JPS58176235A - Vinylidene chloride latex and method for use thereof - Google Patents

Vinylidene chloride latex and method for use thereof

Info

Publication number
JPS58176235A
JPS58176235A JP6051682A JP6051682A JPS58176235A JP S58176235 A JPS58176235 A JP S58176235A JP 6051682 A JP6051682 A JP 6051682A JP 6051682 A JP6051682 A JP 6051682A JP S58176235 A JPS58176235 A JP S58176235A
Authority
JP
Japan
Prior art keywords
latex
vinylidene chloride
drying
film
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6051682A
Other languages
Japanese (ja)
Other versions
JPS634870B2 (en
Inventor
Kazuhiko Hiyoshi
日吉 和彦
Takahiko Kotani
貴彦 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6051682A priority Critical patent/JPS58176235A/en
Publication of JPS58176235A publication Critical patent/JPS58176235A/en
Publication of JPS634870B2 publication Critical patent/JPS634870B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide a heat-crosslinkable vinylidene chloride latex having improved blocking resistance, by mixing two specified kinds of latexes obtd. by emulsion-copolymeizing vinylidene chloride, glycidyl methacrylate and other monomer. CONSTITUTION:Among vinylidene chloride latexes obtd. by emulsion-copolymerizing vinylidene chloride, glycidyl methacrylate and other monomer copolymerizable therewith, a latex (A) which has good continuous film formability and in which powder obtd. by freeze-drying said vinylidene chloride latex has a calorific value of 2,000-6,000mcal/g or below as measured by differential thermal analysis, and a latex (B) which does not have continuous film formability and in which powder obtd. by freeze-drying said vinylidene chloride latex does not exhibit a calorific value as measured by differential thermal analysis, are mixed together in a ratio (on a solid basis) of 0.25-1.

Description

【発明の詳細な説明】 本発明は、熱架橋性を有する塩化ビニリデン系ラテック
スに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vinylidene chloride latex having thermal crosslinkability.

塩化ビニリデン系ラテックスのプラスチックフィルム等
へのコーティングに際して、コートサしたフィルムはり
一ル状に巻き取られる事が一般的であるが、順次積層さ
れる塩化ビニリデン系ラテックス塗膜面と基材プラスチ
ックフィルム面との間で、又はプラスチックフィルム等
の両面へのコーティングにあっては塩化ビニリデン系ラ
テックス塗膜面同士の間で、往々にしてブロッキングが
生じ、塗膜面の平滑性、透明性を欠く事態が生ずる。
When coating vinylidene chloride latex on plastic films, etc., the coated film is generally rolled up into a roll. When coating both sides of plastic films, blocking often occurs between vinylidene chloride latex coatings, resulting in a lack of smoothness and transparency on the coating surface. .

このブロッキング現象を回避するためには、コーティン
グに際して、塩化ビニリデン系ラテックス塗膜の結晶化
速度を出来るだけ大にして、なるべく短時間に高い結晶
化度に、到達せしめるのが有効であることが知られてお
り、そのための方法も数多く提案されている。
In order to avoid this blocking phenomenon, it is known that it is effective to increase the crystallization rate of the vinylidene chloride latex coating film as much as possible during coating, and to reach a high degree of crystallinity in as short a time as possible. Many methods have been proposed for this purpose.

しかしながらそれらの方法のいずれも、最近の新規なコ
ーティング方法のもとでは全く不満足な効果しか示さな
いものであることが判明してきた。
However, both of these methods have been found to be quite unsatisfactory under recent new coating methods.

と云うのは、本発明者らは先頃、塩化ビニリデン系ラテ
ックスのコーティングに際して、塩化ビニリデンホモポ
リマーの融点以上に熱処理を行なった上で、結晶化を十
分に進ませた塗膜は、熱処理なしの従来公知のコーティ
ング方法によりなる塗膜よりもはるかに優れた性能を有
することを見出したが (%願昭jt −10/13号
χ近年のより高速を求めるコーティング工程のもとでは
、結晶化の十分な促進のために要する時間が極めて短か
い事が望まれるし、一方、特開昭j3−271,41号
公報などに見られるような、塗工層コーティング基材フ
ィルムの延伸を熱固定するための熱処理を行なう方法の
提案もあり、この方法によれば塩化ビニIJデン系樹脂
塗膜の融解はもとより軟化も又望むところではないのに
1基材フイルムの素材によって定まる所の高温に塩化ビ
ニリデン系樹脂塗膜をさらさざるを得す、熱処理后ロー
ル状に巻きとられた時ブロッキング現象はまぬかれえな
いこととなる訳である。これらいずれのコーティング方
法にあっても、従来提案されている方法で単に結晶化速
度を大とするだけでは、結局は有限の速度をもち、熱処
理から巻取りまでの間にしかるべき時間を必要とするこ
とにおいては変りがない。
This is because the present inventors recently discovered that when coating vinylidene chloride-based latex, heat treatment was performed to a temperature higher than the melting point of the vinylidene chloride homopolymer, and the coating film that had sufficiently advanced crystallization was as good as that without heat treatment. It was discovered that the performance was far superior to that of coating films made by conventionally known coating methods. It is desired that the time required for sufficient acceleration be extremely short, and on the other hand, it is desirable to heat-set the stretching of the coating layer coating base film as seen in JP-A No. 3-271,41. There has also been a proposal for a heat treatment method to heat the vinyl chloride IJ resin coating, which does not melt or soften the vinyl chloride resin coating, which is not desired. This means that the vinylidene resin coating must be exposed, and the blocking phenomenon cannot be avoided when it is wound up into a roll after heat treatment. Simply increasing the crystallization rate using the method described above does not change the fact that the crystallization rate is ultimately finite and that a certain amount of time is required between heat treatment and winding.

