JPS58171874A - Ultralow temperature electron device - Google Patents

Ultralow temperature electron device

Info

Publication number
JPS58171874A
JPS58171874A JP5384282A JP5384282A JPS58171874A JP S58171874 A JPS58171874 A JP S58171874A JP 5384282 A JP5384282 A JP 5384282A JP 5384282 A JP5384282 A JP 5384282A JP S58171874 A JPS58171874 A JP S58171874A
Authority
JP
Japan
Prior art keywords
cryogenic
ultralow temperature
signal transmission
electromagnetic waves
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5384282A
Other languages
Japanese (ja)
Inventor
Yoshinori Shiraku
善則 白楽
Hisanao Ogata
久直 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5384282A priority Critical patent/JPS58171874A/en
Publication of JPS58171874A publication Critical patent/JPS58171874A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • F17C13/006Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To reduce the amount of heat invading at ultralow temperature by thermal conduction by a method wherein the signal transmission between a circuit device dipped in an ultralow temperature coolant and the outside is performed by means of electromagnetic waves. CONSTITUTION:The arithmetic and memory circuit 1 integrated by superconductive electronic elements, etc. is dipped in the ultralow temperature coolant 2 such as liquid helium. The receiving and emitting device 8 for electromagnetic waves is added to this circuit 1. On the other hand, the receiving and emitting device 9 for electromagnetic waves is provided also in a room temperature part. Using these two receiving and emitting device 8 and 9, the signal transmission between the ultralow temperature part and the room temperature part is performed. By constituting in this manner, the amount of heat invading in the ultralow temperature part by thermal conduction can be remarkably reduced, compared with conventional one which performs signal transmission by means of wires.

Description

【発明の詳細な説明】 本発明は、極低温電子装置に係シ、特に超電導電子素子
(ジョセフソン素子など)によって形成したコンピュー
タの演算、メモリ回路のように極低温下に設置したもの
と、常温部に置かれ圧入出力装置との信号伝達に好適な
極低温電子装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cryogenic electronic devices, particularly those installed at cryogenic temperatures such as computer calculation and memory circuits formed by superconducting electronic elements (such as Josephson elements), The present invention relates to a cryogenic electronic device that is placed in a room temperature area and is suitable for signal transmission with a press-in/output device.

従来の極低温電子装置について第1図を用いて説明する
。1は超電導電子素子(ジョセフソン素子など)で集積
した演算、メモリ回路部分であり、これは液体ヘリウム
などの極低温冷媒2に浸漬するなどによって冷却される
。極低温冷媒2は、注入弁3を介して注入される。弁4
はヘリウムガス回収弁を兼ねた安全弁である。演算、メ
モリ回路1と図示しない室温部に設置されたコンピュー
タの端末との信号の伝達は、多数の銅などの細線、また
はFRPなどの基板にパター化された多数の導線によっ
てなる信号伝達導線5を介して行われる。信号伝達導@
5は、液体ヘリウム2が蒸発したヘリウムガスによって
冷却され、室温部6よす液体ヘリウム温度部に侵入する
熱量を低減するようになっている。しかしながら、摺号
伝達導lIi!5は、前述の通り非常に多数の鋼線など
で形成されているので、蒸発ヘリウムガスによって冷却
しても、まだなお熱侵入量が大きいうそのため液体ヘリ
ウムの消費量が大きい。また、図示しないヘリウム冷凍
機の冷凍負荷が大きいという欠点があった。
A conventional cryogenic electronic device will be explained with reference to FIG. Reference numeral 1 denotes a computation and memory circuit portion integrated with superconducting electronic elements (such as Josephson elements), which is cooled by immersion in a cryogenic coolant 2 such as liquid helium. Cryogenic refrigerant 2 is injected via injection valve 3 . valve 4
is a safety valve that also serves as a helium gas recovery valve. Signal transmission between the arithmetic and memory circuit 1 and a computer terminal (not shown) installed in a room temperature section is carried out by a signal transmission conductor 5 made of a large number of thin wires such as copper or a large number of conductive wires patterned on a substrate such as FRP. It is done through. Signal transmission @
The liquid helium 2 is cooled by the evaporated helium gas, thereby reducing the amount of heat that enters the room temperature section 6 and the liquid helium temperature section. However, the sign transmission guide lIi! 5 is formed of a very large number of steel wires as described above, so even if it is cooled by evaporated helium gas, there is still a large amount of heat intrusion, and therefore a large amount of liquid helium is consumed. Another drawback is that the refrigeration load of the helium refrigerator (not shown) is large.

