JPS5817342A - Analyzer for amount of sugar - Google Patents

Analyzer for amount of sugar

Info

Publication number
JPS5817342A
JPS5817342A JP11625981A JP11625981A JPS5817342A JP S5817342 A JPS5817342 A JP S5817342A JP 11625981 A JP11625981 A JP 11625981A JP 11625981 A JP11625981 A JP 11625981A JP S5817342 A JPS5817342 A JP S5817342A
Authority
JP
Japan
Prior art keywords
cell
refractive index
sample
light
optical rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11625981A
Other languages
Japanese (ja)
Other versions
JPH0224336B2 (en
Inventor
Osamu Saito
修 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP11625981A priority Critical patent/JPS5817342A/en
Publication of JPS5817342A publication Critical patent/JPS5817342A/en
Publication of JPH0224336B2 publication Critical patent/JPH0224336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the amount of sugar and concentration of solid contents based on a sample which is brought to the same condition, by a method wherein a cell part for measuring optical rotation and a cell part for measuring a refractive index are monolithically formed, and optical rotation and a refractive index are simultaneoulsly measured by light from the same light source. CONSTITUTION:By a reference material A having a previously known refractive index, an outer peripheral shape of a sample cell 4 is formed in a rectangle and the inside thereof forms a space A to which sample liquid flows. The upper part constitutes a cell part 18 for measuring optical rotation consisting of facing-downward sides F1, F1, and the lower part constitutes a cell part 19 for measuring a refractive index consisting of sides F2 and F. Light from a light source 1 is divided into two parts by a half mirror 2, one of them gathers to one sopt of a semiconductor element 10 via the lower part of the cell 4 to measure the refractive index by a photoelectric current corresponding to the position. The other of them enters a photomultiplier 8 through polarizers 5 and 7 having polarizing surface being 90 deg. different from each other with the upper part of the cell 4 between, and the polarizing surface is turned by a Raraday cell 6 so that an amount of light collected is minimized to measure the optical rotation. This permits the measurement of the amount of sugar and concentration of solid contents in a sample.

Description

【発明の詳細な説明】 本発明は、糖分分析計に関する。[Detailed description of the invention] The present invention relates to a sugar analyzer.

例えば、蔗糖大根における糖分含有率を測定する等、試
料中の糖分を分析するのに、糖度と固形分濃度(ブリッ
クス)、及び、それら両者から求められる純糖率の測定
が必要であり、そして、旋光度によって糖度を、かつ、
屈折率によつ°C固形分濃度を夫々求められることが知
られている。
For example, in order to analyze the sugar content in a sample, such as measuring the sugar content in sucrose radish, it is necessary to measure the sugar content, solid content concentration (Brix), and pure sugar percentage determined from both. , sugar content by optical rotation, and
It is known that the solid content concentration in °C can be determined depending on the refractive index.

ところが、屈折率測定のための試料セルにおいては、試
料流入空間と基準物質との闇に光の入射方向に対して傾
斜した境界面が必要であるのに対し、旋光度測定のため
の試料セルにおいては、上述のような傾斜境界面が不要
であった。
However, in a sample cell for measuring refractive index, it is necessary to have an interface between the sample inlet space and the reference material that is inclined with respect to the incident direction of light, whereas in a sample cell for measuring optical rotation, In this case, the inclined boundary surface as described above was unnecessary.

そこで、従莱では、各別に専用の試料セルを準備し、夫
々に試料を流入して旋光度及び屈折率を測定してhたが
、試料セルの設置箇所の相違とか測定時間のズレ、並び
に、両セルへの試料流入りイミノジのズレ等に起因し、
測定時の試料温度が変化して糖度及び固形分濃度が変化
し、測定精度が低いものとなっていた。
Therefore, at Jurai, we prepared dedicated sample cells for each cell and measured the optical rotation and refractive index by pouring the sample into each cell. , due to misalignment of sample inflow to both cells, etc.
The sample temperature during measurement changed, resulting in changes in sugar content and solid content concentration, resulting in low measurement accuracy.

本発明は、糖度及び固形分濃度を、同一条件下の試料を
対象として測定し、糖分分析における測定精度を向上で
きるようにすると共に、糖度、固形分濃度及び補糖率を
容易に知ることができて使用上極めて便利にすることを
目的とする。
The present invention makes it possible to measure the sugar content and solid content concentration of samples under the same conditions, thereby improving measurement accuracy in sugar content analysis, and making it possible to easily know the sugar content, solid content concentration, and sugar replenishment rate. The purpose is to make it extremely convenient to use.