そこで本発明者らは、熱処理が終った時点で既にブロッ
キングを起こさないように十分な硬度をもった塗膜を4
えるよ5な塩化ビニリデン系ラテックスの開発に取組む
こととなった。熱処理によって十分な硬度の塗膜を与え
るものとしては、熱硬化性樹脂が広く知られているが、
塩化ビニリデン系樹脂を架橋させると、その結晶性が失
われ、塩化ビニリデン系樹脂コーテイング材の重要な性
能であるバリヤー性(水分や酸素等の気体の遮断性)が
失われるのが一般である。塩化ビニリデン系樹脂の結晶
性(即ち熱可塑性)を維持したまま上述の如き熱処理に
よって硬化し、ブロッキングをおこさない塗膜を与える
ような塩化ビニリデン系ラテックスの開発と云う一見背
反する事象を共に成立させようとするが如き高度な目標
を達成せんものと検討を行なった。
Therefore, the present inventors developed a coating film with sufficient hardness to prevent blocking by the time the heat treatment was completed.
We decided to work on the development of a vinylidene chloride latex that is highly effective. Thermosetting resins are widely known as materials that can provide coatings with sufficient hardness through heat treatment, but
When vinylidene chloride resin is crosslinked, it generally loses its crystallinity and loses its barrier properties (blocking properties for gases such as moisture and oxygen), which is an important performance of vinylidene chloride resin coating materials. The seemingly contradictory phenomenon of developing a vinylidene chloride latex that can be cured by the heat treatment described above while maintaining the crystallinity (i.e., thermoplasticity) of the vinylidene chloride resin to provide a coating film that does not cause blocking was achieved. We considered the possibility of achieving such a high-level goal.

七の結果塩化ビニリデン系樹脂中にエポキシ基を導入す
ることKよって熱硬化性の塗膜を与えるラテックスの作
製に成功するに至ったが、そのラテックスを得るための
製造方法によって、得られたラテックスの成膜寿命が極
端に異なることが判明した。しかも驚くべきことに成膜
寿命の長いものは、示差熱分析で測定される熱架橋の反
応熱の発生が大であるのに、耐ブロッキング性を満足さ
せるはどの塗膜の硬化は起らないのに対し、成膜寿命の
短かいものでは反応熱の発生が実質的に観察されないの
に1耐ブロツキング性を十分に満足する塗膜を与えると
云う全(予想だにし得なかった事実が判明した。
As a result of Section 7, by introducing an epoxy group into a vinylidene chloride resin, we succeeded in producing a latex that provides a thermosetting coating film. It was found that the film formation life of these two types was extremely different. Surprisingly, coatings with a long lifespan generate a large amount of reaction heat due to thermal crosslinking as measured by differential thermal analysis, yet no coating film cures to satisfy blocking resistance. On the other hand, a film with a short film formation life produces a coating film that fully satisfies the blocking resistance of 1, even though the generation of reaction heat is not substantially observed (an unexpected fact has been discovered). did.

このような事実に直面し、本発明者らは鋭意検討を重ね
たところ、全く同じ原材料を用いながら、一方では耐ブ
ロッキング性が全くなくとも、十分な成膜寿命をもつラ
テックスが得られ、他方では、重合反応終了時点で全く
成膜性のないラテックスが得られ、これをブレンドする
ことKよって、成膜寿命は十分にして耐ブロッキング性
の良い塗膜が得られること、そして耐ブロッキング性と
バリヤー性の最高値をとり得る範囲が、熱架橋反応熱と
密接な関係にあることを見出した。
Faced with this fact, the inventors of the present invention conducted extensive studies, and found that while using exactly the same raw materials, on the one hand, a latex with sufficient film formation life was obtained even though it had no blocking resistance, and on the other hand, it was found that Then, a latex with no film-forming properties is obtained at the end of the polymerization reaction, and by blending this latex, a coating film with a sufficient film-forming life and good blocking resistance can be obtained. It has been found that the range in which the barrier properties can take the highest value is closely related to the heat of thermal crosslinking reaction.

