JPS58171515A - Method and device for production of pig iron - Google Patents

Method and device for production of pig iron

Info

Publication number
JPS58171515A
JPS58171515A JP5370382A JP5370382A JPS58171515A JP S58171515 A JPS58171515 A JP S58171515A JP 5370382 A JP5370382 A JP 5370382A JP 5370382 A JP5370382 A JP 5370382A JP S58171515 A JPS58171515 A JP S58171515A
Authority
JP
Japan
Prior art keywords
furnace
iron
coke
melting
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5370382A
Other languages
Japanese (ja)
Inventor
Hideyuki Yamaoka
山岡 秀行
Michiharu Hatano
羽田野 道春
Tomio Miyazaki
宮崎 富夫
Teruhisa Shimoda
下田 輝久
Koji Oki
沖 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5370382A priority Critical patent/JPS58171515A/en
Priority to SE8202585A priority patent/SE457265B/en
Priority to AU83022/82A priority patent/AU537688B2/en
Priority to GB08212245A priority patent/GB2100755B/en
Priority to DE3216019A priority patent/DE3216019C3/en
Priority to FR8207445A priority patent/FR2507624B1/en
Priority to CA000401962A priority patent/CA1193867A/en
Priority to US06/497,420 priority patent/US4504043A/en
Publication of JPS58171515A publication Critical patent/JPS58171515A/en
Priority to US06/617,912 priority patent/US4564389A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces

Abstract

PURPOSE:To economize energy consumption by reducing iron ore to reduced iron in an iron ore reducing furnace by using the reducing gas formed in a melting and gasifying furnace, charging the reduced iron into the melting and gasifying furnace and melting the same thereby producing pig iron. CONSTITUTION:A reducing gas 12 from a gas discharge port 3 of a melting and gasifying furnace 1 is blown through a blow port 23 into a shaft type reducing furnace 20a to reduce the iron ore (f) charged into the furnace to reduced iron 7. The reduced iron 7 and coke 8 are charged through a charge port 2 into the furnace 1, where a coke packed layer (b) and a reduced iron layer (a) are formed. Oxygen 9, pulverized coal 10, steam 11 and limestone powder 13a are blown into the furnace through a tuyere 4, and the coal 10 is converted to combustion gas by oxygen 9, whereby the high temp. gas consisting essentially of CO and H2 is formed. The gases rise in the layer (b) to melt the reduced iron (a) in the upper part thereof. While the reduced iron drops in the coke layer (a) in the counter current state with the high temp. gas, the reduced iron is formed into pig iron C which is then stored in a well (d).

Description

【発明の詳細な説明】 本発明は、鉄鉱石を鉄鉱石還元炉において、溶解ガス化
炉で生成する還元ガスを用いて還元し生成する半還元鉄
又は還元鉄を該溶解ガス化炉で溶解して銑鉄を製造する
方法及び装置に関する。
Detailed Description of the Invention The present invention involves reducing iron ore in an iron ore reduction furnace using reducing gas produced in a melting and gasifying furnace, and melting the semi-reduced iron or reduced iron produced in the melting and gasifying furnace. The present invention relates to a method and apparatus for producing pig iron.

鉄鉱石を還元溶解し、銑鉄を製造する方法として、鉄鉱
石を現状態でガス還元した後、溶解する方式と、鉄鉱石
を加熱溶解した後、固体還元剤で還元する方式があり、
その前者に属するものとして、高炉法、後者に緘するも
のとして溶融還元法があることは周知のとおりである。
There are two methods for producing pig iron by reducing and melting iron ore: one is to reduce the iron ore in its current state with gas and then melt it, and the other is to heat and melt the iron ore and then reduce it with a solid reducing agent.
It is well known that the former category includes the blast furnace method, and the latter category includes the smelting reduction method.