次に、本発明実施例を図面に基いて説勇する。Next, embodiments of the present invention will be explained based on the drawings.

ヘリクムーネオンレーザ等の光源l、その光源lからの
光を、一部を直線的に透過させると共に残部を反射によ
り直角方向に向かわせるハーフミラ−2、ハーフミラ−
2によって反射された光を前述透過光と平行な方向に向
かうように反射させる反射fli3、及び、両方の光を
透過させる試料セル4(図示しないが試料の流入口及び
排出口を有している。)が設けられ、ハーフミラ−2及
び試料セル4を透過した光に対して旋光度を測定するよ
うに構成され、他方、反射鏡3で反射され九後に試料セ
ル4f:透過した光に対して示差屈折率を測定するよう
に構成され、糖度、固形分濃度及び補糖率を測定する糖
分分析計が構成されている。
A light source 1 such as a helium neon laser, a half mirror 2 that transmits a part of the light from the light source 1 in a straight line and directs the remaining part in a right angle direction by reflection.
a reflection fli3 that reflects the light reflected by the light beam 2 in a direction parallel to the transmitted light, and a sample cell 4 (not shown, which has a sample inlet and outlet) that transmits both lights. ) is provided and configured to measure the optical rotation of the light transmitted through the half mirror 2 and the sample cell 4, and on the other hand, the optical rotation is measured with respect to the light transmitted through the sample cell 4f after being reflected by the reflecting mirror 3. A sugar content analyzer is configured to measure differential refractive index, and to measure sugar content, solid content concentration, and sugar supplementation rate.

旋光度を測定するに、ハーフミラ−2と試料セル4との
間に特定方向の光のみを透過させて完全な直線側光にす
るための偏光子5、及び、直線側光を強制的に振動させ
て偏光面を回転させるファラデーセル6が設けられ、他
方、試料セル4の彼方に、前記偏光子Sに対して偏光面
をto”傾けた検光子7が設けられると共にその後方に
7オトマル8が設けられ、フォトマル8による受光に伴
いその受光信号を増幅器9により増幅してファラデーセ
ル6に入力し、7アラデーセル6に、フォトマル8から
の信号が最小(基本波成分において零)になるように電
流を流し、その電流量と偏光面回転角度とが比例する仁
とを利用し、電流量に基いて旋光度が測定されるのであ
る。
To measure the optical rotation, a polarizer 5 is used to transmit only light in a specific direction between the half mirror 2 and the sample cell 4 to make it a complete straight-side light, and a polarizer 5 is used to forcibly vibrate the straight-side light. A Faraday cell 6 is provided which rotates the plane of polarization by rotating the polarizer S, and on the other hand, an analyzer 7 whose plane of polarization is tilted to'' with respect to the polarizer S is provided beyond the sample cell 4, and an analyzer 7 is provided behind it. is provided, and as the photomultiplier 8 receives light, the received light signal is amplified by the amplifier 9 and inputted to the Faraday cell 6, and the signal from the photomultiplier 8 becomes minimum (zero in the fundamental wave component) to the Faraday cell 6. The optical rotation is measured based on the amount of current by passing a current and using the fact that the amount of current is proportional to the angle of rotation of the plane of polarization.

屈折率を測定するに、試料セル4を透過した光を受ける
ように、半導体素子100両端に、電極11.11を設
けて構成された半導体装置検出器12が設けられ、半導
体素子1G上の一箇所に集中して投射される光スポット
と電極11.11との距離に応じて按分される光電流を
、増幅器13゜13を介して増幅して両電極11.11
から演算器14に入力し、その電流差に基いて電極11
゜11と光スポットとの距離を検出し、その検出距離と
、予じめ設定された試料セル4と半導体素子10との距
離との相対関係に基いて屈折角度が、そして、その角度
に基いて屈折率が測定されるのである。
To measure the refractive index, a semiconductor device detector 12 configured with electrodes 11 and 11 is provided at both ends of the semiconductor element 100 so as to receive the light transmitted through the sample cell 4. The photocurrent, which is divided proportionally according to the distance between the light spot concentrated and projected at a location and the electrode 11.11, is amplified via the amplifier 13°13 and is applied to both the electrodes 11.11.
is input to the calculator 14, and the electrode 11 is inputted based on the current difference.
11 and the optical spot, and the refraction angle is determined based on the relative relationship between the detected distance and the preset distance between the sample cell 4 and the semiconductor element 10. The refractive index is then measured.