成膜性のよい方のラテックスは、上述の通りたとえ熱架
橋性を有していてもそれが耐ブロッキング性の向上KN
寿しないのであれば、耐ブロッキング性は成膜しない方
のラテックスに依ると考えて、それならば、成膜性のよ
い方のラテックスとしてエポキシ基をふくまぬ熱架橋性
のないものでもよいかと云うと、そのようなブレンドラ
テックスでは全く耐ブロッキング性が示されなくなる事
実から、通常一般のラテックスブレンドの如く単に互い
の不足する性質を補ないあうのではな(、格別の効果を
奏し得る特別の組合せであり、しかもその効果は、架橋
と膜硬化の一般の予想を完全にくつがえすものであった
。本発明はこのような事実の発見によってなされたもの
である。
Latexes with better film-forming properties, as mentioned above, have thermal crosslinking properties that improve blocking resistance.
If it does not last long, then the blocking resistance depends on the latex that is not used to form a film, and in that case, the latex that has better film forming properties may be one that does not contain epoxy groups and does not have thermal crosslinking properties. However, due to the fact that such latex blends do not exhibit blocking resistance at all, it is unlikely that they simply compensate for each other's lacking properties, as in ordinary latex blends. Moreover, the effect completely overturned the general expectations regarding crosslinking and film hardening.The present invention was made based on the discovery of this fact.

すなわち本発明は、塩化ビニIJデン(VDC>、グリ
シジルメタクリレート(GMA)、及びこれらと乳化共
重合可能な単量体の一種又は二穫以上とを乳化共重合し
て得られる塩化ビニリデン系ラテックスのうち、 A、 M塩化ビニリデン系ラテックスを凍結乾燥して得
られる粉末の示差熱分析による発熱量が2.000 m
eal / を以上is、000 ymeal / f
以下であることを特徴とし、連続皮膜形成能の良好なラ
テックス(以下、成膜ラテックスAと呼ぶ)K対し、B
、該塩化ビニリデン系ラテックスを凍結乾燥して得られ
る粉末の示差熱分析による発熱量が実質的に観測されな
いことを特徴とし、連続皮膜形成能のないラテックス(
以下、非成膜ラテックスBと呼ぶ)を、 固形分比で0.23乃至l混合してなる塩化ビニリデン
ラテックスに関するものである。
That is, the present invention provides a vinylidene chloride latex obtained by emulsion copolymerization of vinyl IJdene chloride (VDC), glycidyl methacrylate (GMA), and one or more monomers capable of emulsion copolymerization with these. Among them, the calorific value according to differential thermal analysis of the powder obtained by freeze-drying A, M vinylidene chloride latex is 2.000 m
eal/is greater than or equal to 000 ymeal/f
Latex K (hereinafter referred to as film-forming latex A), which is characterized by the following and has good continuous film forming ability, B
The latex (
The present invention relates to vinylidene chloride latex obtained by mixing 0.23 to 1 of solid content ratio of non-film-forming latex B).

このような塩化ビニリデン系ラテックスを基材プラスチ
ックフィルムに塗工乾燥した後、塩化ビニリデンホモポ
リマ′−の融点以上の熱処理を施こすことを特徴とする
塗工物の製造方決に関するものである。
The present invention relates to a method for producing a coated product, which comprises applying and drying such a vinylidene chloride-based latex onto a base plastic film and then subjecting it to heat treatment at a temperature higher than the melting point of the vinylidene chloride homopolymer.

本発明の成膜ラテックスAと非成膜ラテックスBの混合
比が0.21より低いと所望の耐ブロッキング性が得ら
れず、lより高いと所望の成膜性が得られない。
If the mixing ratio of the film-forming latex A and the non-film-forming latex B of the present invention is lower than 0.21, the desired blocking resistance cannot be obtained, and if it is higher than 1, the desired film-forming property cannot be obtained.

本発明の成膜ラテックスAの発熱量がλ、000vae
*l/lK満ないものく、非成膜ラテックスBをどのよ
うな比で混合しても十分な耐ブロッキング性を示さずS
4,000 meal /fを越えるものと、非成膜ラ
テックスBを混合して得られるラテックスを塗工熱処理
して得られる塗工物は、架橋度が高すぎるためであろう
かバリヤー性が所望の値を示さない。
The calorific value of the film-forming latex A of the present invention is λ, 000 vae
S
Perhaps this is because the degree of crosslinking is too high in the coated product obtained by coating and heat-treating the latex obtained by mixing non-film-forming latex B with a latex exceeding 4,000 meal/f. Shows no value.

