JPS5817544A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPS5817544A
JPS5817544A JP56115741A JP11574181A JPS5817544A JP S5817544 A JPS5817544 A JP S5817544A JP 56115741 A JP56115741 A JP 56115741A JP 11574181 A JP11574181 A JP 11574181A JP S5817544 A JPS5817544 A JP S5817544A
Authority
JP
Japan
Prior art keywords
film
glow
glow discharge
magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56115741A
Other languages
Japanese (ja)
Other versions
JPH0154776B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Michiyuki Fujita
藤田 陸志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56115741A priority Critical patent/JPS5817544A/en
Publication of JPS5817544A publication Critical patent/JPS5817544A/en
Publication of JPH0154776B2 publication Critical patent/JPH0154776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve corrosion resistance and to stabilize a thin magnetic film by treating the surface of the thin magnetic film in an oxidative glow gaseous atmosphere right after the film is vacuum-deposited. CONSTITUTION:A base material 1 such as polyethylene terephthalate from a feeding shaft 6 is moved along the circumferential surface of a rotary can 3 and a ferromagnetic material, such as Co, from a vapor depositions source 2 is vacuum-deposited in an oxygen atmosphere while partially shieled by a mask 5. Then, the material is passed in an active oxidative glow gaseous atmosphere produced by the glow discharge of an electrode 4 for the glow discharge and lastly, the base material having the thin ferromagnetic film is wound around a take-up shaft.

Description

【発明の詳細な説明】 本発明は、蒸着により強磁性薄膜を得て、磁気テープ、
ディスク、シート等の磁気記録媒体を得る方法の改良に
関し、特に、Co、Fe、Hl又はそれらの合金を主材
とし、高密度記録用で、環境保存特性を改善した媒体を
工業規模で容易に得る方法の提供を目的とするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention obtains a ferromagnetic thin film by vapor deposition,
Regarding the improvement of the method for obtaining magnetic recording media such as disks and sheets, in particular, the aim is to easily produce media on an industrial scale that are mainly made of Co, Fe, Hl, or their alloys, are suitable for high-density recording, and have improved environmental preservation characteristics. The purpose is to provide a method for obtaining

磁気記録の高密度化の技術改良は目ざましく、ヘッド技
術、回路処理技術の改良により、従来の塗布形媒体を用
いて市場の要求に応じてきたが、2 /、−一・ それには限界が見え出し、より短波長記録を具現化する
ため、゛金属薄膜形媒体の実用化が、ひとつの課題とな
ってきた。この金属薄膜形媒体には、塗布形量様の面内
記録形と、垂直記鐙形とがあるが、垂直記録は、システ
ムそのものが未熟で、実用に供し得るまでには、多くの
日時を必要とするといわれており、当面の焦点は、面内
に磁化容易軸を有する、金属薄膜形媒体の実用化である
Technological improvements in increasing the density of magnetic recording have been remarkable, and with improvements in head technology and circuit processing technology, we have been able to meet market demands using conventional coated media, but there are limits to this. In order to realize shorter wavelength recording, the practical application of metal thin film media has become an issue. There are two types of metal thin film type media: in-plane recording type (applied type) and perpendicular recording type (stirrup type), but the system itself for perpendicular recording is still immature and it will take many days and hours before it can be put to practical use. The current focus is on the practical application of thin metal film media that have an in-plane axis of easy magnetization.

最近、低速オーディオとして注目されているマイクロカ
セットレコーダ用として、蒸着テープが一部実用に供さ
れているが、この技術により、現在の回路ヘッドによる
記録再生を行う、民生用のビデオ用途の金属薄膜形の媒
体を工業規模で得ることは、未だ完敗の域に達していな
い。
Recently, some vapor-deposited tapes have been put into practical use for micro cassette recorders, which have been attracting attention as low-speed audio devices, but this technology has made it possible to use metal thin films for consumer video applications that perform recording and playback using current circuit heads. Obtaining a medium of form on an industrial scale has not yet reached the point of complete failure.

斜方蒸着により高速で磁気記録媒体を得る方法が既に本
発明者等により提案されているが、磁気記録媒体に要求
される基本的な磁気特性とは別に実用面から要求される
性能を満足せしめるには、改良を要する点があり、その
なかで最大の課題は環境保存特性の改良である。
The present inventors have already proposed a method of obtaining a magnetic recording medium at high speed by oblique deposition, but it is necessary to satisfy the performance required from a practical standpoint in addition to the basic magnetic properties required for a magnetic recording medium. There are points that require improvement, and the biggest challenge is improving environmental preservation characteristics.