前記光源1tli、特定波長(例えば、6328オング
ストローム)の光線を発する亀のである。冑本発明とし
ては 7%  7ミラー=や反射鏡3を設けずに、夫々
専用に1@ずつ光源1を設けるものでも良い。
The light source 1tli is a turtle that emits light of a specific wavelength (for example, 6328 angstroms). According to the present invention, one light source 1 may be provided exclusively for each without providing a mirror or a reflecting mirror 3.

前記ハーフミラ−2の後方に凸レンズ15が設けられ、
ハーフミラ−2を透過した光を太いビームに拡大し、試
料セル4透過に際し、気泡、浮遊物等の影響により光が
散乱されて偏光性が乱されることを防止するように構成
されている。
A convex lens 15 is provided behind the half mirror 2,
It is configured to expand the light transmitted through the half mirror 2 into a thick beam, and to prevent the light from being scattered due to the influence of air bubbles, floating objects, etc. and disturbing the polarization property when it passes through the sample cell 4.

又、前記検光子7の後方にも凸レンズ16が設けられ、
太いビームに拡大された光を細いビームに復帰するよう
に構成されている。
Further, a convex lens 16 is also provided behind the analyzer 7,
It is configured to return the light expanded into a thick beam to a narrow beam.

図中17はフォトマル8の前に設けたビ′ンホールを示
し、散乱光を除去するためのものである。
In the figure, reference numeral 17 indicates a via hole provided in front of the photomultiplex 8 for removing scattered light.

前記試料セル4は、第2図に示すように、ガラスとか透
明樹脂等、予め屈折率の知られているものを基準物質入
として、その屈折率測定用の基準物質入によ秒、横断面
視における外周形状を矩形状に構成すると共に内部に試
料液流入空間Sを形成し、かつ、その空間Sに臨む内周
面のうち、上方側において光の入射方向に対して直交す
る対向面Fls plを備えさせて旋光度測定用セル部
18が形成され、他方、下方側において、光の入射方向
に直交する面2重を光の入射側に、そし°C1例えば4
5°等所定角度傾斜した境界面Ft透過側に夫々備えさ
せて屈折率測定用セル部19が前記旋光度測定用セル部
18と一体的に形成され、図示しないが、一端側の流入
口から空間Sに流入される同一条件下の試料液に対し、
旋光度及び屈折率測定のための両方の光を同時に透過さ
せられるように構成されている。同、試料でル4として
は、例えば、上下両セル818.19間に位置させて、
空間S内に仕切板を設けて流入試料の整流化を図るとか
、中央に旋光度測定用セル部18f:形成し、両端夫々
に屈折率測定用セル[111を形成する等各種の変形が
可能である。
As shown in FIG. 2, the sample cell 4 contains a reference material such as glass or transparent resin, whose refractive index is known in advance, and a cross section of the reference material for measuring the refractive index. An opposing surface Fls that has a rectangular outer circumferential shape when viewed, forms a sample liquid inflow space S therein, and is perpendicular to the light incident direction on the upper side of the inner circumferential surface facing the space S. A cell part 18 for measuring the optical rotation is formed by providing the pl, and on the other hand, on the lower side, the surface double perpendicular to the light incident direction is on the light incident side, and the
A refractive index measuring cell section 19 is formed integrally with the optical rotation measuring cell section 18, provided on the transmission side of the boundary surface Ft inclined at a predetermined angle such as 5 degrees, and is connected from an inlet on one end side (not shown). For the sample liquid flowing into the space S under the same conditions,
It is constructed so that both light for optical rotation and refractive index measurement can be transmitted simultaneously. In the same sample, for example, Le 4 is located between the upper and lower cells 818.19,
Various modifications are possible, such as providing a partition plate in the space S to rectify the flow of the incoming sample, or forming a cell part 18f for measuring the optical rotation in the center and forming cells [111 for measuring the refractive index] at each end. It is.

前記演算器14はマイクロコンピュータで構成され、そ
の演算器14に、フォトマル8からの信号に基ぐファラ
デーセル6の電流量変化−人力され、旋光度及び屈折率
が測定されると共に、夫々に温度の補正を加え、屈折率
に基いて固形分濃度(重量%)が算出され、かつ、屈折
率によって算出される比重と旋光度に基いて精度(重量
%)が算出され、そして、固形分濃度と糖度から、補糖
率の=(糖度/固形分濃度)XIGOが算出されるよう
に構成されている。
The arithmetic unit 14 is composed of a microcomputer, and the arithmetic unit 14 manually inputs the changes in the amount of current in the Faraday cell 6 based on the signal from the photomultiplier 8, measures the optical rotation and the refractive index, and also measures the optical rotation and the refractive index. With temperature correction, the solid content concentration (wt%) is calculated based on the refractive index, and the accuracy (wt%) is calculated based on the specific gravity and optical rotation calculated by the refractive index. The sugar replenishment rate = (sugar content/solid content concentration) XIGO is calculated from the concentration and sugar content.

