JPH024811B2 - - Google Patents

Info

Publication number
JPH024811B2
JPH024811B2 JP6201182A JP6201182A JPH024811B2 JP H024811 B2 JPH024811 B2 JP H024811B2 JP 6201182 A JP6201182 A JP 6201182A JP 6201182 A JP6201182 A JP 6201182A JP H024811 B2 JPH024811 B2 JP H024811B2
Authority
JP
Japan
Prior art keywords
piston
oil
cylinder
retainer
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6201182A
Other languages
Japanese (ja)
Other versions
JPS58180847A (en
Inventor
Tomio Imaizumi
Fujio Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP6201182A priority Critical patent/JPS58180847A/en
Priority to GB08309523A priority patent/GB2122305B/en
Publication of JPS58180847A publication Critical patent/JPS58180847A/en
Publication of JPH024811B2 publication Critical patent/JPH024811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/516Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】 本発明はシリンダ内にピストンとピストンロツ
ドとからなるピストン−ピストンロツドアセンブ
リを摺動可能に設け、該ピストン−ピストンロツ
ドアセンブリの伸長行程および縮小行程において
多段に減衰力を発生させる油圧緩衝器、ガススプ
リング等のシリンダ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a piston-piston rod assembly consisting of a piston and a piston rod in a slidable manner within a cylinder, and applies damping force in multiple stages during the extension stroke and contraction stroke of the piston-piston rod assembly. This relates to cylinder devices such as hydraulic shock absorbers and gas springs that generate .

第1図に従来技術によるシリンダ装置としての
油圧緩衝器を示す。
FIG. 1 shows a hydraulic shock absorber as a cylinder device according to the prior art.

同図において、1はシリンダで、該シリンダ1
の一端はキヤツプ2により施蓋されており、他端
にはロツドガイド3およびシール部材4が嵌着さ
れている。5はシリンダ1内に摺動可能に設けた
ピストン、6はロツドガイド3、シール部材4を
貫通してシリンダ1内に突出して設てたピストン
ロツドを示し、前記ピストンはピストンロツド6
の先端に嵌入固着されている。
In the figure, 1 is a cylinder, and the cylinder 1
One end is covered by a cap 2, and a rod guide 3 and a seal member 4 are fitted to the other end. Reference numeral 5 indicates a piston that is slidably provided within the cylinder 1; 6 indicates a piston rod that extends through the rod guide 3 and the seal member 4 and protrudes into the cylinder 1;
It is inset and fixed at the tip of the.

次に、7はシリンダ1のキヤツプ2側において
摺動可能に挿嵌されたフリーピストンで、該フリ
ーピストン7とキヤツプ2との間にはピストンロ
ツド6のシリンダ1内への進入体積分を補償する
ための気体室Aが形成され、該気体室Aには所定
圧力の気体が封入されている。また、フリーピス
トン7とピストン5との間およびピストン5とシ
ール部材4との間には油室B,Cが形成されて、
油液で満たされている。8はピストン5に穿設し
たオリフイスで、該オリフイス8により油室B,
Cは小さな流路面積をもつて常時連通している。
Next, reference numeral 7 denotes a free piston that is slidably fitted on the cap 2 side of the cylinder 1, and there is a space between the free piston 7 and the cap 2 to compensate for the volume of the piston rod 6 entering the cylinder 1. A gas chamber A is formed for this purpose, and gas at a predetermined pressure is sealed in the gas chamber A. Further, oil chambers B and C are formed between the free piston 7 and the piston 5 and between the piston 5 and the seal member 4,
filled with oil. 8 is an orifice bored in the piston 5, and the orifice 8 allows the oil chamber B,
C has a small flow path area and is always in communication.

なお、9,10はそれぞれピストン5およびフ
リーピストン7に設けられたシール部材、11,
12はそれぞれピストン5の基端部およびキヤツ
プ2に取付けたブラケツトを示す。
In addition, 9 and 10 are seal members provided on the piston 5 and the free piston 7, respectively, and 11,
Reference numerals 12 indicate brackets attached to the base end of the piston 5 and the cap 2, respectively.

従来技術による油圧緩衝器は前述の構成を有す
るもので、ピストンロツド6に図中矢示a方向に
外力が加わると、ピストンロツド6はピストン5
と共に伸長する方向に変位する。このため油室C
内が高圧となつて、該油室C内の油液がオリフイ
ス8を介して油室B内に流入する。この油液がオ
リフイス8を通過する際の油圧抵抗力によつて、
ピストン5は減速せしめられる。
The hydraulic shock absorber according to the prior art has the above-mentioned configuration, and when an external force is applied to the piston rod 6 in the direction of arrow a in the figure, the piston rod 6 moves toward the piston 5.
It is also displaced in the direction of elongation. For this reason, oil chamber C
The pressure inside becomes high, and the oil in the oil chamber C flows into the oil chamber B through the orifice 8. Due to the hydraulic resistance force when this oil passes through the orifice 8,
Piston 5 is decelerated.