3 ベーS゛ 耐蝕性を改良する最も安易な方法は、強磁性金属薄膜上
に保護層を配することであるが、記録波長が1μ−では
、厚さが0.1P儀という薄い保護層を配しても、それ
によるスペース損失は6dB近くになり適当な方法とい
えない。
3. The easiest way to improve corrosion resistance is to place a protective layer on a ferromagnetic metal thin film, but at a recording wavelength of 1μ-, it is difficult to use a protective layer as thin as 0.1P. Even if it is arranged, the resulting space loss will be close to 6 dB, and this cannot be said to be an appropriate method.

一方スペース損失を配慮した例えば0.01μmの厚さ
で耐蝕性改善の機能を発揮する薄膜は得がたいものとな
っている。
On the other hand, it is difficult to obtain a thin film that exhibits the function of improving corrosion resistance with a thickness of, for example, 0.01 μm in consideration of space loss.

そこ、で、強磁性金属薄膜そのものの耐蝕性全改良する
試みがなされているが、現在のところ合金材料の検討に
より、若干の改良が図られている程炭である。
Therefore, attempts have been made to completely improve the corrosion resistance of the ferromagnetic metal thin film itself, but at present, some improvements have been made by studying alloy materials, such as charcoal.

ところで強磁性金属薄膜に関する磁気記録理論から判断
して、最もその特長を保持し得る可能性の高い方法は金
属薄膜表面の不働態化である。
By the way, judging from the magnetic recording theory regarding ferromagnetic metal thin films, the method most likely to maintain the characteristics is to passivate the surface of the metal thin film.

本発明は、かかる点に鑑みなされたもので、回転キャン
に沿って移動する基板上に蒸着法により磁性薄膜を形成
するとともに、上記基板が上記キャンに沿った状態にあ
る蒸着直後で磁性薄膜が活性状態にあり、かつ表面汚染
を受けない間に、酸化性のガスを用いてグロー放電を発
生させることにより生じた活性な酸化性グローガス雰囲
気で磁性薄膜の表面を処理することによシ、磁性薄膜の
表面を効果的に安定化しようとするものである。
The present invention has been made in view of these points, and includes forming a magnetic thin film by vapor deposition on a substrate moving along a rotating can, and forming the magnetic thin film immediately after vapor deposition while the substrate is in a state along the can. By treating the surface of the magnetic thin film with an active oxidizing glow gas atmosphere generated by generating a glow discharge using an oxidizing gas while the magnetic thin film is in an active state and not subject to surface contamination, magnetic The aim is to effectively stabilize the surface of the thin film.

以下に図面を用い本発明の説明を行なう。The present invention will be explained below using the drawings.

真空槽(図示せず)の中に、第1図に示すように、回転
キャン3と蒸発源2が対向して配設される。両者の相対
的位置関係は、適宜工夫される。
As shown in FIG. 1, a rotary can 3 and an evaporation source 2 are disposed facing each other in a vacuum chamber (not shown). The relative positional relationship between the two is appropriately devised.

なお本発明で蒸着とは、電子ビーム蒸着、イオンビーム
蒸着、抵抗加熱蒸着、誘導加熱蒸着、イオンブレーティ
ング、電界蒸着を含んでいる。
Note that in the present invention, evaporation includes electron beam evaporation, ion beam evaporation, resistance heating evaporation, induction heating evaporation, ion blating, and electric field evaporation.

図に示すように、回転キャン3の局面に沿って移動する
高分子成形物基板1は、送シ出し軸6よシ、捲き取り軸
7へ移るのであるが、必要に応じて、前処理、後処理を
施すのは自由である。
As shown in the figure, the polymer molded substrate 1 moving along the surface of the rotary can 3 is transferred from the feed shaft 6 to the winding shaft 7. You are free to apply post-processing.

磁気記録媒体に要求される保磁力の大きさから蒸発源2
からの蒸気流は、限定された関き角αの範囲が成膜に寄
与するように、マスク6で一部遮へいされる。矢印ムで
示す回転方向に一定の速度で回転するキャンの局面上の
点PoとPlは、蒸着6ベー の終る点と酸化性グローガス雰囲気に磁性層がさらされ
はじめる点を指している。
Because of the coercive force required for magnetic recording media, evaporation source 2
The vapor flow from the wafer is partially blocked by the mask 6 so that a limited range of angle α contributes to film formation. Points Po and Pl on the plane of the can rotating at a constant speed in the direction of rotation indicated by arrows indicate the point at which the vapor deposition ends and the point at which the magnetic layer begins to be exposed to the oxidizing glow gas atmosphere.