本発明の塩化ビニリデン系ラテックスの樹脂中のvDC
ユニットの含有量はtj%(重量%、以下同じ)以上2
3%以下である。rz@未満では塩化ビニリデン系コー
ティング剤として最も重要な性能であるバリヤー性、が
望めず、91%を越えては如何に塩化ビニリデンホモポ
リマーの融点以上の熱処理を施されて樹脂が軟化する場
合にあっても良好な連続皮膜を形成し得ない。
vDC in the vinylidene chloride latex resin of the present invention
The content of the unit is tj% (weight%, same below) or more2
It is 3% or less. If it is less than rz@, barrier properties, which is the most important performance for a vinylidene chloride-based coating agent, cannot be expected, and if it exceeds 91%, the resin will soften when subjected to heat treatment above the melting point of the vinylidene chloride homopolymer. Even if it is present, a good continuous film cannot be formed.

本発明の塩化ビニリデン系ラテックス樹脂中のGMAユ
ニットの含有量はおおむね3%以上1%以下を目安とす
る。GMA中のエポキシ基は活性に富み乳化重合反応の
途中にも開環が進むことが知られ、特に酸性では更に進
むことが知られており、一般に強い塩酸酸性下にある塩
化ビニリデン系の乳化重合ではエポキシ基の開環が進む
。そして上述の通り成膜ラテックスAは、架橋反応熱に
より特定されるので換言すればGMA仕込み量の多寡に
よるのではなく残存エポキシ基!によるとも云えるのだ
が、多量のGMAを用い少貴しか活性エポキシ基を残さ
ぬような製造方法を取ることは不経済なだけでなく多量
釦用いた分だけVDC含量が相対的に低下しバリヤー性
の低下を招くこととなる。
The content of the GMA unit in the vinylidene chloride-based latex resin of the present invention is approximately 3% or more and 1% or less. It is known that the epoxy group in GMA is highly active and ring opening progresses even during the emulsion polymerization reaction, and it is known that the ring opening progresses even further in acidic conditions.Generally, vinylidene chloride-based emulsion polymerization under strong hydrochloric acid acidity is known. Then, ring opening of the epoxy group proceeds. As mentioned above, the film-forming latex A is specified by the heat of crosslinking reaction, so in other words, it is not determined by the amount of GMA charged, but by the residual epoxy groups! However, using a manufacturing method that uses a large amount of GMA and leaves only a small amount of active epoxy groups is not only uneconomical, but also the VDC content decreases relatively due to the use of a large amount of GMA. This will lead to a decline in sexuality.

その上限の目安はf%前後であり、又エポキシ基をでき
るだけ残存するよう如何に重合方法を工夫しても3チ以
下では所望の発熱量を得るのは極めて困難である。 。
The approximate upper limit is around f%, and no matter how much the polymerization method is devised to leave as much epoxy group as possible, it is extremely difficult to obtain the desired calorific value at 3 or less. .

本発明の塩化ビニリデン系ラテックスの生成にあたって
は、GMA単独にても所望の架橋性、耐ブロッキング性
を得ることが出来るが、史にエポキシ基と活性の高い官
能基を有する単量体を導入すると好ましい。それは先に
述べた通り、GMAを重合に導入するにあたっては、エ
ポキシ基をすべて残存さすことができないため、GMA
のみKよる場合は重合反応中の開環によって減った分だ
け架橋性は低下するが、重合中特に変化することのない
他の官能基の導入により、架橋性の低下を大きく改善す
ることが出来る。このような官能基単量体としてはアク
リル酸、メタクリル酸の如くカルボキシル基を有するも
の、アクリルアミドの如くアミノ基を有するもの、λ−
ヒドロキシエチルアクリレートの如くヒドロキシ基を有
するものがあげられる。
In producing the vinylidene chloride-based latex of the present invention, desired crosslinking properties and blocking resistance can be obtained using GMA alone, but when a monomer having an epoxy group and a highly active functional group is introduced, preferable. As mentioned earlier, when introducing GMA into polymerization, it is not possible to leave all the epoxy groups, so GMA
When only K is used, the crosslinkability decreases by the amount reduced by ring opening during the polymerization reaction, but the decrease in crosslinkability can be greatly improved by introducing other functional groups that do not change during polymerization. . Examples of such functional group monomers include those having a carboxyl group such as acrylic acid and methacrylic acid, those having an amino group such as acrylamide, and λ-
Examples include those having a hydroxy group such as hydroxyethyl acrylate.

本発明の示差熱分析は、以下の方法忙よった。The differential thermal analysis of the present invention involved the following method.