一方、ピストンロツド6に図中矢示b方向に外
力が加わると、ピストンロツド6はピストン5と
共に縮小する方向に変位し、このとき油室B内の
油液がオリフイス8を通過して油室C内に流入す
る際の油圧抵抗力によつて、ピストン5の緩衝作
用が行なわれる。
On the other hand, when an external force is applied to the piston rod 6 in the direction of arrow b in the figure, the piston rod 6 is displaced together with the piston 5 in the direction of contraction, and at this time, the oil in the oil chamber B passes through the orifice 8 and flows into the oil chamber C. The damping effect of the piston 5 is achieved by the hydraulic resistance force upon inflow.

第2図にピストン5の速度に対する油圧抵抗力
の関係を示す。同図から明らかなように、ピスト
ン5に設けたオリフイス8の流路面積は一定であ
るから、ピストン5の速度に対する油圧抵抗力の
特性は一定で、その伸長行程、縮小行程共に同じ
である。従つて、例えばピストン5の速度が低速
域にあるときには僅かの油圧抵抗力しか生じず、
高速域になると極めて大きな油圧抵抗力を発生さ
せる必要がある等、油圧抵抗力特性をピストン5
の速度域に応じて変化させるような制御を行なう
ことは、前述の従来技術による油圧緩衝器では不
可能であつた。従つて、油圧抵抗力の特性設定に
おける自由度は限られ、油圧緩衝器の用途に応じ
て最適の特性設定を行なうことができない欠点が
あつた。また、オリフイス8は両方向に油液を流
通させるものであるから、ピストン5の速度に対
する油圧抵抗力の特性は伸長行程と縮小行程とで
は対称となつている。従つて、前述の油圧緩衝器
にあつては、例えば伸長行程において、縮小行程
より大きな油圧抵抗力を発生させるような油圧抵
抗力特性の設定を行なうのは不可能であつた。
FIG. 2 shows the relationship between the hydraulic resistance force and the speed of the piston 5. As is clear from the figure, since the flow path area of the orifice 8 provided in the piston 5 is constant, the characteristics of the hydraulic resistance force with respect to the speed of the piston 5 are constant, and are the same in both the extension stroke and the contraction stroke. Therefore, for example, when the speed of the piston 5 is in a low speed range, only a small hydraulic resistance force is generated;
At high speeds, it is necessary to generate an extremely large hydraulic resistance force, so the hydraulic resistance characteristics of the piston 5
It has been impossible to perform control such as changing the speed according to the speed range of the hydraulic shock absorber according to the prior art described above. Therefore, the degree of freedom in setting the characteristics of the hydraulic resistance force is limited, and there is a disadvantage that it is not possible to set the characteristics optimally depending on the application of the hydraulic shock absorber. Further, since the orifice 8 allows oil to flow in both directions, the characteristics of the hydraulic resistance force with respect to the speed of the piston 5 are symmetrical between the extension stroke and the contraction stroke. Therefore, in the above-mentioned hydraulic shock absorber, it has been impossible to set the hydraulic resistance characteristics such that, for example, in the extension stroke, a greater hydraulic resistance force is generated than in the contraction stroke.

本発明は前述した従来技術の欠点を解消するこ
とをその目的とするものであつて、その特徴とす
るところは、ピストンをピストンロツドの軸方向
に移動可能に挿嵌し、前記ピストンロツドには前
記ピストンの移動範囲を規制する一対のリテーナ
を設け、前記ピストンには2個の油室間を連通す
る絞り通路を設け、前記ピストンには前記リテー
ナ側への移動に対して抵抗力を与える付勢手段を
設け、前記ピストンが前記リテーナに当接したと
き前記絞り通路を開閉しうる弾性部材を設け、前
記絞り通路が前記弾性部材によつて閉じられてい
るとき前記各油室間に油液を流すオリフイスを設
けたことにより、ピストンがリテーナに当接する
前後および弾性部材が絞り通路を開閉する前後に
おいて、それぞれ油圧抵抗力の特性を3段に変化
させることができるようにしたシリンダ装置を提
供することにある。
The present invention aims to solve the above-mentioned drawbacks of the prior art, and is characterized in that a piston is fitted into a piston rod so as to be movable in the axial direction, and the piston a pair of retainers are provided for regulating the movement range of the piston, the piston is provided with a throttle passage that communicates between the two oil chambers, and the piston is provided with an urging means that provides a resistance force against movement toward the retainer. and an elastic member capable of opening and closing the throttle passage when the piston abuts the retainer, and when the throttle passage is closed by the elastic member, oil fluid flows between the oil chambers. To provide a cylinder device in which the characteristic of hydraulic resistance force can be changed in three stages before and after a piston contacts a retainer and before and after an elastic member opens and closes a throttle passage by providing an orifice. It is in.

