JPS5817619A - Forming method for pattern - Google Patents

Forming method for pattern

Info

Publication number
JPS5817619A
JPS5817619A JP11578681A JP11578681A JPS5817619A JP S5817619 A JPS5817619 A JP S5817619A JP 11578681 A JP11578681 A JP 11578681A JP 11578681 A JP11578681 A JP 11578681A JP S5817619 A JPS5817619 A JP S5817619A
Authority
JP
Japan
Prior art keywords
film
etching
electrode
etched
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11578681A
Other languages
Japanese (ja)
Inventor
Makoto Nakase
中瀬 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11578681A priority Critical patent/JPS5817619A/en
Publication of JPS5817619A publication Critical patent/JPS5817619A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To form a pattern which has a tapered sectional shape and preferable dimensional accuracy by etching a film to be etched and exposed from a masking material by an isotropic etching to allow a part of the film to remain to form a tapered end surface and then completely remove a thin film to be etched remaining being treated by anisotropic etching. CONSTITUTION:A phosphorus-doped polycrystalline silicon film 14 under a resist pattern 15 is isotropically etched by a plasma etching to a tapered state. Then, a control gate electrode 17 of approximately entirely tapered end surface 16 is formed by reactive ion etching. Subsequently, with the electrode 17 as a mask a transistor section is etched, and is thermally oxidized in wet oxygen atmosphere. At this time, an interlayer insulating film 18 is formed around the electrode 17, and the film 18 part of the end surface 16 of the electrode 17 is preferably tapered without overhang. Subsequently, a molybdenum silicide film is accumulated, and is patterned, thereby forming a capacitor electrode 19.

Description

【発明の詳細な説明】 本発明は/9ターン形成方法に関し、特に半導体装置の
多層配線・9ターンの形成に適した方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming /9 turns, and particularly to a method suitable for forming multilayer interconnections and nine turns in semiconductor devices.

一般に、半導体装置の艇速においては、下地基板に種々
の段差が生じている九め、この段差上に配線ノ臂ターン
を形成する場合、前記段差が大きく、かつ急峻であると
、該配線・9ターンに段切れ不良を生じる。したがって
、半導体基板の段差部にテーノ量を付けることが望まれ
ている。
Generally, at the speed of a semiconductor device, various steps are formed on the underlying substrate.When forming a wiring arm turn on the step, if the step is large and steep, the wiring A defective step occurs at turn 9. Therefore, it is desired to add a tenor amount to the stepped portion of the semiconductor substrate.

このようなことから、段差部にチー/ぐを付ける方法と
して、従来から湿式タイプの工、チング法を採用するこ
とが行なわれている。例えば、被エツチング膜の上層部
Ilc該膜よシも工、チング速度の大きい材料膜を薄く
被着させ、この上にレジストノ!ターンを形成して湿式
1.チングすることによシテー・9状の段差を有する・
母ターンを形成する方法、或いはエツチング液中に界面
活性剤等管添加してレジスト/IFターンと被工、テン
グ膜との密着性をテーパ状の段差を有するパターンを形
成する方法等がある。しかしながら、これら湿式1.チ
ング法はノ臂ターン精度等の点で問題があシ、これに代
って半導体装置に微細化に有効なドライエ、チング法が
主力になシつつある。ところが、かかるドライエ、チン
グ法ではテーパ状の段差を有するノナターンの形成が困
難となる。
For this reason, wet-type machining, or the ching method, has traditionally been used as a method for attaching a tack to a stepped portion. For example, a thin film of a material with a high etching speed is applied to the upper layer Ilc of the film to be etched, and then a resist film is applied on top of the film. Form a turn and wet 1. It has a 9-shaped step by cutting.
There is a method of forming a master turn, or a method of adding a surfactant or the like to the etching solution to improve the adhesion between the resist/IF turn and the workpiece or proboscis film to form a pattern having a tapered step. However, these wet type 1. The chipping method has problems in terms of turning accuracy, etc., and in its place, the dryer and chipping method, which is effective for miniaturizing semiconductor devices, is becoming more and more popular. However, with such dry etching methods, it is difficult to form nonaturns having tapered steps.