すなわちラテックスを凍結乾燥して得た粉末を試料とし
、走査示差熱量計D S C−I B (P@rkln
 E1mer社製)を用い、昇温速度76℃/IHRV
Cて発熱曲線を得てプラニメーターによって発熱量を測
定した。
That is, a powder obtained by freeze-drying latex was used as a sample, and a scanning differential calorimeter D S C-I B (P@rkln
(manufactured by E1mer), heating rate 76℃/IHRV
A heat generation curve was obtained and the amount of heat generated was measured using a planimeter.

以下に例をあげて本発明を説明する。部及び慢は重量表
示である。
The present invention will be explained below with reference to examples. Parts and parts are weight indications.

実施例1 VDCrt、rt4、GMA 41.3%、 l タフ
+J ル酸(MAA)13%、及びメタクリル酸メチル
(MMA ) j、t−からなるモノマー混合物につい
て、以下の二様の乳化重合を行ない各々ラテックスを得
た。
Example 1 The following two types of emulsion polymerization were carried out for a monomer mixture consisting of VDCrt, rt4, 41.3% GMA, 13% l Tough+J acid (MAA), and methyl methacrylate (MMA) j, t-. Latex was obtained from each.

成膜ラテックスA ガラスライニングを施した鋼製反応機中に、水り0部、
アルキルベンゼンスルホン酸ソーダ0.12部、過硫酸
カリウム0.1部を仕込み、脱気の後密閉系を保ちなが
ら上記モノマー混合物を101!S仕込み、かきまぜ下
に弘j℃に保って重合を開始した。反応が殆んど進行し
た事を反応機内圧が降下する事で確認したのち、アルキ
ルベンゼンスルホン酸ソーダ1部を10%水溶液とした
もので圧入し、しかるのら該モノマー混合物を9部部2
0時間にわたって定量圧入した。更にしばらくの量温度
を≠j′CK保ち続け、内圧が十分に降下することで、
重合の終了を確認した。かくして得られたラテックスに
1ラウリル硫酸ソーダの水溶液を加え、20℃での気液
表面張力かび、2dyn@7kmとなるようにした。こ
のラテックスは常温にても良好な成膜性を示した。又こ
のラテックスを凍結乾燥して得た粉末について水差熱分
析を行なったところ、l?O℃付近にピークをもつ発熱
がJl!欄され、この発熱曲線をプラニメーターで測定
して求められた発熱量はJ、700mcal/?であっ
た。
Film-forming latex A In a glass-lined steel reactor, 0 parts of water,
0.12 part of sodium alkylbenzenesulfonate and 0.1 part of potassium persulfate were added, and after degassing, while keeping the system closed, the monomer mixture was mixed with 101 parts of the above monomer mixture. After charging S and stirring, the mixture was maintained at 10°C to initiate polymerization. After confirming that the reaction had mostly progressed by seeing a drop in the internal pressure of the reactor, 1 part of a 10% aqueous solution of sodium alkylbenzenesulfonate was injected, and then 9 parts of the monomer mixture was added to 2 parts of the monomer mixture.
A fixed amount was injected over a period of 0 hours. By continuing to maintain the temperature at ≠j'CK for a while and the internal pressure dropping sufficiently,
Completion of polymerization was confirmed. An aqueous solution of 1 sodium lauryl sulfate was added to the latex thus obtained, so that the gas-liquid surface tension at 20° C. was 2 dyn@7 km. This latex showed good film-forming properties even at room temperature. In addition, when the powder obtained by freeze-drying this latex was subjected to hydrothermal analysis, l? Fever with a peak around 0℃ is Jl! The calorific value obtained by measuring this exothermic curve with a planimeter is J, 700 mcal/? Met.

非成膜性ラテックスB 水り0部、アルキルスルホン酸ソーダ0.//、部、過
硫酸カリウム0.01部をガラスライニングを施した鋼
製反応機中に仕込み、脱気の後密閉系を保ちながら骸モ
/マー混合物を70部仕込み、かぎまぜ下にダj℃に保
ち重合を開始した。反応が殆んど進行した事を反応機内
圧が降下する事で確認したのち、アルキルスルホン酸ソ
ーダO0参部をios水ta液トして圧入し、しかるの
ち該モノマーをり0部一時に圧入した。を時周重合を進
めた後アルキルベンゼンスルホン酸ソーダを毎時O1θ
μ部にあたる速度となるよ5iot4水溶液にして連続
添加を開始し、それをit待時間けた。内圧が十分に降
下することで重合の終了を確認した。かくして得られた
ラテックスにラウリル硫酸ソーダの水溶液を加え、20
℃での気液表面張力が≠2 ayn・膚となるよ5Kt
、た。
Non-film-forming latex B: 0 parts of water, 0 parts of sodium alkylsulfonate. // parts and 0.01 part of potassium persulfate were charged into a glass-lined steel reactor, and after degassing, 70 parts of the skeleton/mer mixture was charged while keeping the system closed, and the mixture was poured under a stirrer. Polymerization was started by keeping the temperature at j°C. After confirming that the reaction had mostly progressed by seeing a drop in the internal pressure of the reactor, the 0 part of sodium alkylsulfonate was poured into the ios water solution and then pressurized, and then the monomer was injected at the same time. did. After the hourly polymerization, sodium alkylbenzenesulfonate was added at O1θ per hour.
Continuous addition was started at a rate of 5 iot4 aqueous solution at a rate corresponding to μ parts, followed by an IT waiting period. Completion of polymerization was confirmed when the internal pressure dropped sufficiently. An aqueous solution of sodium lauryl sulfate was added to the latex thus obtained, and 20
The gas-liquid surface tension at ℃ is ≠2 ayn/skin, which is 5Kt.
,Ta.