前記演算器14から表示装置21C信号が入力され、算
出された固形分濃度、糖度及び補糖率を夫々格別に数値
によりディジタル表示するように構成されている。伺、
この表示装置2oとしてはも良い。
A display device 21C signal is inputted from the arithmetic unit 14, and the calculated solid content concentration, sugar content, and sugar replenishment rate are each digitally displayed as numerical values. Visit,
This display device 2o may also be used.

試料液としては、蔗糖大根を例にとれば、原料から製糖
工程、製品に到る、製品蔗糖液、製糖工程液、蔗糖大根
搾汁液等が適用されるが、その他砂糖キビ等、糖分を含
んだ各種のものが適用できる。尚、上記蔗糖大根搾汁液
としては、気泡や浮遊物に起因して誤差が出やすいため
、遠心機の遠心力によってろ過処理した後の液を用いる
のが好ましい。
Examples of sample solutions include sucrose radish, from raw materials to sugar refining processes and products, such as product sucrose liquid, sugar refining process liquid, and sucrose radish juice, but other liquids that contain sugar, such as sugar cane, Various types can be applied. In addition, as the above-mentioned sucrose radish juice, it is preferable to use a liquid that has been filtered by the centrifugal force of a centrifuge, since errors are likely to occur due to air bubbles and suspended matter.

上記実施例では、示差屈折率を測定するのに、半導体装
置検出器12を用いているが、例えば、試料セル4と受
光部との中間に試料セルを透過した光を受けるように反
射鏡を設けると共にその反射鏡を回転自在に構成し、回
転に伴って反射光の方向を変更し、反射光が受光部に到
達する状態での反射鏡の回転角度を検出し、それに基い
て示差屈折率を測定するとか全反射を利用して測定する
等、各種の位置検出器12が適用できる。
In the above embodiment, the semiconductor device detector 12 is used to measure the differential refractive index. At the same time, the reflecting mirror is configured to be rotatable, the direction of the reflected light is changed as it rotates, the rotation angle of the reflecting mirror is detected when the reflected light reaches the light receiving part, and the differential refractive index is determined based on the angle of rotation of the reflecting mirror when the reflected light reaches the light receiving part. Various position detectors 12 can be applied, such as those that measure the position of the object, or measure using total internal reflection.

又、検光子7からの光を受けるのに、フォトマル8に限
らず各種の検出器8が適用できる。
Further, to receive the light from the analyzer 7, not only the photomultiplier 8 but also various types of detectors 8 can be used.