しかるに、溶融還元法における溶融鉱石の固体還元は、
著しい吸熱反応であり1反応浴に熱を安定に供給するこ
とが非常に困難で、かつ溶融鉱石1゛□ による耐火物の侵食が激しいという難点を有するために
、現在、高炉法に匹敵する生産性、経済性を有するプロ
セスは存在していない。
However, the solid reduction of molten ore in the smelting reduction method is
This is a markedly endothermic reaction, making it extremely difficult to stably supply heat to one reaction bath, and also having the disadvantage of severe erosion of refractories by molten ore. There is no process that is both economical and economical.

一方、高炉法のように、鉄鉱石をガス還元した後、溶解
する方式では、鉄鉱石のガス還元が若干の発熱反応であ
るため、還元反応が安定に進行するとともに、溶融物中
の鉄酸化物は少なく、耐火物損傷の問題も溶融還元法に
比べ少ない。また、高炉法は、同一容器内で鉱石のガス
還元、溶解を行なうので、極めて熱効率が高く、副生ず
るガスを回収し、別用途に使用するとすれば消費エネル
ギーは著しく低いという利点がある。
On the other hand, in a method such as the blast furnace method, in which iron ore is gas-reduced and then melted, the gas reduction of iron ore is a slightly exothermic reaction, so the reduction reaction proceeds stably and the iron oxidation in the molten material. There are fewer materials involved, and there are fewer problems with damage to refractories than with the smelting reduction method. Furthermore, since the blast furnace method performs gas reduction and melting of the ore in the same container, it has the advantage of extremely high thermal efficiency, and if the by-product gas is recovered and used for other purposes, the energy consumption is extremely low.

しかるに、高炉法では5周知のとおジ、炉内通気性の確
保、装入物の安定降下の確保が必須条件であるために、
使用するコークスは高強度か低反応性の高品質のものが
必要とされ、その製造に高品質の原料炭と、乾留エネル
ギーを要するとともに、使用する塊成鉱は、高強度でか
つ高軟化性状のすぐれたものを必要とするという難点が
ある。
However, in the blast furnace method, as is well known, ensuring ventilation inside the furnace and ensuring stable descent of the charge are essential conditions.
The coke used must be of high quality with high strength or low reactivity, and its production requires high quality coking coal and carbonization energy, and the agglomerate ore used must have high strength and high softening properties. The problem is that it requires excellent quality.

従って、原料事情の悪化が予想される将来に対し、高炉
法のように高生産性と高熱効率を達成できるとともに、
低品質の原料を使用することが可能な製銑法の開発は大
きな意義をもち、これまでにも多くの研究開発がなされ
てきた。
Therefore, in the future when the raw material situation is expected to deteriorate, it is possible to achieve high productivity and high thermal efficiency like the blast furnace method, and
The development of ironmaking methods that allow the use of low-quality raw materials is of great significance, and much research and development has been carried out to date.

この発明は、高炉法に比し消費エネルギーの軽減、コー
クス比の低減、及び低品位原料の使用を図ることを目的
とする。
The purpose of this invention is to reduce energy consumption, reduce coke ratio, and use low-grade raw materials compared to the blast furnace method.

従来このような方法に関連する高炉以外の技術として、
以下のようなものがある。
Conventionally, technologies other than blast furnaces related to such methods include:
There are the following.

1、 キューボラ:熱風(Air)によりコークスを燃
焼して、高温ガスを生成し、このガスをコークス充填e
t−通して、上方に流し、コークス充填層に保持された
鉄を溶解する。ここで副生ずるガスはN2.CO2k多
量に含む低カロリーガスである。
1. Cubola: Burn coke with hot air to generate high-temperature gas, and use this gas to fill coke.
t-flow upwards to melt the iron retained in the coke packed bed. The by-product gas here is N2. It is a low calorie gas containing a large amount of CO2k.

2、  M独、コルフシュタールアクチェンゲゼルシャ
フトの方法(特開昭55−94408)石炭、並びに炭
化水素系の燃料を酸素と水蒸気でガス化し、その高温ガ
スを石炭チャー流動@全通して上方に流し、石炭チャー
流動1上の半還元鉄を溶解した後回収する。
2. M Germany, Korfstal Akchengesellschaft's method (Japanese Unexamined Patent Publication No. 55-94408) Coal and hydrocarbon fuels are gasified with oxygen and steam, and the high-temperature gas is flowed upward through the entire coal char flow. , the semi-reduced iron on the coal char stream 1 is recovered after melting.