以下、第3図ないし第8図に基づき本発明の実
施例について説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 8.

まず、第3図において、第1図と同一構成要素
については同一符号を付してその説明を省略する
ものとするに、ピストンロツド21のシリンダ1
内側の先端部には小径部21Aが形成されてお
り、該小径部21Aにはカラー22が嵌合される
と共に、該カラー22の両端部とピストンロツド
21の段部21Bおよびカシメ手段で形成された
先端突出部21Cとの間にはカラー22を挾んで
リテーナ23,24、1枚のデイスクで形成した
弾性部材25と2枚のデイスクからなる弾性部材
26、スペーサ27,28、ストツパ29,30
がそれぞれ介装されており、これらの各部材はい
ずれもシリンダ1内径より小径に形成されてい
る。
First, in FIG. 3, the same components as those in FIG.
A small diameter portion 21A is formed at the inner tip, and a collar 22 is fitted into the small diameter portion 21A, and is formed by both ends of the collar 22, a stepped portion 21B of the piston rod 21, and a caulking means. Retainers 23 and 24 sandwich the collar 22 between the tip protrusion 21C, an elastic member 25 formed of one disk and an elastic member 26 formed of two disks, spacers 27 and 28, and stoppers 29 and 30.
are interposed, and each of these members is formed to have a smaller diameter than the inner diameter of the cylinder 1.

31はカラー22に嵌合されたピストンで、該
ピストン31はシリンダ1の内壁に沿つて摺動す
ると共に、カラー22上を各リテーナ23,24
に当接する位置までピストンロツド21の軸方向
に移動することができるようになつている。そし
て、ピストン31の内周側は短尺部31Aとなつ
ていると共に、外周側は長尺部31Bとなつてお
り、該短尺部31Aと長尺部31Bとの境界部に
は段部31C,31Dが形成されている。しか
も、ピストン31の外周面側には両側面との角隅
部を切欠くことにより凹部31E,31Fが形成
されている。また、ピストン31の短尺部31A
には段部31C,31Dとカラー22外周面との
間に形成される環状溝31G,31Hにそれぞれ
開口する絞り通路32が穿設されており、該絞り
通路32はピストン31がリテーナ23,24か
ら離間しているときには油室B,C間を油圧抵抗
力を発生させながら連通し、ピストン31がリテ
ーナ23または24と当接したときには、絞り通
路32と油室BまたはCとの連通が遮断されるよ
うに構成されている。33,34はオリフイス
で、該各オリフイス33,34の一端はピストン
31の凹部31E,31Fに開口し、その他端は
絞り通路32内の中間部位に開口し、該絞り通路
32を介してそれぞれ油室B,Cと常時連通して
いる。そして、オリフイス33は絞り通路32よ
り小径となつており、またオリフイス34はオリ
フイス33よりさらに小径に形成されている。
A piston 31 is fitted into the collar 22, and the piston 31 slides along the inner wall of the cylinder 1 and slides on the collar 22 between the retainers 23 and 24.
The piston rod 21 can be moved in the axial direction to a position where it comes into contact with the piston rod 21. The inner circumferential side of the piston 31 is a short part 31A, and the outer circumferential side is a long part 31B, and the boundary between the short part 31A and the long part 31B has step parts 31C and 31D. is formed. Furthermore, recesses 31E and 31F are formed on the outer circumferential surface of the piston 31 by cutting out corner portions with both side surfaces. In addition, the short portion 31A of the piston 31
Throttle passages 32 are formed in the annular grooves 31G and 31H formed between the step portions 31C and 31D and the outer peripheral surface of the collar 22, respectively, and the piston 31 is connected to the retainers 23 and 24. When the piston 31 is separated from the retainer 23 or 24, the communication between the oil chambers B and C occurs while generating a hydraulic resistance force, and when the piston 31 comes into contact with the retainer 23 or 24, the communication between the throttle passage 32 and the oil chamber B or C is cut off. is configured to be Reference numerals 33 and 34 denote orifices, one end of each orifice 33 and 34 opens into the concave portions 31E and 31F of the piston 31, and the other end opens into an intermediate portion within the throttle passage 32, and oil is supplied through the throttle passage 32, respectively. It is in constant communication with rooms B and C. The orifice 33 has a smaller diameter than the throttle passage 32, and the orifice 34 has an even smaller diameter than the orifice 33.