即チ、等方性エツチングであるプラズマエツチングの場
合、第1図に示す如く基板1上に被覆され、マスク材(
例えばレゾストノ臂ターン)2から露出した被エツチン
グ膜は等方的にエツチングが進行する丸め、第1図の如
くジャストエツチングにおいては端面3に若干チーi4
がついたツヤターン4を形成できる。しかしながら、実
際には、このジャストエツチングが難しく、M板全面で
のエツチングムラをカバーするために%ある程度のオー
バエツチングをしなければならず、第2図に示す如く端
面3′が垂直に近いツヤターン4′となりてしまり。ま
た、かかる等方性エツチングではエツチングのムラやオ
ーバが直接、ノ帯ターン寸法に影49するため、寸法精
度の厳しいパターンにおいては、等方性エツチングの使
用は不向きとなる。
That is, in the case of plasma etching, which is isotropic etching, a mask material (
For example, the film to be etched exposed from the reso- ton's arm turn) 2 is rounded so that the etching progresses isotropically, and as shown in Fig.
A glossy turn 4 can be formed. However, in reality, this just etching is difficult, and in order to cover the etching unevenness on the entire surface of the M board, it is necessary to over-etch to a certain extent. It ended up being 4'. Further, in such isotropic etching, unevenness or over-etching directly affects the band turn dimensions, so isotropic etching is not suitable for patterns with strict dimensional accuracy.

これに対し、本発明者は上記問題を克服すべく鋭意研究
を重ねた結果、基板上の被エツチング膜をマスク材を用
いてエツチングする際、始めに等方性エツチングで処理
してマスク材から露出する被エツチング膜の一部が残る
ようにエツチングして端面をチー・膏にした後、非等方
性エツチング、(例えばリアヶティプイオンエ。
On the other hand, as a result of extensive research in order to overcome the above-mentioned problems, the inventor of the present invention has found that when etching a film to be etched on a substrate using a mask material, it is first processed by isotropic etching to remove the film from the mask material. After etching so that a part of the film to be etched remains exposed to make the end surface a plaster, anisotropic etching is performed (for example, rear tip etching).

チング)で処理して残存した薄い被エツチング膜を完全
に除去することによって、テーノ臂の付いた断面形状を
有し、かつ寸法精度の良好な・9ターンを形成し得る方
法を見い出した。
We have found a method that can form nine turns with a tenon-shaped cross section and good dimensional accuracy by completely removing the remaining thin film to be etched.

すなわち、本発明は基板上に被エツチング膜を被着する
工程と、この被エツチング膜上にマスク材を選択的に形
成する工程と、このマスク材を用いて前記基エツチング
膜を少なくともマスク材から露出する部分に薄い被エツ
チング膜が残存するように等方性エツチングを行なう工
程と、前記マスク材を用いて露出する残在した薄い被エ
ツチング膜を非等方性エツチングにょル完全に除去する
工程とを具1藷したことを特徴とするものである。
That is, the present invention includes a step of depositing a film to be etched on a substrate, a step of selectively forming a mask material on the film to be etched, and a step of selectively forming a mask material on the film to be etched, and etching the base etching film from at least the mask material using the mask material. A step of performing isotropic etching so that a thin film to be etched remains on the exposed portion, and a step of completely removing the remaining thin film to be etched exposed by anisotropic etching using the mask material. It is characterized by having one ingredient.

本発明に用いる基板としては、例えばp型もしくはm型
のシリコン基板、シリコン基板上に工♂り中シャル層を
成長させた基板、或いはサファイアナトの絶縁基板上に
エビタ中シャル層を成長させた基体等を挙げることがで
きる。
The substrate used in the present invention may be, for example, a p-type or m-type silicon substrate, a substrate on which a silicon layer is grown during processing, or a sapphire insulating substrate on which an Evita crystal layer is grown. Examples include a substrate.

本発明に用いる被エツチング膜としては、例えばr−)
電極や配線となる本綿物P−プ多結晶シリコン膜、金属
シリサイド膜、もしくはm、pt、wなどの金属膜、又
は層間絶縁膜やノ9ツシペーシーン膜となるCVD −
5to2JlK、燐硅化ガラス膜(PSG膜)、シリコ
ン窒化膜、アルンナ膜等を挙げる仁とができる。
Examples of the film to be etched used in the present invention include r-)
A real cotton P-polycrystalline silicon film, a metal silicide film, or a metal film such as m, pt, or w, which becomes an electrode or wiring, or a CVD film which becomes an interlayer insulating film or a space film.
5to2JlK, phosphorus silicide glass film (PSG film), silicon nitride film, Aluna film, etc. can be used.