本発明の目的は、液体ヘリウム温度部分への熱侵入が非
常に小さい極低温電子装置を提供することにある。
It is an object of the present invention to provide a cryoelectronic device with very low heat intrusion into the liquid helium temperature section.

本発明の特徴は、従来のように直接電気導線によって、
室温部の装置と液体ヘリウム温度部分にある極低温電子
素子を接続し、電気信号のやりと9を行う代わりに、室
温部と常温部に設けた受信、発信装置間をレーザー、マ
イクロ波などの電磁波によって行うことにある。
A feature of the present invention is that, unlike conventional methods, direct electric conductors
Instead of connecting the device in the room temperature section and the cryogenic electronic element in the liquid helium temperature section and transmitting electrical signals (9), a laser, microwave, etc. It is carried out using electromagnetic waves.

以下、本発明の一実施例を第2図により説明する。超酸
導電子素子などで集積した演算、メモリ回路1は、液体
ヘリウムなどの極低温冷媒2中に浸漬されている。この
演算、メモリ回路1は、やはシ極低温冷媒2中などの極
低温部に置かれた電磁波の受信、発信装置8に接続され
ている。一方、室温部にも電磁波の受信、発信装置9を
配置する。
An embodiment of the present invention will be described below with reference to FIG. A calculation and memory circuit 1 integrated with superacid conductive electronic elements and the like is immersed in a cryogenic coolant 2 such as liquid helium. This calculation and memory circuit 1 is connected to an electromagnetic wave receiving and transmitting device 8 placed in a cryogenic region such as in a cryogenic refrigerant 2. On the other hand, an electromagnetic wave receiving and transmitting device 9 is also arranged in the room temperature section.

これら二つの受信、発信装置8.9によって、極低温部
と冨温部の信号の伝達を行う。このようにすれば、極低
温部と室温部は熱伝導的に無接触となる。また、レーザ
ーを使用する場合でも、ガラスファイバーなどで極低温
部と室温部を接続してもガラスファイバーの熱伝導率は
、鋼などに比べ只 2桁以上も低いので、熱伝導で極低温部に侵入する熱量
は従来に比べ著しく低減することができる。
These two receiving and transmitting devices 8.9 transmit signals from the cryogenic part and the warm part. In this way, the cryogenic part and the room temperature part are not in contact with each other in terms of thermal conduction. In addition, even when using a laser, even if the cryogenic part and room temperature part are connected using glass fiber, etc., the thermal conductivity of glass fiber is more than two orders of magnitude lower than that of steel, etc. The amount of heat that enters can be significantly reduced compared to the conventional method.

また、電磁波により直接極低温へ侵入する熱量も小さい
Also, the amount of heat that directly penetrates into the cryogenic temperature due to electromagnetic waves is small.

以上のように1本発明によれば、極低温電子装置の極低
温部への熱侵入量を著しく低減できる効果がある。
As described above, according to one aspect of the present invention, there is an effect that the amount of heat intrusion into the cryogenic part of a cryogenic electronic device can be significantly reduced.