35,36はそれぞれピストン31の各段部3
1C,31Dとリテーナ23,24との間に張設
された付勢手段としてのコイルばねで、該各コイ
ルばね35,36により、ピストン31はその中
立位置においてはリテーナ23,24からそれぞ
れ所定の距離だけ離間した状態に保持されてい
る。そして、各コイルばね35,36はピストン
31が油室B,C間の差圧によつてリテーナ23
または24側に移動するときに、その移動に対し
て抵抗力を与える機能を有するものである。
35 and 36 are respective step portions 3 of the piston 31
Coil springs as biasing means are stretched between 1C and 31D and retainers 23 and 24, and the coil springs 35 and 36 cause the piston 31 to release a predetermined amount from the retainers 23 and 24 in its neutral position. They are kept a distance apart. Then, each coil spring 35, 36 is connected to the retainer 23 by the piston 31 due to the differential pressure between the oil chambers B, C.
Alternatively, it has a function of providing resistance to the movement when it moves to the 24 side.

さらに、各リテーナ23,24はそれぞれスト
ツパ29,30に対面する背面側には環状凹部2
3A,24Aが形成され、また、該各リテーナ2
3,24には環状溝31G,31Hに一側が開口
し、他側が環状凹部23A,24Aに開口する油
穴37,38が穿設されている。各環状凹部23
A,24Aは常時には弾性部材25,26によつ
て閉塞されており、油室B,C間の差圧が所定値
以上となつたときには、環状凹部23A,24A
に作用する液圧で弾性部材25,26がそれぞれ
ストツパ29,30側に弾性変形してリテーナ2
3,24から離間せしめられ、弾性部材25,2
6とリテーナ23,24との間には環状通路3
9,40が形成される(第7図、第5図参照)。
Furthermore, each of the retainers 23 and 24 has an annular recess 2 on the back side facing the stoppers 29 and 30, respectively.
3A and 24A are formed, and each retainer 2
3 and 24 are provided with oil holes 37 and 38, which open on one side to the annular grooves 31G and 31H and open on the other side to the annular recesses 23A and 24A. Each annular recess 23
A, 24A are normally closed by elastic members 25, 26, and when the differential pressure between oil chambers B, C exceeds a predetermined value, annular recesses 23A, 24A are closed.
The elastic members 25 and 26 are elastically deformed toward the stoppers 29 and 30, respectively, by the hydraulic pressure acting on the retainer 2.
3, 24, and the elastic members 25, 2
An annular passage 3 is provided between the retainer 6 and the retainers 23 and 24.
9 and 40 are formed (see FIGS. 7 and 5).

本発明に係るシリンダ装置は前述の構成を有す
るもので、次にその作動について説明する。
The cylinder device according to the present invention has the above-mentioned configuration, and its operation will be explained next.

まず、ピストンロツド21に外力が作用し、図
中矢示a方向に変位せしめられると、伸長行程が
開始する。このため、ピストン31はシリンダ1
内をピストンロツド21と共に矢示a方向に摺動
変位する。従つて、油室Cは高圧となつて、該油
室C内の油液は絞り通路32を流通する際に発生
する油圧抵抗力によりピストン31の減速作用が
行なわれる。ところで、油室C内が高圧になる
と、ピストン31はその油圧力によつてリテーナ
24側に押動せしめられるが、ピストン31とリ
テーナ24との間にはコイルばね36が張設され
ているから、該コイルばね36の付勢力がピスト
ン31の移動に対する抵抗力となる。
First, when an external force is applied to the piston rod 21 and the piston rod 21 is displaced in the direction of arrow a in the figure, an extension stroke begins. Therefore, the piston 31 is in the cylinder 1
The piston rod 21 is slid inside the piston rod 21 in the direction of arrow a. Therefore, the pressure in the oil chamber C is high, and the hydraulic resistance force generated when the oil in the oil chamber C flows through the throttle passage 32 causes the piston 31 to be decelerated. By the way, when the pressure inside the oil chamber C becomes high, the piston 31 is pushed toward the retainer 24 by the oil pressure, but since a coil spring 36 is stretched between the piston 31 and the retainer 24. The biasing force of the coil spring 36 acts as a resistance force against the movement of the piston 31.