3、 スウェーデン、シュテイフテルゼン・フェール・
メタルルギスクーフオルスクニンクスの方法(特開昭4
9−110519) コークス又は炭素系還元剤充填鳴門に酸素と炭化水素系
燃料と、半還元鉄を吹き込み、酸素と炭化水素系燃料の
燃焼で生成する高温ガスで、そこに同時に吹込む半還元
鉄ヲ溶解する。又、生成する高温ガスの顕熱を利用して
、水蒸気と炭素によるガス変成を行う。
3. Steiftelsen Ver, Sweden
Metalurgiskufuorskninx method (Unexamined Japanese Patent Publication No. 4)
9-110519) Oxygen, hydrocarbon fuel, and semi-reduced iron are blown into a coke or carbon-based reducing agent-filled Naruto, and semi-reduced iron is simultaneously blown there with high-temperature gas generated by combustion of oxygen and hydrocarbon fuel. Dissolve it. In addition, the sensible heat of the generated high-temperature gas is used to perform gas transformation with water vapor and carbon.

これらの方法には、下記の通りの欠点がある。These methods have the following drawbacks.

前記キューポラでは副生ガスがN2 、 COZ を多
量に含む低カロリーガスでアク、還元ガスとして利用で
きない。
In the cupola, the by-product gas is a low-calorie gas containing a large amount of N2 and COZ, and cannot be used as a scum or reducing gas.

第2の前記コルフシュタールの方法は、半還元鉄を溶解
するために、石炭チャーの流動r@全形成し、その上に
保持した半還元鉄を上昇する高温ガスで加熱溶解する方
式をとっている。
The second Korfsthal method involves forming a coal char flow r@total in order to dissolve semi-reduced iron, and heating and melting the semi-reduced iron held on top of it with rising high-temperature gas. There is.

しかるに、石炭チャーの流動層は不安定であり、半還元
鉄の保持能力が低い。このため、半還元鉄が石炭チャー
の流動層上に長時間保持されることが期待できないので
、できるだけ短時間に、半還元鉄を溶解する必要上、多
量の高温ガスが半還元鉄の溶解に必要となる。
However, the fluidized bed of coal char is unstable and has a low ability to retain semi-reduced iron. For this reason, semi-reduced iron cannot be expected to be retained on the fluidized bed of coal char for a long time, so it is necessary to dissolve the semi-reduced iron in the shortest possible time, and a large amount of high-temperature gas is used to dissolve the semi-reduced iron. It becomes necessary.

従って、溶解の熱効率が低い。Therefore, the thermal efficiency of melting is low.

第3のシュテイフテルゼンの方法では、生還丸鉄を酸素
と炭化水素燃料と同時に羽口から炭素系還元剤を充填層
内に吹きこみ、酸素と炭化水素が燃焼して生成する高温
ガスの顕熱で半還元鉄ヲ溶解する方式をとっているため
、生還丸鉄を溶解した後のガスは、生還丸鉄の融点以上
の高温ガスであり、酸素と炭化水素の燃焼熱を効率的に
生還丸鉄の溶解に利用していない。
In the third Steiftelsen method, a carbon-based reducing agent is injected into the packed bed through the tuyere at the same time as oxygen and hydrocarbon fuel, and the high-temperature gas produced by the combustion of oxygen and hydrocarbons is Since the method uses sensible heat to melt half-reduced iron, the gas after melting the recovered round iron is a high-temperature gas that is higher than the melting point of the recovered round iron, and the heat of combustion of oxygen and hydrocarbons is efficiently used. It is not used for melting Sekkanmaru iron.