以上説明したように、本発明による糖分分析針は、試料
セルに、旋光度及び屈折重大々を測定するセル部を一体
的に形成し、その試料セルに対して、光源と、旋光度測
定用の偏光子、ファラデーセル、検光子及び検出器、並
びに屈折率測定用の受光位置検出器を夫々設けるから、
試料セル内に流入された試料に対し、同一条件下で同時
的に旋光度及び屈折率、即ち、糖度及び固形分濃度を測
定でき、相対温度差に起因する測定精度の低下を回避で
きて糖分分析における測定精度を極めて向上できるよう
になった、1 その上、測定された旋光度及び屈折率に基き、糖度、固
形分濃度及び純糖率f:算出すると共にそれらを表示装
置で表示させるから、別途換算tせずに済むのみならず
、糖度、固形分濃度及び補糖率を極め°C容易に知るこ
とができ、例えば、糖分取引市場での糖分分析結果が信
頼性の高い値として迅速にわかる等、使用上極めて便利
になった。
As explained above, the sugar analysis needle according to the present invention has a cell part for measuring optical rotation and refractive index integrally formed in the sample cell, and a light source and a light source for measuring the optical rotation. A polarizer, a Faraday cell, an analyzer and a detector, and a light receiving position detector for refractive index measurement are provided, respectively.
The optical rotation and refractive index, that is, sugar content and solid content concentration, can be measured simultaneously under the same conditions for the sample flowing into the sample cell, avoiding a decrease in measurement accuracy caused by relative temperature differences. It has become possible to greatly improve measurement accuracy in analysis.1 Furthermore, based on the measured optical rotation and refractive index, sugar content, solid content concentration, and pure sugar percentage f: are calculated and displayed on a display device. Not only does it eliminate the need for separate conversion, but it also makes it extremely easy to know the sugar content, solid content concentration, and sugar replenishment rate. It has become extremely convenient to use.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る糖分分析針を例示し、第1図はフ
ローシート、第2図は試料セルの斜視図である。 A・・・屈折率測定用基準物質、 l・・・光源、  
4・・・試料セル、  5・・・偏光子、 6・・ファ
ラデーセル、 7・・・検光子、 8・・・検出器、 
12・・・位置検出器、  14・・・演算器、  1
ト・・旋光度測定用セル部、  19・・・屈折率測定
用セル部、  20・・表か装!it。 自発手続補正書 ) ・11件の表示 昭和56 年特Wf  ’第116259号2、発明の
名称  糖分分析計 3、 補正をする者 事件との関係 特許出願人 4、代理人 提出するとともに委任状を補充致します。
The drawings illustrate the sugar analysis needle according to the present invention, with FIG. 1 being a flow sheet and FIG. 2 being a perspective view of a sample cell. A...Reference material for refractive index measurement, l...Light source,
4... Sample cell, 5... Polarizer, 6... Faraday cell, 7... Analyzer, 8... Detector,
12...Position detector, 14...Arithmetic unit, 1
G...Cell part for optical rotation measurement, 19...Cell part for refractive index measurement, 20...Front mounting! it.・Indication of 11 cases Patent Wf '116259 No. 116259 of 1982, title of invention Sugar analyzer 3 Relationship with the case of the person making the amendment Patent applicant 4, submitted by agent and power of attorney We will replenish it.

Claims (1)

【特許請求の範囲】[Claims] 屈折率測定用基準物質によって、旋光度測定用セル部と
屈折率測定用セル部とを一体的に形成した試料セルを設
け、光源と前記旋光度測定用セル部との間に、前記光源
からの光を直線偏光する偏光子とその偏光面を回転させ
るファラデーセルを設け、前記旋光度測定用セル部を透
過した光を偏光する前記偏光子に対し偏光面がto’″
異なる検光子を設け、前記検光子からの光を受ける検出
器を設けると共に、その検出器の受光量が零あるいは最
小になるように前記7アラデーセルにより偏光面を回転
し、その回転角度に基いて試料の旋光度を測定するよう
に構成し、他方、前記屈折率測定用セル部を透過した光
の位置を検出する検出Sを設けてその検出位置に基いて
試料の屈折率を測定するように構成し、かつ、測定され
た旋光度及び屈折率に基いて試料の糖度、固形分1lI
i変並びに純糖率を算出する演算器、及び、算出された
糖度、固形分浸度並びに純糖率を表示する表示装置を設
けて島本事を特徴とする糖分分析計。
A sample cell is provided in which a cell part for measuring optical rotation and a cell part for measuring refractive index are integrally formed using a reference material for measuring refractive index, and a sample cell is provided between the light source and the cell part for measuring optical rotation. A polarizer that linearly polarizes the light and a Faraday cell that rotates the plane of polarization are provided, and the plane of polarization is to'
A different analyzer is provided, a detector is provided to receive the light from the analyzer, and the plane of polarization is rotated by the 7 Alade cell so that the amount of light received by the detector becomes zero or minimum, and based on the rotation angle. It is configured to measure the optical rotation of the sample, and on the other hand, a detection S is provided to detect the position of the light transmitted through the refractive index measurement cell section, and the refractive index of the sample is measured based on the detected position. Based on the constructed and measured optical rotation and refractive index, the sugar content and solid content of the sample are 1 lI.
A sugar content analyzer characterized by being equipped with a computing device for calculating i-change and pure sugar percentage, and a display device for displaying the calculated sugar content, solid content permeability, and pure sugar percentage.
JP11625981A 1981-07-23 1981-07-23 Analyzer for amount of sugar Granted JPS5817342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11625981A JPS5817342A (en) 1981-07-23 1981-07-23 Analyzer for amount of sugar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11625981A JPS5817342A (en) 1981-07-23 1981-07-23 Analyzer for amount of sugar

Publications (2)

Publication Number Publication Date
JPS5817342A true JPS5817342A (en) 1983-02-01
JPH0224336B2 JPH0224336B2 (en) 1990-05-29