本発明における等方性エツチングは/4ターンの端面(
段差部)をチー/l状にするために行なうものである。
In the present invention, isotropic etching is performed on the end face of /4 turn (
This is done to make the step part) into a chi/l shape.

かかる等方性エツチングとしては例えばグッズマエッチ
ング法を挙げることができる。
Examples of such isotropic etching include Goodsma etching.

本発明における非等方性エツチングは、マスク材に忠実
な高精度のパターンを形成するために行なう。かかるエ
ツチング手段としては、例えばリアクティブイオンエツ
チング、反応性イオンビームエツチング等を挙げること
ができる・次に、本発明のパターン形成方法を2層r 
−ト構造を有するMOSダイナミ、りRAMに適用した
例について第3図(a)〜(・)を参照して説明する。
Anisotropic etching in the present invention is performed to form a highly accurate pattern faithful to the mask material. Examples of such etching means include reactive ion etching, reactive ion beam etching, etc.Next, the pattern forming method of the present invention is applied to two layers.
An example in which the present invention is applied to a MOS dynamic RAM having a gate structure will be described with reference to FIGS.

実施例 〔1〕まず、p型シリコン基板11に素子領域を分離す
る九めの厚さ1μmのフィールド酸化膜12を選択酸化
法によ〕形成した後、1000℃のドライ酸素雰囲気中
で熱酸化処理してキヤ・ヤシタ予定領域に厚さ300X
のシリコン酸化膜13を成長した拳つづいて、制御f−
)電極となる厚さ400 G !、  リン濃度I X
 10”/cI115のリンドーゾ多結晶シリコン膜1
4を全面に堆積した後、制御ダート電極形成予定部上に
写真蝕刻法によシレジスト・り−715を形成した(第
3図(、)図示)。
Example [1] First, a field oxide film 12 with a thickness of 1 μm is formed on a p-type silicon substrate 11 to separate device regions by selective oxidation method], and then thermal oxidation is performed in a dry oxygen atmosphere at 1000°C. Process and apply thickness 300X to the planned area
After growing the silicon oxide film 13, the control f-
) Thickness 400G for electrode! , phosphorus concentration I
10"/cI115 lindozo polycrystalline silicon film 1
4 was deposited on the entire surface, a resist layer 715 was formed by photolithography on the area where the control dart electrode was to be formed (as shown in FIG. 3(a)).

(ii)次いで、シリコン基板1ノをエツチング装置の
真空チャンバ円に入れ、チャンバV′3t−CF4:0
2がl:lでQ、 l Torrの雰囲気にし、13.
56MH,の高周波を印加してレゾストノ母ターン15
から露出するリンドーグ多結晶シリコン膜14を30秒
間!ラズマエ、チングシタ、この時、レノスト/々ター
ン15下のリンドーグ多M晶シlJ:rン膜14が等方
的にエツチングされチーΔ状となると共にレジストノナ
ターン15がら露出する部分に厚さ約800Xの多結晶
シリコン膜14′が残存した(第3図(b)図示)、つ
づいて真空チャ72円の雰囲気をCBr、 ?、 : 
Ct2がl:3て0. I T@rtに変え、反応性イ
オンエツチングを2分30秒間行なった。この時、第3
図(、)に示す如くレジストパターン15から霧出する
残存多結晶シリコン膜14′のみが完全にエツチング除
去され、略端面16全体IEりぐ状をなす制御r−)電
極17が形成され友。
(ii) Next, put the silicon substrate 1 into the vacuum chamber circle of the etching device, and chamber V'3t-CF4:0
2 is l:l and Q, l Torr atmosphere, 13.
Applying a high frequency of 56MH, the resistance mother turn 15
30 seconds to expose the Lindog polycrystalline silicon film 14! At this time, the lindog poly-M crystalline film 14 under the resist/naturn 15 is isotropically etched to form a chi Δ shape, and the exposed portion of the resist nonaturn 15 has a thickness of approximately After the 800X polycrystalline silicon film 14' remained (as shown in FIG. 3(b)), the atmosphere of the vacuum chamber 72 was changed to CBr. , :
Ct2 is l:3 and 0. Reactive ion etching was performed for 2 minutes and 30 seconds by changing to IT@rt. At this time, the third
As shown in FIG. 3(a), only the remaining polycrystalline silicon film 14' sprayed out from the resist pattern 15 is completely etched away, and a control r-) electrode 17 having an IE groove shape is formed on substantially the entire end surface 16.