このラテックスは常温から700℃の間で全く成膜性を
示さず、200℃でto秒処理すると、白濁した塗膜を
与えるが、指先でこすれば容易にくずれた。又このラテ
ックスを凍結乾燥して得た粉末につき水差熱分析を行な
ったところ、溶融に起因する吸熱ピークを観測したが、
実質的に発熱は認められなかった。
This latex showed no film-forming properties between room temperature and 700° C., and when treated at 200° C. for seconds, it gave a cloudy coating, but it easily crumbled when rubbed with a fingertip. Furthermore, when we performed hydrothermal analysis on the powder obtained by freeze-drying this latex, we observed an endothermic peak due to melting.
Virtually no fever was observed.

成膜ラテックスAに対し非成膜ラテックスBを所定の割
合で添加して得たラテックスを、二軸延伸ナイロンフィ
ルム(/jμ)K乾燥塗布量がηやとなるよう塗工し、
tO℃で30秒乾燥した。しかる後ナイロンの収縮をお
こさぬよう型枠にはさみ200℃で10秒保ったのち扇
風機の風をあてて室温まで冷却して塗工物を得た。この
塗工物について塗工面と基材フィルムとが接するように
して、その上から2Kp/dの圧力をかけ参θ℃にて一
夜放置した。しかる後合わさったフィルムをはがし塗工
面の様子を観察し、耐ブロッキング性を判定した。
A latex obtained by adding a predetermined ratio of non-film-forming latex B to film-forming latex A is coated on a biaxially stretched nylon film (/jμ) so that the dry coating amount of K is η,
It was dried at tO 0 C for 30 seconds. Thereafter, to prevent the nylon from shrinking, it was placed in a mold and kept at 200°C for 10 seconds, and then cooled to room temperature by blowing air from a fan to obtain a coated product. With respect to this coated product, the coated surface and the base film were brought into contact with each other, and a pressure of 2 Kp/d was applied thereto, and the product was left overnight at θ°C. Thereafter, the combined film was peeled off and the appearance of the coated surface was observed to determine the blocking resistance.

圧着の痕跡を全く残さないものを◎印、僅かに痕跡の認
められるものを○印、痕跡の強いものについてX印で表
に示した。又この塗工物につき0X−TRAN 100
 (Metern ControlM)を用い酸素透過
率を測定した。その結果を第11!に示す。
Those with no crimping traces left are marked with ◎, those with slight traces are marked with ○, and those with strong marks are marked with X. Also, 0X-TRAN 100 for this coated product
(Metern Control M) was used to measure the oxygen permeability. The result is the 11th! Shown below.

比較例1 VDC#、/ % 、GMA 7.2%、MAA2..
296、及ipMAλ、j%からなるモノマー混合物に
ついて実施例1と全く同様の方法で成膜ラテックスAと
非成膜ラテックスBを得た。成膜ラテックス人の樹脂の
発熱量はt、100 meal/)であった。
Comparative Example 1 VDC#, /%, GMA 7.2%, MAA2. ..
A film-formed latex A and a non-film-formed latex B were obtained in exactly the same manner as in Example 1 using a monomer mixture consisting of 296, ipMAλ, and j%. The calorific value of the latex resin was t, 100 meal/).

成膜ラテックスA1非成膜ラテックスBを所定の比でブ
レンドし、実施例1と全く同様に熱処理を併な5コーテ
イングを行ない、塗工物を得た。
A film-forming latex A and a non-film-forming latex B were blended in a predetermined ratio, and five coatings were performed along with heat treatment in exactly the same manner as in Example 1 to obtain a coated product.

この塗工物について耐ブロッキング性と酸素透過率を測
定した。その結果は表に示すごとく、耐ブロッキング性
については満足な塗膜を得たが、バリヤー性は不満足で
あった。
The blocking resistance and oxygen permeability of this coated product were measured. As shown in the table, a coating film with satisfactory blocking resistance was obtained, but barrier properties were unsatisfactory.

