS58178034A (en) Cylinder device
JPS6220927A (en) Hydraulic damper
JP4743796B2 (en) Hydraulic damper for washing machine
JPH05118372A (en) Hydraulic shock absorber
JP7154199B2 (en) buffer
JPH05141469A (en) Damping force adjustable type hydraulic buffer
JPH024811B2 (en)
JPS6188034A (en) Hydraulic damper of variable damping force type
JPS59117932A (en) Hydraulic shock absorber
JP7402087B2 (en) buffer
JPH02283929A (en) Displacement sensitive hydraulic damper
JP6302148B1 (en) Pressure shock absorber
JPS6210506Y2 (en)