C11i〕次いで、制御r−ト電極17をマスクとして
トランジスタ部の熱酸化膜(図示せず)をエツチングし
、更に800Cのクエ、ト酸素雰囲気中で熱酸化処理し
た。この時、第3図(d)に示す如く制御r−)電極1
7の周囲に層間絶縁膜18が形成されると共に該電極1
1の端面16の層間絶縁膜18部分はオーバハングのな
い良好なテーノ譬状となった。つづいて厚さ4000X
のモリブデンシリサイド膜を堆積し、こレヲ/#ターニ
ングしてキャノ譬シタ電極19を形成し7?:(第3図
(−図示)。その後、常法に従ってMO8)ランジスタ
の形成、コンタクトホールの開孔、At配線の形成を行
なってMOBダイナミック勧Mを装造した・ しかして、本発明によれば制御r−)電極の形成に除し
て等方性エツチング法と非等方性工、チング法を組合わ
せてリンドーグ多結晶シリコン14全Δターニングする
ことによってテーノ母状の端面16を有すると共にレジ
スト・9ターフ15に忠実な高精度の制御ダート電極1
1を形成できる。その結果、該電極17の熱酸化によ多
形成された層間絶縁膜18は区電極11の端面に対応す
る部分がオーバハング構造とならずテーノ臂状となシ、
こζを横切るキャーシタ電極19の段切れを防止できる
。したがって微細で高信頼性のMOSダイナミ、りRA
M ’i得ることができる。
C11i] Next, using the control electrode 17 as a mask, the thermal oxide film (not shown) of the transistor portion was etched, and further thermal oxidation treatment was performed in an oxygen atmosphere at 800C. At this time, as shown in FIG. 3(d), the control r-) electrode 1
An interlayer insulating film 18 is formed around the electrode 1 .
The portion of the interlayer insulating film 18 on the end surface 16 of No. 1 had a good shape with no overhang. Next, thickness 4000X
A molybdenum silicide film is deposited and turned to form a capacitor electrode 19 (7). : (Fig. 3 (-illustration). After that, according to the conventional method, the MOB dynamic conductor was fabricated by forming transistors, forming contact holes, and forming At wirings.) According to the present invention, Control r-) During electrode formation, the Lindor polycrystalline silicon 14 is completely Δ-turned by combining isotropic etching, anisotropic etching, and etching to form a Theno matrix-like end surface 16. High precision control dart electrode 1 faithful to resist 9 turf 15
1 can be formed. As a result, the interlayer insulating film 18 formed by thermal oxidation of the electrode 17 does not have an overhanging structure at the portion corresponding to the end surface of the electrode 11, but has an arch-like structure.
It is possible to prevent the capacitor electrode 19 from breaking across this ζ. Therefore, fine and highly reliable MOS dynamics, RIRA
M'i can be obtained.

なお、リンドーノ多結晶シリコン膜140等方性工、チ
ンダ(プラズマエッチング)は上記実施例の如くレジス
トパターン15から無比する部分に厚さ800Xの多結
晶シリコン膜14′を残存させるように行なう場合に限
定されない。
Incidentally, in the case where the isotropic etching and etching (plasma etching) of the Lindono polycrystalline silicon film 140 are performed so as to leave the polycrystalline silicon film 14' with a thickness of 800× in a portion far away from the resist pattern 15 as in the above embodiment, Not limited.