以下に示す例は特にことわらない限り、実施例1とモノ
マー混合物の組成が異なるだけで、ラテックス及び塗工
物の作製方法、評価方法はすべて実施例1と同様に行な
った。但し、耐ブロッキング性の悪いものについては、
もはや酸素透過率の測定は行なわなかった。その結果を
第1表Kまとめて示す。
Unless otherwise specified, the examples shown below differ from Example 1 only in the composition of the monomer mixture, and all the latex and coating preparation methods and evaluation methods were the same as in Example 1. However, for those with poor blocking resistance,
Oxygen permeability measurements were no longer carried out. The results are summarized in Table 1K.

実施例コ VDCrt、り% 、GMA !、r % 、 MMA
 1.1%、及びアクリル酸メチル(MA) 、0.タ
ー比較例λ VDCrり、タチ、GMA  J、弘%、MMA  j
、41− %、及びMA /、J % この例でのGMA量は396をこえるけれども、耐ブロ
ッキング性が得られなかった。すなわち、用いるGMA
の量が要点ではなくて、どれだけの架橋性能があるかが
要点であり、それは発熱量の測定で特定できることが示
されている。
Example Ko VDCrt, ri%, GMA! , r%, MMA
1.1%, and methyl acrylate (MA), 0. Comparative example λ VDCr, Tachi, GMA J, Hiro%, MMA j
, 41-%, and MA/, J% Although the GMA amount in this example exceeded 396, blocking resistance was not obtained. That is, the GMA used
The important point is not the amount of crosslinking, but how much crosslinking performance there is, and it has been shown that this can be determined by measuring the calorific value.

実施例3 VDCrt、t %、GMA 4.$ 11 、コーヒ
ドadtジエチルアクリレート (HgA )  L!
 S SMMA 3.jt 96実施例ダ VDCIt、7 %、GMA $、$%、7りIJルア
t ド(AAm ) l・J To −MMA j、j
 %この例においてAArnは他の3種のモノマー混合
物と均一に溶解混合しな(・ので成膜ラテックスAの作
成における定量添加は、水溶液とし%+1の仕込み配管
系統を用いて行なった。
Example 3 VDCrt, t%, GMA 4. $ 11, Cohyde adt diethyl acrylate (HgA) L!
S SMMA 3. jt 96 Example daVDCIt, 7%, GMA $, $%, 7ri IJ Ruat de (AAm) l・J To -MMA j,j
% In this example, AArn was not uniformly dissolved and mixed with the other three monomer mixtures (.), so the quantitative addition in the preparation of film-forming latex A was carried out using an aqueous solution and a %+1 charging piping system.

比較例3 上記実施例/、2.3、≠の非成膜ラテックスBを市販
の塩化ビニリデン系ラテックスL!01 (旭ダウ製)
に添加混合したものにつ〜・て実施例1と同様にして耐
ブロッキング性を見たところ、満足なものは何一つなか
った。
Comparative Example 3 The non-film-formed latex B of the above Example/, 2.3, ≠ was replaced with commercially available vinylidene chloride latex L! 01 (manufactured by Asahi Dow)
When the anti-blocking properties of the mixtures were examined in the same manner as in Example 1, nothing was found to be satisfactory.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims] (1)塩化ビニリデン、グリシジルメタアクリレート及
びこれらと乳化共重合可能な単量体の一種又は二種以上
とを乳化共重合して得られる塩化ビニリデン系ラテック
スのうち、 A、該塩化ビニリデン系ラテックスを凍結乾燥して得ら
れる粉末の示差熱分析による発熱量が2.000rme
*1/を以上4,000me*1/ )以下であること
を特徴とし、連続皮膜形成能の良好なラテックスに対し
、 B、該塩化ビニリデン系ラテックスを凍結乾燥して得ら
れる粉末の示差熱分析(よる発熱量が実質的に観測され
ないことを特徴とし、連続皮膜形成能のないラテックス
を 固型分比でO,コ!乃至l混合してなる塩化ビニリゾ(
2)塩化ビニリデン、グリシジルメタアクリレート及び
これらと乳化共重合可能な単量体の一種又は二種以上と
を乳化共重合して得られる塩化ビニリデン系ラテックス
のうち、 A、該塩化ビニリデン系ラテックスを凍結乾燥して得ら
れる粉末の示差熱分析による発熱量が2.000tm@
*1/を以上&、000vm**1/f以下であること
を特徴とし、連続皮膜形成能の良好なラテックスに対し
、 B、腋塩化ビニリデン系ラテックスを凍結乾燥して得ら
れる粉末の示差熱分析による発熱量が実質的に観測され
ないことを特徴とし、連続皮膜形成能のないラテックス
を 固型分比で0.21乃至l混合してなる塩化ビ= 13
デン系ラテツクスを基材プラスチックフィルムに塗布乾
燥した後、塩化ビニリデンホモプリマーの融点以上の温
度で熱処理を施して塩化ビニリデン系ラテックスのコー
トフィルムを製造することを特徴とする塩化ビニリデン
系ラテックスの使用方法。
(1) Among vinylidene chloride latexes obtained by emulsion copolymerization of vinylidene chloride, glycidyl methacrylate, and one or more monomers that can be emulsion copolymerized with these, A. The vinylidene chloride latex. The calorific value of the powder obtained by freeze-drying is 2.000rme according to differential thermal analysis.
B. Differential thermal analysis of powder obtained by freeze-drying the vinylidene chloride-based latex, which is characterized by having *1/ of 4,000 me*1/ or less and having good continuous film forming ability. (Vinyl chloride is characterized by virtually no observed calorific value, and is made by mixing a latex with no continuous film forming ability at a solid content ratio of O, C! to L.
2) Among the vinylidene chloride latex obtained by emulsion copolymerization of vinylidene chloride, glycidyl methacrylate, and one or more monomers that can be emulsion copolymerized with these, A. Freezing the vinylidene chloride latex. The calorific value of the powder obtained by drying is 2.000 tm@
B. Differential heat of powder obtained by freeze-drying axillary vinylidene chloride latex Vinyl chloride is characterized by virtually no observed calorific value when analyzed, and is made by mixing latex with a solid content ratio of 0.21 to 1 with no ability to form a continuous film = 13
A method for using vinylidene chloride latex, which comprises applying and drying the vinylidene chloride latex onto a base plastic film, and then heat-treating it at a temperature higher than the melting point of the vinylidene chloride homoprimer to produce a vinylidene chloride latex coated film. .
JP6051682A 1982-04-12 1982-04-12 Vinylidene chloride latex and method for use thereof Granted JPS58176235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6051682A JPS58176235A (en) 1982-04-12 1982-04-12 Vinylidene chloride latex and method for use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6051682A JPS58176235A (en) 1982-04-12 1982-04-12 Vinylidene chloride latex and method for use thereof