なお点P0とPlは、限シなく近ずけるよう構成するの
が好ましい。4はグロー放電発生用の電極である。
Note that it is preferable that the points P0 and Pl be configured to be close to each other without limit. 4 is an electrode for generating glow discharge.

この電極4は回転キャン3の同面に沿って配設され、そ
の構成は後出の実施例の説明で述べるいくつかの例に限
らず、適宜工夫できるのは勿論である。。
The electrode 4 is disposed along the same surface of the rotary can 3, and its structure is not limited to the several examples described in the description of the embodiments later, and it goes without saying that it can be devised as appropriate. .

なお実施例の多くでは、回転キャンの直径が11高分子
成形物基板の幅が5Qfiで、蒸発源は、電子ビーム蒸
発源を共通に用いたが、一方別途に行なった実験により
回転キャン径を3o龜〜1.2琶の範囲とし、また基板
の幅’(i−151m〜5Q1mの範囲としたものにつ
いても検討したが、効果上本質的な差異は認められなか
った。
In most of the examples, the diameter of the rotating can was 11, the width of the polymer molded substrate was 5Qfi, and an electron beam evaporation source was commonly used as the evaporation source. A study was also conducted in which the width of the substrate was in the range of 3o to 1.2m, and the width of the substrate was in the range of i-151m to 5Q1m, but no essential difference in effectiveness was observed.

次に具体的に本発明の実施例について説明する。Next, embodiments of the present invention will be specifically described.

実施例1) ポリエチレンテレフタレートフィルム(厚さ9.6μ葡
を基板とし、Oos飾11i20%よシなる6 ページ 磁仕層を、電子ビーム蒸着にて、酸素を外部より0.6
Q/winの割合で導入しながら、全体の真空度を2.
5 x 10(5Torrとし、0 、13 pdD厚
さに形成した。その時のフィルム速度Fi3o!lI/
鳳1nである。磁性層形成直後に、酸素をo、4しj1
n導入しながら、真空槽に対しフッ素樹脂で絶縁保持し
た曲率半径52m(間長1.311)の銅のジャケラl
電極とし、高周波(13,5eMHz)電力を供給して
、グロー放電を誘起し、この放電雰囲気に磁性層をさら
した。
Example 1) A polyethylene terephthalate film (9.6 μm thick) was used as a substrate, and a 6-page magnetic layer made of OOS 11i 20% was coated with 0.6 μm of oxygen from the outside by electron beam evaporation.
While introducing at a ratio of Q/win, the overall degree of vacuum is maintained at 2.
5 x 10 (5 Torr) and formed to a thickness of 0.13 pdD.The film speed at that time was Fi3o!lI/
This is Otori 1n. Immediately after forming the magnetic layer, add oxygen to
A copper jacket with a radius of curvature of 52 m (length 1.311) was insulated with fluororesin from the vacuum chamber while introducing n.
Using this as an electrode, high frequency (13.5 eMHz) power was supplied to induce glow discharge, and the magnetic layer was exposed to this discharge atmosphere.

このように磁性層がグロー放電雰囲気にさらされた磁気
テープと、従来例としてのグロー放電雰囲気にさらさな
い磁気テープとを66℃9o%RHの環境中に入れて、
1週間毎に、振動試料形磁束計で、残留磁束φrと、保
磁力HCをそれぞれの初期値を1.0と規格比して変化
を調べ、その結果を第2図に示す。
The magnetic tape whose magnetic layer was exposed to the glow discharge atmosphere in this way and the conventional magnetic tape which was not exposed to the glow discharge atmosphere were placed in an environment of 66° C. and 90% RH.
Every week, changes in the residual magnetic flux φr and the coercive force HC were compared with the initial values of 1.0 and the standard using a vibrating sample magnetometer, and the results are shown in FIG.

図から明らかなように、本発明によるものは残留磁束、
保持力の何れについても変化がみられず耐蝕性の優秀さ
、が理解される。
As is clear from the figure, the residual magnetic flux,
No change was observed in any of the holding forces, indicating excellent corrosion resistance.