Family

ID=14682669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11625981A Granted JPS5817342A (en) 1981-07-23 1981-07-23 Analyzer for amount of sugar

Country Status (1)

Country Link
JP (1) JPS5817342A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356089A (en) * 2000-11-10 2001-12-26 Citizen Watch Co Ltd Concentration measuring instrument
CN104316467A (en) * 2014-11-05 2015-01-28 上海仪电物理光学仪器有限公司 Optical system for refraction and optical rotation integrated instrument
WO2015186655A1 (en) * 2014-06-02 2015-12-10 株式会社アタゴ Device for measuring optical rotation and refractive index
JP2019002944A (en) * 2018-10-16 2019-01-10 株式会社アタゴ Measurement device of optical rotation and refractive index

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117151A (en) * 1980-02-21 1981-09-14 Hokuren Nogyo Kyodo Kumiai Rengokai Measuring apparatus of content and purity of cane sugar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117151A (en) * 1980-02-21 1981-09-14 Hokuren Nogyo Kyodo Kumiai Rengokai Measuring apparatus of content and purity of cane sugar

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356089A (en) * 2000-11-10 2001-12-26 Citizen Watch Co Ltd Concentration measuring instrument
WO2002038048A1 (en) * 2000-11-10 2002-05-16 Citizen Watch Co., Ltd. Concentration measuring instrument
US7084976B2 (en) 2000-11-10 2006-08-01 Citizen Watch Co., Ltd. Concentration measuring instrument
JP4523143B2 (en) * 2000-11-10 2010-08-11 シチズンホールディングス株式会社 Concentration measuring device and sugar content measuring device
WO2015186655A1 (en) * 2014-06-02 2015-12-10 株式会社アタゴ Device for measuring optical rotation and refractive index
JP2015227836A (en) * 2014-06-02 2015-12-17 株式会社アタゴ Measurement device of optical rotation and refractive index
CN105378455A (en) * 2014-06-02 2016-03-02 株式会社爱宕 Device for measuring optical rotation and refractive index
US9709489B2 (en) 2014-06-02 2017-07-18 Atago Co., Ltd. Device for measuring polarization degree and refractive index
KR20170122847A (en) * 2014-06-02 2017-11-06 가부시키가이샤 아타고 Device for measuring optical rotation and refractive index
EP3150990A4 (en) * 2014-06-02 2017-11-15 Atago Co., Ltd. Device for measuring optical rotation and refractive index
CN104316467A (en) * 2014-11-05 2015-01-28 上海仪电物理光学仪器有限公司 Optical system for refraction and optical rotation integrated instrument
JP2019002944A (en) * 2018-10-16 2019-01-10 株式会社アタゴ Measurement device of optical rotation and refractive index

Also Published As

Publication number Publication date
JPH0224336B2 (en) 1990-05-29

Similar Documents

Publication Publication Date Title
US4134679A (en) Determining the volume and the volume distribution of suspended small particles
DK171087B1 (en) Apparatus for determining the function of cells
US3680962A (en) Contaminant detector comprising means for selectively applying pressure to liquify bubbles
US4566315A (en) Meter for measuring erythrocyte settling rates
US5347358A (en) Refractometer
US5033851A (en) Light scattering method and apparatus for detecting particles in liquid sample
US7283221B2 (en) Refractometer cell for both absolute and differential refractive index measurement of fluids
JPS5817342A (en) Analyzer for amount of sugar
JPS5852550A (en) Dissolution method for ghost peak of flow injection analysis
US3518009A (en) Colorimeter flow cell
JPS6339636Y2 (en)
JPH0228541A (en) Optical concentration detector
US4420257A (en) Laser light scattering photometer
US5110208A (en) Measurement of average density and relative volumes in a dispersed two-phase fluid
JPH0585020B2 (en)
GB1278784A (en) Improvements in the determination of the turbidity of liquids
CN109855726A (en) A kind of calibrating installation and method of the light source power of Immune scatter turbidimetry
JPH10206324A (en) Flow cell for differential refractometer
WO1994017393A1 (en) An improved method of liquid bulk refractive index detection
CN219224566U (en) Transparent solution concentration measuring device
JP2002250692A (en) Instrument and method for measuring oil concentration in oily water containing contaminant
JP2522480B2 (en) Refractive index measurement method
CN201903498U (en) Integrating sphere for dry type chemical detection
JPH03189542A (en) Colorimetric analysis apparatus and analysis method
US3499712A (en) Refractive index analyzer using several liquid-solid interfaces