例えば、第4図(、)に示す如くプラズマエツチング時
間を短かくして残存多結晶シリコン膜14″を厚くして
もよい。この場合、プラズマエツチング後に反応性イオ
ンエツチング処理を行なう仁とによって、第4図(b)
に示す如く端面16′が実施例のものよシややテーパが
小さい制御ダート電極17′が形成される。iた、第5
図(a)に示す如くグラズiエツチング時間を長くして
残存多結晶シリコン膜14111を薄くしてもよい。こ
O場合、プラズマエツチング後に反応性イオンエツチン
グを行なうことによって、第5図(b)に示す如く端面
16′が実施例のものよシテー/4’が大きいが、やや
精度の点で劣る制御f−)電極11′が形成される。
For example, the remaining polycrystalline silicon film 14'' may be thickened by shortening the plasma etching time as shown in FIG. Figure (b)
As shown in FIG. 2, a control dart electrode 17' is formed whose end surface 16' has a smaller shear and taper than that of the embodiment. 5th
The remaining polycrystalline silicon film 14111 may be made thinner by lengthening the glaze etching time as shown in FIG. 3(a). In this case, by performing reactive ion etching after plasma etching, the end face 16' has a larger city/4' than that of the embodiment, as shown in FIG. 5(b), but the control f is slightly inferior in terms of accuracy. -) Electrode 11' is formed.

以上詳述した如く、本発明によればチー・ぐの付いた断
面形状を有し、かつ寸法精度の良好なノ母ターンを形成
でき、もって半導体装置の第1層電極配線等の形成に適
用した場合、この上を横切る第2層−極配線を段切れを
防止でき、高信頼性と高集積化を達成できる等顕著な効
果を有する。
As described in detail above, according to the present invention, it is possible to form a main turn having a cross-sectional shape with a groove and good dimensional accuracy, and thus it is applicable to the formation of first layer electrode wiring of semiconductor devices, etc. In this case, it is possible to prevent the second layer-electrode wiring that crosses this from breaking, and it has remarkable effects such as achieving high reliability and high integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は夫々従来の等方性エツチングのみで行
なったパターンの断面図、第3図(a)〜(・)は本発
明の実施例における2層r−)構造を有するMO8ダイ
ナミックRAMの製造を示す工程断面図、第4図(a)
 、 (b)及び第5図(a) 、 (b)は夫夫第3
図の制御r−)電極を形成するための変形例を示す工程
断面図である。 11・・・pfflシリコン基板、12・・・フィール
ド酸化膜、13・・・シリコン酸化膜、14・・・リン
ドーグ多結晶シリコン膜、14’、14’、14’ ・
・・残存多結晶シリコンk、zs・・・レジストパター
ン、16.16’、16“・・・端面、77.17’。 17’・・・制御ダート電極、18・・・層間絶縁膜、
19・・・キヤrkh?−νり電極。 出願人代理人  弁理士 鈴 江 武 彦第1図 特許庁長官  島 1)春 樹  殿 1.事件の表示 特願昭56−115786号 2、発明の名称 ノ臂ターン形成方法 3、補!Eをする者 事件との関係 特許出願人 (307)  東京芝浦電気株式会社 4、代理人 住所 東京都港〆虎ノ門1丁目2615号 第17森ビ
ル〒105   電品03 (502) 3181 (
大代表)耐相56年11月24日 6、補正の対象 (b)と訂正する。
FIGS. 1 and 2 are cross-sectional views of patterns made only by conventional isotropic etching, and FIGS. 3(a) to (·) are MO8 having a two-layer r-) structure in an embodiment of the present invention. Process sectional view showing the manufacturing of dynamic RAM, FIG. 4(a)
, (b) and Fig. 5 (a), (b) are
FIG. 6 is a process sectional view showing a modification example for forming the control r-) electrode in the figure. 11... pffl silicon substrate, 12... field oxide film, 13... silicon oxide film, 14... Lindog polycrystalline silicon film, 14', 14', 14'.
...Residual polycrystalline silicon k, zs...Resist pattern, 16.16', 16"...End face, 77.17'. 17'...Control dart electrode, 18...Interlayer insulating film,
19...kiya rkh? −ν electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Commissioner of the Patent Office Shima 1) Haruki Tono 1. Indication of the case Japanese Patent Application No. 56-115786 2, Title of the Invention: Method for Forming Arm Turn 3, Supplement! Relationship with the case of the person committing E Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 4, agent address 17th Mori Building, 1-2615 Toranomon, Minato, Tokyo 105 Electrical Products 03 (502) 3181 (
Main Representative) November 24, 1956, 6, amended to subject to amendment (b).