然るに、ピストン31の速度が増大すると、油
室C内の圧力も増大し、油室Cと油室Bとの間の
差圧が拡大することになる。このため、ピストン
31はコイルばね36を撓めながら徐々にリテー
ナ24に近接する方向へ移動し、油室B,C間の
差圧がコイルばね36のばね力faより大きくなつ
たときに、ピストン31がリテーナ24と当接し
た第4図の状態となる。このために、絞り通路3
2と油室Bとの連通が遮断され、油室C内の油液
は絞り通路32を介してオリフイス34から油室
B内に流入することになる。該オリフイス34の
流路面積は絞り通路32より小さいものであるか
ら、大きな油圧抵抗力を発生させることができ
る。
However, when the speed of the piston 31 increases, the pressure within the oil chamber C also increases, and the differential pressure between the oil chamber C and the oil chamber B increases. Therefore, the piston 31 gradually moves toward the retainer 24 while bending the coil spring 36, and when the differential pressure between the oil chambers B and C becomes larger than the spring force fa of the coil spring 36, the piston 31 moves toward the retainer 24. 31 is in contact with the retainer 24 as shown in FIG. 4. For this purpose, the throttle passage 3
2 and the oil chamber B is cut off, and the oil in the oil chamber C flows into the oil chamber B from the orifice 34 via the throttle passage 32. Since the flow path area of the orifice 34 is smaller than that of the throttle passage 32, a large hydraulic resistance force can be generated.

そして、ピストン31の速度がさらに高速にな
ると、油室C内の油液がさらに高圧となつて、こ
の高圧油は絞り通路32、環状溝31H、油穴3
8を介して環状凹部24Aに供給され、弾性部材
26を押動させることになる。そして、この環状
凹部24Aに作用する油圧力が弾性部材26のば
ね力FAより大きくなつたときに、弾性部材26
が弾性変形してリテーナ24から離間し、環状通
路40が形成されるから、油室Cから油室Bへの
油液の流量はオリフイス34と環状通路40との
和となる。従つて、流量が増加するから、油圧抵
抗力の増加率が減少し、その特性が再び変化す
る。
When the speed of the piston 31 becomes higher, the pressure of the oil in the oil chamber C becomes higher, and this high-pressure oil flows through the throttle passage 32, the annular groove 31H, and the oil hole 3.
8 to the annular recess 24A, thereby pushing the elastic member 26. When the hydraulic pressure acting on this annular recess 24A becomes larger than the spring force F A of the elastic member 26, the elastic member 26
is elastically deformed and separated from the retainer 24 to form an annular passage 40, so the flow rate of the oil from the oil chamber C to the oil chamber B is the sum of the orifice 34 and the annular passage 40. Therefore, since the flow rate increases, the rate of increase of the hydraulic resistance force decreases and its characteristics change again.

一方、ピストンロツド21に外力が作用して図
中矢示b方向に変位すると、縮小行程となる。そ
して、ピストン31はピストンロツド21と共に
矢示b方向に摺動変位せしめられる。このとき
に、油室B内の油液が絞り通路32を介して油室
C内に流入する際に生じる油圧抵抗力により、ピ
ストン31の緩衝作用が行なわれる。そして、油
室B,C間の差圧がコイルばね35のばね力fb
り大きくなると、ピストン31がリテーナ23と
当接せしめられ、絞り通路32と油室Cとの連通
が遮断されて、第6図に示したように、油室B内
の油液は絞り通路32を介してオリフイス33を
介して油室C内に流入することになる。該オリフ
イス33は絞り通路32より小さな流路面積を有
するものであるから油圧抵抗力が大きくなる。
On the other hand, when an external force acts on the piston rod 21 and the piston rod 21 is displaced in the direction of arrow b in the figure, the piston rod 21 enters a contraction stroke. Then, the piston 31 is slidably displaced together with the piston rod 21 in the direction of arrow b. At this time, the hydraulic resistance force generated when the oil in the oil chamber B flows into the oil chamber C through the throttle passage 32 causes a buffering effect on the piston 31. Then, when the differential pressure between the oil chambers B and C becomes larger than the spring force f b of the coil spring 35, the piston 31 comes into contact with the retainer 23, and communication between the throttle passage 32 and the oil chamber C is cut off. As shown in FIG. 6, the oil in the oil chamber B flows into the oil chamber C through the throttle passage 32 and the orifice 33. Since the orifice 33 has a flow path area smaller than that of the throttle passage 32, the hydraulic resistance force becomes large.