Publications (2)

Publication Number Publication Date
JPS58176235A true JPS58176235A (en) 1983-10-15
JPS634870B2 JPS634870B2 (en) 1988-02-01

Family

ID=13144555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6051682A Granted JPS58176235A (en) 1982-04-12 1982-04-12 Vinylidene chloride latex and method for use thereof

Country Status (1)

Country Link
JP (1) JPS58176235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069307A1 (en) 2007-11-30 2009-06-04 Unitika Ltd. Polyamide film coated with vinylidene chloride copolymer mixture and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069307A1 (en) 2007-11-30 2009-06-04 Unitika Ltd. Polyamide film coated with vinylidene chloride copolymer mixture and method for producing the same

Also Published As

Publication number Publication date
JPS634870B2 (en) 1988-02-01

Similar Documents

Publication Publication Date Title
CA1090030A (en) Vinylidene chloride co-polymer compositions
JP4752169B2 (en) Plasticizer
JPS6219790B2 (en)
JP3259147B2 (en) Aqueous resin composition and curing method
JPH02284977A (en) Aqueous plastic dispersion, its preparation, covering material for preparing non-blocking film, method for covering leather, and paint for outdoor use
JPH01207301A (en) Production of aqueous polymer dispersion
BRPI0716061A2 (en) based on a methyl methacrylate copolymer
CN106459317B (en) Acrylic acid series polymeric compounds, its manufacturing method and the acrylic sol composition containing the acrylic acid series polymeric compounds
JPS58176235A (en) Vinylidene chloride latex and method for use thereof
JPS6131124B2 (en)
JPS6132346B2 (en)
US3367893A (en) Process for the preparation of activated polyamide modified polymers
JP4038392B2 (en) Water-resistant cationic fine particle resin composition and method for producing the same
JPS6216966B2 (en)
JPH10158575A (en) Normal temperature drying type aqueous coating material composition
JPH0441688B2 (en)
US3177087A (en) Method of coating an alkenyl aromatic resinous article with a copolymer of vinyl aromatic compound, alkyl acrylate and unsaturated acid
US3188234A (en) Vinylidene chloride terpolymer as a coating for regenerated cellulose film
JPS5861133A (en) Improved aqueous resin emulsion
JPS61115914A (en) Stable aqueous dispersion of vinylidene chloride copolymer
JP2001342317A (en) Vinylidene chloride copolymer latex
JPS62138533A (en) Production of transparent polyvinylidene fluoride film
JPS608254B2 (en) Vinylidene chloride copolymer aqueous dispersion composition
JPH08151536A (en) Delustering-type water-based coating composition
JP2762464B2 (en) Anti-blocking agent coated polyester film