かくて、これらの高炉以外の鉄溶解方法は、溶解方法自
体として不備なものであり、かつ、溶解炉から回収され
るガスは、鉄鉱石の還元を効率的に行うという観点から
は、適当なものでないという欠点を有する。
Therefore, these iron melting methods other than blast furnaces are inadequate as melting methods themselves, and the gas recovered from the melting furnace is not suitable for efficiently reducing iron ore. It has the disadvantage of being nothing.

一方従来の鉄鉱石ガス還元炉には代表的なものとしてシ
ャフト炉を用いたものがあるが、シャフト炉においては
、一般にそのための特別の還元ガスの製造装置を必要と
しており、即ち、天然ガスの水蒸気による改質(例えば
フォスター・ホイーラー社法の場合)等特別の燃料を消
費するものである。
On the other hand, a typical conventional iron ore gas reduction furnace uses a shaft furnace, but a shaft furnace generally requires special reducing gas production equipment for that purpose. Special fuel consumption such as steam reforming (for example, in the Foster Wheeler process).

本発明は、か\る従来法の困難を打開するため。The present invention aims to overcome the difficulties of the conventional method.

溶解炉において還元性ガス全生成せしめて還元鉄又は生
還丸鉄を溶解すると共に、該溶解炉から回収される還元
性ガスによジ粉鉄鉱石全還元することにより、全体とし
てエネルギー消費が少く、かつ低品質の原料の使用を可
能とする銑鉄の製造方法及び装置を提供すること全目的
とする。
By fully generating reducing gas in the melting furnace to melt the reduced iron or viable round iron, and by fully reducing the dust iron ore with the reducing gas recovered from the melting furnace, overall energy consumption is low. The overall object of the present invention is to provide a method and apparatus for producing pig iron that allows the use of low-quality raw materials.

即ち、本発明の銑鉄製造方法は、鉄鉱石をシャフト式還
元炉において溶解ガス化炉から回収される還元ガスを用
いて還元し、生成する還元鉄を該溶解゛ガス化炉で溶解
して銑鉄とするものであり、この溶解ガス化炉において
、炭素と水素を主成分とする燃料を酸素により燃焼ガス
化して一酸化炭素及び水素を主成分とする高温ガスを一
生成させ。
That is, in the pig iron production method of the present invention, iron ore is reduced in a shaft-type reduction furnace using reducing gas recovered from a melting and gasifying furnace, and the resulting reduced iron is melted in the melting and gasifying furnace to produce pig iron. In this melting and gasifying furnace, a fuel containing carbon and hydrogen as its main components is combusted and gasified with oxygen to produce high-temperature gas containing carbon monoxide and hydrogen as its main components.

コークス充填@全上昇せしめてその上部の還元鉄を溶解
SRL下させて銑鉄にすると共に、上部から還元性ガス
全回収し上記還元炉に供給するものである。
The coke is filled @ fully raised, and the reduced iron in the upper part is melted down to the SRL to become pig iron, and the reducing gas is completely recovered from the upper part and supplied to the above-mentioned reduction furnace.

本発明において、溶解ガス化炉を用いた還元鉄の溶解方
法自体については1本出願人の出願にかかる特願昭56
−209851号に記載の方法及び併音有利に用いる。
In the present invention, regarding the method of melting reduced iron using a melting and gasifying furnace, there is a patent application filed in 1983 filed by the present applicant.
The method described in Japanese Pat.

この溶解ガス化炉を用いて、下部の方法により還元鉄又
は生還丸鉄が溶解されかつ鉄鉱石を還元するための還元
ガスが回収される。
Using this melting and gasifying furnace, reduced iron or recovered round iron is melted by the method described below, and reducing gas for reducing iron ore is recovered.