さらに、ピストン31の摺動変位が高速になる
と、第7図に示したように、油室B内の油液が絞
り通路32、油穴37、環状凹部23Aを介して
弾性部材25に作用し、この油圧力が弾性部材2
5のばね力FBより大きくなつたときに弾性部材
25が弾性変形して環状通路40が形成される。
従つて、油室Bから油室Cに流れる油液の流量は
オリフイス33と環状通路39との和となり、流
量が増加して油圧抵抗力の増加率が減少し、その
特性が再び変化する。
Furthermore, when the sliding displacement of the piston 31 becomes high speed, the oil in the oil chamber B acts on the elastic member 25 through the throttle passage 32, the oil hole 37, and the annular recess 23A, as shown in FIG. , this hydraulic pressure causes the elastic member 2
When the spring force becomes larger than the spring force F B of 5, the elastic member 25 is elastically deformed and the annular passage 40 is formed.
Therefore, the flow rate of the oil flowing from the oil chamber B to the oil chamber C becomes the sum of the flow rate of the orifice 33 and the annular passage 39, the flow rate increases, the rate of increase in hydraulic resistance decreases, and its characteristics change again.

次に、ピストン31の速度と油圧抵抗力との関
係を第8図に示す。同図から明らかなように、ピ
ストン31の低速域では流路面積は伸長行程、縮
小行程ともに主として絞り通路32であるから、
油圧抵抗力は点M,Nまでピストン31の速度に
応じて漸増し、その特性はほぼ対称となつてい
る。そして、ピストン31の高速域では絞り通路
32は閉塞されて、流路面積はオリフイス33,
34となり、急激に油圧抵抗力が増大し、その特
性は点M,N以後変化する。この場合、オリフイ
ス34はオリフイス33より小径となつているか
ら、伸長行程における油圧抵抗力の増加の割合の
方が縮小行程におけるそれより大きい。しかも、
ピストン31の速度がさらに高速となると、弾性
部材25,26が弾性変形し、環状通路39,4
0が形成されるから、点P,Q以後に油圧抵抗力
特性がさらに変化し、その増加の割合は間お
よび間よりも少なくなる。従つて、絞り通路
32、オリフイス33,34の流路面積およびコ
イルばね35,36および弾性部材25,26ば
ね力を適宜設定すれば、所望の油圧抵抗力の特性
を得ることができる。
Next, FIG. 8 shows the relationship between the speed of the piston 31 and the hydraulic resistance force. As is clear from the figure, in the low speed range of the piston 31, the flow path area is mainly the throttle passage 32 in both the extension stroke and the contraction stroke.
The hydraulic resistance force gradually increases up to points M and N according to the speed of the piston 31, and its characteristics are almost symmetrical. In the high speed range of the piston 31, the throttle passage 32 is closed, and the flow passage area is reduced to the orifice 33,
34, the hydraulic resistance suddenly increases, and its characteristics change after points M and N. In this case, since the orifice 34 has a smaller diameter than the orifice 33, the rate of increase in the hydraulic resistance force during the extension stroke is greater than that during the contraction stroke. Moreover,
When the speed of the piston 31 becomes higher, the elastic members 25 and 26 are elastically deformed, and the annular passages 39 and 4
0 is formed, the hydraulic resistance force characteristics further change after points P and Q, and the rate of increase is smaller than between and between. Therefore, by appropriately setting the flow area of the throttle passage 32, the orifices 33, 34, and the spring forces of the coil springs 35, 36 and the elastic members 25, 26, desired hydraulic resistance characteristics can be obtained.