7ページ 実施例2 ポリアミドフィルム(厚さ8μrLL)上に、Ct01
00%を回転キャンの軸をプーラコク箕空槽から絶縁保
持し、上記キャンに直流電圧を蒸発源に対して負の60
0Vffi印加し、ポリアミドフィルム(厚さ8μ→上
に、00100%からなる磁性層の電界蒸着を行った。
Page 7 Example 2 Ct01 on polyamide film (thickness 8μrLL)
00%, keep the axis of the rotating can insulated from the puller tank, and apply a DC voltage to the above can at a negative 60% with respect to the evaporation source.
0 Vffi was applied, and a magnetic layer consisting of 00100% was deposited by electric field on a polyamide film (thickness: 8 μm).

磁性層厚みは0.1μC1蒸着時の導入酸素量はo 、
 ss Q/winで、真空度は1,5X105τor
r、であった。磁性層形成後、曲率半径51.cmの銅
製ジャケット(内部には冷却用の油が循環し、温度上昇
を防いでいる。)を真空槽から絶縁し、キャンとの間に
交流(商用周波)eooV6印加し、酸素1z0.4Q
、/min、水蒸気を0,044/min導入しながら
、グロー放電にさらした。
The thickness of the magnetic layer is 0.1 μC. The amount of oxygen introduced during deposition is o,
ss Q/win, vacuum degree is 1.5X105τor
It was r. After forming the magnetic layer, the radius of curvature is 51. A cm copper jacket (cooling oil circulates inside to prevent temperature rise) is insulated from the vacuum chamber, AC (commercial frequency) eooV6 is applied between it and the can, and oxygen 1z0.4Q is applied.
,/min, and exposed to glow discharge while introducing water vapor at 0,044/min.

このようにして作成した磁気テープは、保持力Ho%残
留磁束φrの何れもが66℃90%RH中で7週間経過
後も、0oH1の磁性層を形成した実施例1の場合とほ
とんど同じで、変化しなかった。
The magnetic tape produced in this way had almost the same coercive force Ho% residual magnetic flux φr as in Example 1 in which a magnetic layer of 0oH1 was formed even after 7 weeks at 66°C and 90%RH. , did not change.

これに対し磁性層が同じ((70100%からなるもの
で従来法によシ作成された磁気テープは保持力Haが1
.26、残留磁束密度φrがo、71となシ、低レベル
の耐蝕性を示した。
On the other hand, a magnetic tape made by the conventional method with the same magnetic layer ((70100%) has a coercive force Ha of 1
.. 26, the residual magnetic flux density φr was o, 71, and showed a low level of corrosion resistance.

実施例3 ポリエチレンテレフタート(厚さ11.6μ−上にco
ss%)ii1s%の磁性層を電子ビーム蒸着にて、0
.2痺の厚さに形成した。その時、導入した酸素の量1
ri 1 、0Q/winで、蒸着が行われている間の
真空度は2.2X10−Torrであった。
Example 3 Polyethylene tereftate (thickness 11.6 μ-on top)
ss%) ii 1s% magnetic layer by electron beam evaporation, 0
.. It was formed to the thickness of 2 paralysis. At that time, the amount of oxygen introduced 1
ri 1 , 0Q/win, and the degree of vacuum during the deposition was 2.2×10-Torr.

磁性層形成後、第3図に示すように、電極4とポリプロ
ピレンゴム製のローラ8,9および回転キャン3で構成
される空間1oに、電極4の回転キャンを見込む側に孔
をあけて、その孔から空間10に酸素を導入しくなお導
入量は0 、2 Q/諺in〜o、sQ/winの範i
宜→変更できるものとした)、電極4に直流で負の45
0Vを印加し友。
After forming the magnetic layer, as shown in FIG. 3, a hole is made in the space 1o consisting of the electrode 4, the rollers 8 and 9 made of polypropylene rubber, and the rotating can 3 on the side where the rotating can of the electrode 4 is expected. Oxygen is introduced into the space 10 through the hole, and the amount introduced is 0,2 Q/in ~ o, sQ/win range.
), a negative 45V DC voltage is applied to the electrode 4.
Apply 0V.

発生したグロー放電は、450V1ム〜2ムであった。The glow discharge that occurred was 450V1~2mm.