即ち、溶解ガス化炉において、内部にガスと浴銑及び溶
滓とが向流で通過できる空隙を備えその上部に未溶融の
生還丸鉄及び/又は還元鉄を保持するコークス充填層の
下部において酸素と必要に応じ水蒸気とにより炭素及び
水素を主成分とする燃料を燃焼ガス化して一酸化炭素及
び水素を主成分とする高温ガス全生成させ、該高温ガス
を前記コークス充填層内に上昇せしめて前記還元鉄を溶
解させた後回収すると共に、還元鉄等が溶解して生成す
る溶鉄と、鉄酸化物を含む滓とを上昇高温ガスと向流で
前記コークス充填層内で流下させ、流下の過程で溶滓中
の鉄酸化物その他金属酸化物をコークスにより還元し、
コークス中の炭素ヲ浴鉄中に溶解させて溶銑となし、生
成した溶銑及び滓をコークス充填層下部に収集して抽出
することにより溶銑が製造される。
That is, in a melting and gasification furnace, at the bottom of the coke packed bed, which has a gap inside which allows gas, hot bath iron, and slag to pass through in a countercurrent manner, and holds unmelted surviving round iron and/or reduced iron in the upper part. A fuel containing carbon and hydrogen as main components is combusted and gasified using oxygen and steam as necessary to completely generate high-temperature gas containing carbon monoxide and hydrogen as main components, and the high-temperature gas is allowed to rise into the coke-filled bed. The reduced iron is melted and recovered, and the molten iron generated by dissolving the reduced iron and the slag containing iron oxide are allowed to flow down in the coke packed bed in countercurrent to the rising high temperature gas. In the process, iron oxides and other metal oxides in the slag are reduced with coke,
Hot metal is produced by dissolving the carbon in coke in bath iron to form hot metal, and collecting the generated hot metal and slag at the bottom of the coke packed bed and extracting it.

この溶解ガス化炉による溶銑製造方法は、上述の通り、
酸素で炭素と水素を主成分とする燃料を燃焼ガス化して
COと)(2全主成分とする高温ガスとしその顕熱を利
用してコークスの充填@を介してこの高温ガスにより生
還丸鉄及び/又は還元鉄の浴融、溶銑化を行うものであ
り、本発明において「溶解ガス化炉」とは1本質上この
ような工程を行うための炉を称する。
As mentioned above, the method for producing hot metal using this melting and gasifying furnace is as follows:
Fuel containing carbon and hydrogen as main components is combusted with oxygen and converted into gas (CO). and/or performs bath melting and hot metalization of reduced iron, and in the present invention, the term "melting and gasifying furnace" essentially refers to a furnace for performing such steps.

本発明において、特に明記のない場合、還元鉄は生還丸
鉄をも包含する語として用い、鉄鉱石は塊成鉱等の粒状
鉄酸化物を包含する語として用いる。炭素と水素を主成
分とする燃料は、石炭、コークス等の固体燃料、タール
、重油等の液体燃料、又は天然ガス、コークス炉ガス等
の気体燃料であり1石炭、コークス(燃料用)等は通例
粉状にて燃焼室に供給される。
In the present invention, unless otherwise specified, the term "reduced iron" is used to include recovered round iron, and the term "iron ore" is used to include granular iron oxides such as agglomerated ores. Fuels whose main components are carbon and hydrogen include solid fuels such as coal and coke, liquid fuels such as tar and heavy oil, or gaseous fuels such as natural gas and coke oven gas.1 Coal, coke (for fuel), etc. It is usually supplied to the combustion chamber in powder form.

本発明では、酸素と、必要により水蒸気とにより炭素と
水素を主成分とする燃料をcoとHz”k主成分とする
燃焼ガスにガス化する。その主な理由は次の通りである
In the present invention, a fuel containing carbon and hydrogen as main components is gasified by oxygen and, if necessary, steam, into a combustion gas containing cobalt and Hz''k as main components.The main reasons for this are as follows.

l)生成するカスとしてCOとH2t−主成分とする高
カロリーの高温還元性ガスを得ることができ、空気を使
用すると生成ガス中ON2%が高くなるので好ましくな
い。
l) A high-calorie, high-temperature reducing gas containing CO and H2t as the main components can be obtained as the generated residue, and if air is used, the ON2% in the generated gas will become high, which is not preferable.