なお、前述の実施例では、本発明に係るシリン
ダ装置を油圧緩衝器として使用する場合につき述
べたが、ガススプリングとしても用いることがで
きるのは勿論である。また、カラー22はピスト
ン31の移動を円滑にするためのもので、ピスト
ン31をピストンロツド21上に直接嵌合する構
成としてもよい。一方、ピストンロツド21に小
径部21Aおよび段部21Bを形成しない場合に
は、ストツパ29,30をC輪等の手段で保持さ
せてもよく、またC輪を用いる場合には先端突出
部21Cを形成する必要はない。さらに、絞り通
路32は短尺部31Aに形成する必要はなく、長
尺部31Bに形成してもよい。この場合、油穴3
7,38を絞り通路32と対面させ、当該対面部
位のピストン31またはリテーナ23,24に環
状の溝を形成させておくのが好ましい。そして、
絞り通路32、オリフイス33,34はいずれも
1個に限るものではなく、さらにオリフイス3
3,34は同径であつても、オリフイス33の方
が小径であつてもよく、また弾性部材25,26
の枚数やばね力も同じであつても異なつていても
よい。
In the above-mentioned embodiments, the case where the cylinder device according to the present invention is used as a hydraulic shock absorber has been described, but it goes without saying that it can also be used as a gas spring. Further, the collar 22 is for smooth movement of the piston 31, and the piston 31 may be directly fitted onto the piston rod 21. On the other hand, if the piston rod 21 is not formed with the small diameter portion 21A and the stepped portion 21B, the stoppers 29, 30 may be held by C-rings or other means, and if a C-ring is used, a tip protruding portion 21C is formed. do not have to. Furthermore, the throttle passage 32 does not need to be formed in the short part 31A, and may be formed in the long part 31B. In this case, oil hole 3
It is preferable that the pistons 7 and 38 face the throttle passage 32, and an annular groove is formed in the piston 31 or the retainers 23 and 24 at the facing portions. and,
The number of the throttle passage 32 and the orifices 33 and 34 is not limited to one, and the orifice 3
3 and 34 may have the same diameter, or the orifice 33 may have a smaller diameter, and the elastic members 25 and 26 may have the same diameter.
The number of sheets and the spring force may be the same or different.

さらにまた、ブラケツト12を上方に取付ける
構成とすれば、フリーピストン7は必ずしも設け
る必要はない。
Furthermore, if the bracket 12 is mounted upwardly, the free piston 7 is not necessarily required.

以上詳細に述べた如く、本発明に係るシリンダ
装置によれば、ピストンをピストンロツドの軸方
向に移動可能に挿嵌し、前記ピストンロツドには
前記ピストンの移動範囲を規制する一対のリテー
ナを設け、前記ピストンには2個の油室間を連通
する絞り通路を設け、前記ピストンには前記リテ
ーナ側への移動に対して抵抗力を与える付勢手段
を設け、前記ピストンが前記リテーナに当接した
とき前記絞り通路を開閉しうる弾性部材を設け、
前記絞り通路が前記弾性部材によつて閉じられて
いるとき前記各油室間に油液を流すオリフイスを
設けた構成としたから、ピストンの速度に応じて
両油室間の流路を絞り通路による場合と、オリフ
イスによる場合と、オリフイスと油穴による場合
との3段で油圧抵抗力の特性を変化させることが
でき、シリンダ装置の用途により所望の油圧抵抗
力特性が得ることができる。また、オリフイスの
流路面積および弾性部材のばね力を相異なるよう
に形成しておけば、リテーナによる絞り通路閉塞
後の油圧抵抗力特性を伸長行程と縮小行程とでは
異なるように形成することもできる。
As described in detail above, according to the cylinder device according to the present invention, the piston is fitted into the piston rod so as to be movable in the axial direction, the piston rod is provided with a pair of retainers for regulating the movement range of the piston, and the piston is fitted into the piston rod so as to be movable in the axial direction. The piston is provided with a throttle passage that communicates between the two oil chambers, and the piston is provided with an urging means that provides a resistance force against movement toward the retainer, and when the piston comes into contact with the retainer. providing an elastic member capable of opening and closing the throttle passage;
Since an orifice is provided for flowing oil between the oil chambers when the throttle passage is closed by the elastic member, the flow passage between the oil chambers is throttled depending on the speed of the piston. The characteristics of the hydraulic resistance force can be changed in three stages: when using an orifice, when using an orifice and an oil hole, and desired hydraulic resistance characteristics can be obtained depending on the use of the cylinder device. Furthermore, if the flow path area of the orifice and the spring force of the elastic member are made different, it is possible to make the hydraulic resistance characteristics different in the extension stroke and the contraction stroke after the restriction passage is closed by the retainer. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術によるシリンダ装置としての
油圧緩衝器を示す縦断面図、第2図は第1図の油
圧緩衝器のピストン速度に対する油圧抵抗力特性
を示す線図、第3図ないし第8図は本発明の実施
例を示すもので、第3図はシリンダ装置としての
油圧緩衝器の縦断面図、第4図ないし第7図はそ
れぞれ異なる作動状態を示す第3図の部分拡大
図、第8図はピストン速度に対する油圧抵抗力特
性を示す線図である。 1…シリンダ、21…ピストンロツド、23,
24…リテーナ、25,26…弾性部材、31…
ピストン、32…絞り通路、33,34…オリフ
イス、35,36…コイルばね、37,38…油
穴、B,C…油室。
FIG. 1 is a vertical sectional view showing a hydraulic shock absorber as a cylinder device according to the prior art, FIG. 2 is a diagram showing hydraulic resistance characteristics with respect to piston speed of the hydraulic shock absorber shown in FIG. 1, and FIGS. The figures show an embodiment of the present invention; FIG. 3 is a longitudinal sectional view of a hydraulic shock absorber as a cylinder device; FIGS. 4 to 7 are partially enlarged views of FIG. 3 showing different operating states; FIG. 8 is a diagram showing hydraulic resistance force characteristics with respect to piston speed. 1...Cylinder, 21...Piston rod, 23,
24...Retainer, 25, 26...Elastic member, 31...
Piston, 32... Throttle passage, 33, 34... Orifice, 35, 36... Coil spring, 37, 38... Oil hole, B, C... Oil chamber.