電極4のローラ9に近い部分に孔をあけて、そこに排気
管(図示せず)を取りつけ、外部より連続して排気した
。フィルム速度に応じてグロー条件を選ぶことが必要で
あるが、フィルム速度9 戸−〕゛ 20m/winでは450V1.25ムで、第2図に示
したのとほぼ同様の耐蝕性が得られ、フィルム速度30
m/winでは450V  1,9ムで充分であった。
A hole was made in a portion of the electrode 4 near the roller 9, and an exhaust pipe (not shown) was attached thereto to continuously exhaust the gas from the outside. It is necessary to select the glow conditions according to the film speed, but at a film speed of 9 to 20 m/win, corrosion resistance almost the same as that shown in Figure 2 was obtained at 450 V 1.25 m. film speed 30
For m/win, 450V 1.9mm was sufficient.

さらに60■/諺1nで、450V 2ムでは第2図に
示したような耐蝕性は得られなかったので、電極4に高
同波を印加するとともに、アルニコ磁石 配設して、フ
ィルム走行方向にN−8−N−8と交互に磁場が反転す
るような磁界を形成して、グロー放電を起こすことによ
シ、第2図に示したのと同様の耐蝕性を得ることができ
た。
Furthermore, since the corrosion resistance as shown in Fig. 2 could not be obtained at 450V 2mm at 60mm/1n, a high harmonic wave was applied to electrode 4, and an alnico magnet was placed in the direction of film running. Corrosion resistance similar to that shown in FIG. 2 could be obtained by generating a glow discharge by forming a magnetic field in which the magnetic field alternated with -8-N-8.

その他、0070%Ni30%、aoeo%F610%
、cogs%1e16%、0095%Fees%の各々
からなる厚さ0.IP、〜0 、3 PMの範囲の磁性
層を、ポリエチレンテレフタレート、ポリアミド。
Others: 0070%Ni30%, aoeo%F610%
, cogs%1e16%, and 0095%Fees%, each having a thickness of 0. The magnetic layer is made of polyethylene terephthalate, polyamide, in the range of IP, ~0,3 PM.

ボリイミFフィルム等の上にそれぞれ形成したものにつ
いても本発明の効果ヲ確かめた。
The effects of the present invention were also confirmed for those formed on Boliimi F film and the like.

また、CoCrからなる磁性層で垂直異方性を有いても
本発明の効果が得られることを確かめた。
It was also confirmed that the effects of the present invention can be obtained even when the magnetic layer is made of CoCr and has perpendicular anisotropy.

1o <−ジ なお第1図、第3図を用いていうと、グロー放電処理を
行った基板1を捲き取り軸亡iきあげた後、キャン3を
加熱して基板1をもう一度送り出し軸6へ移動しながら
グロー放電にさらすことで磁性層中の欠陥を補修するこ
ともできるが、一度まきあげてから、グロー処理したの
では、充分な耐蝕性を得ることができない。
1o <- Using Figures 1 and 3, after the substrate 1 that has been subjected to glow discharge treatment is rolled up and the shaft is removed, the can 3 is heated and the substrate 1 is sent out again to the shaft 6. Defects in the magnetic layer can be repaired by exposing it to glow discharge while moving, but sufficient corrosion resistance cannot be obtained if the magnetic layer is exposed to glow discharge once and then subjected to glow treatment.

また処理時間とグロー放電の状態(活性原子の数、イオ
ンの数、電子の数等)により、生産性が異なり、その改
良のためにキャン径を大きくすることがある範囲で有効
であるが実用範囲は高々21までであろう。そして、磁
性層形成直後のグロー放電処理によりかなりの効果がも
たらされることが判明しており、したがってキャン径を
あまり大きくするよシも磁性層形収用の回転キャンとシ
リーズにグロー放電処理用の回転キャン金利に設ける方
が得策な場合もあると考えられる。
In addition, productivity varies depending on the processing time and glow discharge conditions (number of active atoms, number of ions, number of electrons, etc.), and increasing the can diameter is effective to some extent in order to improve this, but it is not practical. The range may be up to 21 at most. It has been found that a glow discharge treatment immediately after the formation of the magnetic layer brings about a considerable effect, so it is better not to make the can diameter too large. In some cases, it may be more advantageous to set the interest rate as a fixed interest rate.