本発明によれば、極低温電子装置の常温部と極低温部の
電気信号伝達装置を介しての熱侵入を著しく低減できる
効果がある。
According to the present invention, it is possible to significantly reduce heat intrusion through the electrical signal transmission device between the room temperature section and the cryogenic section of a cryogenic electronic device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の極低温電子装置の一例を示す断面図、第
2図は本発明の極低温電子装置の一例を示す断面図でめ
る。 1・・・超電4ft子菓子などで集積した演算、メモリ
回路、2・・・極低温冷媒、5・・・信号伝達導線、7
・・・断熱材、8・・・極低温部の電磁波の受信、発信
装置、9・・・室温部の電磁波の受信、発信装置。 (、f・1,1
FIG. 1 is a sectional view showing an example of a conventional cryoelectronic device, and FIG. 2 is a sectional view showing an example of the cryoelectronic device of the present invention. 1...Arithmetic operations and memory circuits integrated in superelectric 4ft sweets, etc., 2...Cryogenic refrigerant, 5...Signal transmission conductor, 7
... Insulating material, 8... Electromagnetic wave reception and transmission device in cryogenic temperature section, 9... Electromagnetic wave reception and transmission device in room temperature section. (, f・1,1

Claims (1)

【特許請求の範囲】[Claims] 超電4’に子素子の集積回路とこれを浸漬などして冷却
する極低温冷媒と極低温下に置かれた前記集積回路と常
温部に設置される入出力装置との信号の伝達を行う信号
伝達装置から成る極低温電子装置において、前記極低温
部と常温部に設けた受信、発信装置間を電磁波によって
信号の伝達を行うことを特徴とする極低温電子装置。
The integrated circuit of the element element is immersed in the superconductor 4' and a cryogenic refrigerant is used to cool it, and signals are transmitted between the integrated circuit placed at the cryogenic temperature and the input/output device installed in the normal temperature section. A cryogenic electronic device comprising a signal transmission device, characterized in that signals are transmitted between a receiving and transmitting device provided in the cryogenic part and the normal temperature part by electromagnetic waves.
JP5384282A 1982-04-02 1982-04-02 Ultralow temperature electron device Pending JPS58171874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5384282A JPS58171874A (en) 1982-04-02 1982-04-02 Ultralow temperature electron device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5384282A JPS58171874A (en) 1982-04-02 1982-04-02 Ultralow temperature electron device

Publications (1)

Publication Number Publication Date
JPS58171874A true JPS58171874A (en) 1983-10-08

Family

ID=12954026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5384282A Pending JPS58171874A (en) 1982-04-02 1982-04-02 Ultralow temperature electron device

Country Status (1)

Country Link
JP (1) JPS58171874A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105684A (en) * 1980-01-29 1981-08-22 Nippon Telegr & Teleph Corp <Ntt> Superconductive electric circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105684A (en) * 1980-01-29 1981-08-22 Nippon Telegr & Teleph Corp <Ntt> Superconductive electric circuit

Similar Documents

Publication Publication Date Title
JP2681288B2 (en) Superconducting device package
EP3791432B1 (en) Reducing losses in superconducting cables
JPS5975687A (en) Testing device using sampling unit operated at low temperat-ure
US6889068B2 (en) Heat cutoff signal transmission unit and superconducting signal transmission apparatus
JPH0338890A (en) Superconduction utilizing device
US11917794B2 (en) Separating temperature domains in cooled systems
JPS58171874A (en) Ultralow temperature electron device
JPH07122788A (en) Connecting method for device cooled to cryogenic temperature
US11823811B2 (en) High-density cryogenic wiring for superconducting qubit control
US4809133A (en) Low temperature monolithic chip
US12027361B2 (en) High temperature superconductor-based interconnect systems with a lowered thermal load for interconnecting cryogenic electronics with non-cryogenic electronics
JPH077188A (en) Mounter for composite operational environment
US3076102A (en) Cryogenic electronic gating circuit
JPH11329526A (en) Connecting device of superconducting wire for low temperature equipment
JP2953338B2 (en) Superconducting circuit device
JP3127705B2 (en) Current lead using oxide superconductor
JP2624673B2 (en) Electronics
JP2000277819A (en) Electronic system
JP3316986B2 (en) Current leads for superconducting devices
JPH0715048A (en) Signal processing equipment
JPH02256206A (en) Superconducting power lead
JP2003110305A (en) Superconducting filter package and superconducting filter unit
JPH09116200A (en) Current lead for superconductive device
JPS63276293A (en) Superconductive shielding device
Jones et al. Superconducting magnet Patent