Claims (1)

【特許請求の範囲】 1 シリンダ内にはピストンロツドを突出させて
設け、該ピストンロツドのシリンダ内端には前記
シリンダ内を摺動し該シリンダ内を2個の油室に
画成するピストンを前記ピストンロツドの軸方向
に移動可能に挿嵌し、前記ピストンロツドには前
記ピストンの移動範囲を規制する一対のリテーナ
を設け、前記ピストンには前記各油室間を連通す
る絞り通路を設け、前記ピストンには前記リテー
ナ側への移動に対して抵抗力を与える付勢手段を
設け、前記ピストンが前記リテーナに当接したと
き前記絞り通路を開閉しうる弾性部材を設け、前
記絞り通路が前記弾性部材によつて閉じられてい
るとき前記各油室間に油液を流すオリフイスを設
けたシリンダ装置。 2 前記付勢手段はリテーナとピストンとの間に
配設されたコイルばねであり、前記弾性部材はデ
イスクである特許請求の範囲1項記載のシリンダ
装置。
[Scope of Claims] 1. A piston rod is provided in the cylinder to protrude, and at the inner end of the cylinder there is a piston that slides in the cylinder and defines the inside of the cylinder into two oil chambers. The piston rod is provided with a pair of retainers for regulating the range of movement of the piston, the piston is provided with a restriction passage that communicates between the oil chambers, and the piston is provided with a pair of retainers that restrict the movement range of the piston. A biasing means that provides a resistance force against movement toward the retainer is provided, an elastic member is provided that can open and close the throttle passage when the piston comes into contact with the retainer, and the throttle passage is opened and closed by the elastic member. The cylinder device is provided with an orifice that allows oil to flow between the oil chambers when the cylinder is closed. 2. The cylinder device according to claim 1, wherein the biasing means is a coil spring disposed between the retainer and the piston, and the elastic member is a disk.
JP6201182A 1982-04-10 1982-04-14 Cylinder apparatus Granted JPS58180847A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6201182A JPS58180847A (en) 1982-04-14 1982-04-14 Cylinder apparatus
GB08309523A GB2122305B (en) 1982-04-10 1983-04-08 Fluid spring or damper with slidable piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6201182A JPS58180847A (en) 1982-04-14 1982-04-14 Cylinder apparatus

Publications (2)

Publication Number Publication Date
JPS58180847A JPS58180847A (en) 1983-10-22
JPH024811B2 true JPH024811B2 (en) 1990-01-30

Family

ID=13187780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6201182A Granted JPS58180847A (en) 1982-04-10 1982-04-14 Cylinder apparatus

Country Status (1)

Country Link
JP (1) JPS58180847A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932531B2 (en) * 2007-02-23 2012-05-16 カヤバ工業株式会社 Buffer valve structure

Also Published As

Publication number Publication date
JPS58180847A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
JP4987283B2 (en) Shock absorber valve structure and shock absorber
JP2947889B2 (en) Buffer valve
KR100347779B1 (en) Hydraulic damper of damping force adjusting type
JPH0243051B2 (en)
JPH06185562A (en) Hydraulic buffer
KR20190109469A (en) buffer
JPS58178035A (en) Cylinder device
JPH10259847A (en) Position-dependent damper
JP2004257507A (en) Hydraulic damper
JPH024811B2 (en)
JP2019183919A (en) Valve and buffer
JPH08135714A (en) Hydraulic shock absorber
JPS6210505Y2 (en)
KR20050079877A (en) Hydraulic damper
JPH0331945B2 (en)
JPH0241663B2 (en)
JPS6210506Y2 (en)
JP3360156B2 (en) Damping force adjustable hydraulic shock absorber
JPH0440570B2 (en)
JP2933360B2 (en) Variable damping force type shock absorber
JPH0331947B2 (en)
JPH0241664B2 (en)
JPH0241665B2 (en)
JPH05141469A (en) Damping force adjustable type hydraulic buffer
JPH0446101Y2 (en)