Claims (1)

【特許請求の範囲】[Claims] 基板上に被エツチング膜を被着する工程と、この被エツ
チング膜上にマスク材を選択的に形成する工程と、この
マスク材を用いて前記被エツチング膜を少なくともマス
ク材から露出する部分に薄い被エツチング膜が残存する
ように等方性工、チングを行なう工程と、前記マスク材
を用いて露出する残存した薄い被エツチング膜を非等方
性工、チングによシ完全に除去する工程とt具備したこ
とを特徴とするノ9ターン形成方法。
a step of depositing a film to be etched on a substrate; a step of selectively forming a mask material on the film to be etched; A step of performing isotropic processing and etching so that the film to be etched remains; and a step of completely removing the remaining thin film to be etched exposed using the mask material by anisotropic processing and etching. A method for forming nine turns, characterized by comprising:
JP11578681A 1981-07-23 1981-07-23 Forming method for pattern Pending JPS5817619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11578681A JPS5817619A (en) 1981-07-23 1981-07-23 Forming method for pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11578681A JPS5817619A (en) 1981-07-23 1981-07-23 Forming method for pattern

Publications (1)

Publication Number Publication Date
JPS5817619A true JPS5817619A (en) 1983-02-01

Family

ID=14671026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11578681A Pending JPS5817619A (en) 1981-07-23 1981-07-23 Forming method for pattern

Country Status (1)

Country Link
JP (1) JPS5817619A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457623A (en) * 1987-08-28 1989-03-03 Toshiba Corp Manufacture of semiconductor device
US5006480A (en) * 1988-08-08 1991-04-09 Hughes Aircraft Company Metal gate capacitor fabricated with a silicon gate MOS process
US5108941A (en) * 1986-12-05 1992-04-28 Texas Instrument Incorporated Method of making metal-to-polysilicon capacitor
US6376383B2 (en) 1998-01-16 2002-04-23 Nec Corporation Method for etching silicon layer
US9269765B2 (en) 2013-10-21 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having gate wire disposed on roughened field insulating film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687666A (en) * 1979-12-20 1981-07-16 Toshiba Corp Plasma etching method
JPS5690525A (en) * 1979-11-28 1981-07-22 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690525A (en) * 1979-11-28 1981-07-22 Fujitsu Ltd Manufacture of semiconductor device
JPS5687666A (en) * 1979-12-20 1981-07-16 Toshiba Corp Plasma etching method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108941A (en) * 1986-12-05 1992-04-28 Texas Instrument Incorporated Method of making metal-to-polysilicon capacitor
JPS6457623A (en) * 1987-08-28 1989-03-03 Toshiba Corp Manufacture of semiconductor device
US5006480A (en) * 1988-08-08 1991-04-09 Hughes Aircraft Company Metal gate capacitor fabricated with a silicon gate MOS process
US6376383B2 (en) 1998-01-16 2002-04-23 Nec Corporation Method for etching silicon layer
US9269765B2 (en) 2013-10-21 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having gate wire disposed on roughened field insulating film

Similar Documents

Publication Publication Date Title
JPH0418701B2 (en)
JPS5817619A (en) Forming method for pattern
JPS5856436A (en) Manufacture of semiconductor device
JP2850888B2 (en) Method for manufacturing semiconductor device
JPS603157A (en) Manufacture of semiconductor device
JPS5961181A (en) Manufacture of semiconductor device
JPS6297331A (en) Manufacture of semiconductor device
JPS6225451A (en) Manufacture of complementary semiconductor device
JPS61114536A (en) Manufacture of semiconductor device
JPS6128231B2 (en)
JPS6132427A (en) Manufacture of semiconductor device
JP3132847B2 (en) Method for manufacturing semiconductor device
JP2641856B2 (en) Method for manufacturing semiconductor device
JPH028451B2 (en)
JPS63170922A (en) Wiring method
JPH0287621A (en) Manufacture of semiconductor device
JPH0230160A (en) Semiconductor device
JPS5914901B2 (en) Manufacturing method of semiconductor device
JPS6358373B2 (en)
JPS5928344A (en) Manufacture of semiconductor device
JPS58191466A (en) Manufacture of mos type transistor
JPH01173632A (en) Manufacture of semiconductor device
JPS59214227A (en) Formation of thin film
JPS6145867B2 (en)
JPS6321857A (en) Semiconductor device