以上のように本発明によると、環境保存性にす11 吏
−ン
As described above, according to the present invention, environmental preservation is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図はそれぞれ本発明により磁気記録媒体を
製造する様子を示す図、第2図は本発明の詳細な説明す
るための図である。 1・・・・・・基板、2・・・・・・蒸発源、3・・・
・・・回転キャン、4・・・・・・電極、6・・・・・
・送り出し軸、7・・・・・・捲き取シ軸。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
III 第2図 暴lF)時間 (wuiu ) JI3ffi1
FIGS. 1 and 3 are diagrams each showing how a magnetic recording medium is manufactured according to the present invention, and FIG. 2 is a diagram for explaining the present invention in detail. 1...substrate, 2...evaporation source, 3...
... Rotating can, 4... Electrode, 6...
・Feeding shaft, 7... Winding shaft. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
III Figure 2 IF) Time (wuiu) JI3ffi1

Claims (1)

【特許請求の範囲】[Claims] 回転キャンの同側面に沿って移動する高分子成形物基板
上に蒸着にて強磁性層を形成したのち、上記基板が上記
回転キャンの同側面に沿った状態で、上記強磁性層を酸
化性ガスを用いたグロー放電雰圓策にさらすことを特徴
とする磁気記録媒体の製造方法。
After forming a ferromagnetic layer by vapor deposition on a polymer molded substrate that moves along the same side of the rotating can, the ferromagnetic layer is oxidized while the substrate is along the same side of the rotating can. A method for manufacturing a magnetic recording medium, which comprises exposing the medium to a glow discharge atmosphere using a gas.
JP56115741A 1981-07-23 1981-07-23 Manufacture of magnetic recording medium Granted JPS5817544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115741A JPS5817544A (en) 1981-07-23 1981-07-23 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115741A JPS5817544A (en) 1981-07-23 1981-07-23 Manufacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5817544A true JPS5817544A (en) 1983-02-01
JPH0154776B2 JPH0154776B2 (en) 1989-11-21

Family

ID=14669912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115741A Granted JPS5817544A (en) 1981-07-23 1981-07-23 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5817544A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201225A (en) * 1983-04-27 1984-11-14 Hitachi Condenser Co Ltd Manufacturing device of magnetic recording medium
JPS62275316A (en) * 1985-04-15 1987-11-30 Hitachi Maxell Ltd Magnetic recording medium and its production
EP0387619A2 (en) * 1985-05-31 1990-09-19 Hitachi Maxell Ltd. Method of and apparatus for making magnetic recording medium
US9733384B2 (en) 2013-10-03 2017-08-15 System Square Inc. Package inspection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201225A (en) * 1983-04-27 1984-11-14 Hitachi Condenser Co Ltd Manufacturing device of magnetic recording medium
JPS62275316A (en) * 1985-04-15 1987-11-30 Hitachi Maxell Ltd Magnetic recording medium and its production
EP0387619A2 (en) * 1985-05-31 1990-09-19 Hitachi Maxell Ltd. Method of and apparatus for making magnetic recording medium
US9733384B2 (en) 2013-10-03 2017-08-15 System Square Inc. Package inspection system

Also Published As

Publication number Publication date
JPH0154776B2 (en) 1989-11-21

Similar Documents

Publication Publication Date Title
JPH0411625B2 (en)
JPS5817544A (en) Manufacture of magnetic recording medium
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPH044649B2 (en)
JPH033369B2 (en)
JPS59215025A (en) Manufacture of vertical magnetic recording body
JPS5914129A (en) Production of magnetic recording medium
JPS63277750A (en) Formation of thin film
JP2548231B2 (en) Method of manufacturing magnetic recording medium
JPS5817607A (en) Ion plating device
JPS62185246A (en) Production of magnetic recording medium
JPS58222439A (en) Magnetic recording medium and its manufacture
JPH0528487A (en) Production of magnetic recording medium
JPS6139233A (en) Manufacture of metal thin film magnetic recording medium
JPS6045943A (en) Production of magnetic recording medium
JPS5914130A (en) Production of magnetic recording medium
JPS6220137A (en) Production of magnetic recording medium
JPS62241137A (en) Method and apparatus for producing magnetic recording medium
JPS58115634A (en) Manufacture of magnetic recording medium
JPH0451888B2 (en)
JPS6154040A (en) Manufacture of magnetic recording medium
JPH0329115A (en) Production of magnetic recording medium
JPS63291213A (en) Magnetic recording medium and its production
JPS60243820A (en) Production of magnetic recording medium
JPH07113162A (en) Method and device for manufacturing thin film