この高温生成還元性ガスを回収して鉄鉱石の還元に利用
することにより全体としてのエネルギー効率を向上でき
る。
By recovering this high-temperature generated reducing gas and using it for reducing iron ore, the overall energy efficiency can be improved.

2)酸素を用いれば常温吹込みにより生成するガスとし
て還元鉄を溶解することのできる高温が得られるが、空
気を利用する場合、約500C以上予熱が必要である。
2) If oxygen is used, a high temperature capable of melting reduced iron can be obtained as a gas generated by blowing in at room temperature, but if air is used, preheating to about 500C or more is required.

3)水蒸気は必要により生成ガスの温度制御を行い、ま
た、石炭、コークス等の炭素分の多い燃料を用いる際生
成ガス中の水素の富化に資する。
3) Steam controls the temperature of the produced gas as necessary, and also contributes to enriching hydrogen in the produced gas when using fuel with a high carbon content such as coal or coke.

4)酸素を用いることにより、燃料として石炭。4) Coal as fuel by using oxygen.

コークス(特に微粉炭、コークス粉)等を多量に用いる
ことができる。
A large amount of coke (particularly pulverized coal, coke powder), etc. can be used.

前記のコークス充填層内における溶鉄の流下の過程で、
溶滓中の鉄酸rヒ物その他の金属酸化物をコークスによ
り還元し、コークス中の炭素を溶鉄中に溶解させて溶銑
となし、生成した溶銑及び滓をコークス充填層下部に収
集して抽出する。
In the process of flowing down the molten iron in the coke packed bed,
Ferric acid arsenide and other metal oxides in the slag are reduced with coke, and the carbon in the coke is dissolved in molten iron to form hot metal.The generated hot metal and slag are collected at the bottom of the coke packed bed and extracted. do.

コークス充填層は、還元鉄をその上部に保持し、上昇高
温ガスにより溶解するが、該高温ガスの顕熱を効果的に
利用するのに有用である。このコークス充填層は、また
、還元鉄が溶解して生成する溶融鉄と、鉄酸化物を含む
溶融スラグとを高温ガスと向流でコークス充填層内を流
下させることにより、鉄酸化物を還元すると共に溶鉄の
浸炭を行わせ、鉄歩留vを高、く保ち、がっ、良好な浴
銑を製造することに有用である。
The coke packed bed retains the reduced iron on top and is dissolved by the rising hot gas, and is useful for effectively utilizing the sensible heat of the hot gas. This coke packed bed also reduces iron oxides by flowing molten iron produced by melting reduced iron and molten slag containing iron oxides through the coke packed bed in countercurrent to high-temperature gas. At the same time, it is useful for carburizing molten iron, keeping the iron yield high, and producing good quality bath pig iron.

燃焼室で生成する。−酸化炭素及び水素を主成分とする
高温ガスは、石炭を燃料とした場合大路次の組成になる
Produced in the combustion chamber. - High-temperature gas whose main components are carbon oxide and hydrogen has the following composition when coal is used as fuel.

CO:60〜75%、H2:25〜35%、(::Q2
+N2:約5% 但し、燃料及び水蒸気吹込量等により高温ガス組成は多
少変動する。燃焼室の最高温度は凡そ2000〜250
0 C通例約230004’6る。コノ場合において、
還元鉄を溶解させた後回収されるガスは、前記高温ガス
(燃焼室で発生)よりもCOがや\増大した組成とな!
11.例えばC065〜80%。
CO: 60-75%, H2: 25-35%, (::Q2
+N2: Approximately 5% However, the high temperature gas composition varies somewhat depending on the amount of fuel and steam injected. The maximum temperature of the combustion chamber is approximately 2000-250℃
0C typically about 230004'6. In this case,
The gas recovered after melting the reduced iron has a composition with slightly more CO than the high-temperature gas (generated in the combustion chamber)!
11. For example, C065-80%.

CO2+N2−5%、H220〜30%であり、温度は
、装入物装入温度、操業条件等に依存するが、通例90
0〜1000’C好ましくは約950℃とする。この高
カロリー高温回収ガスは主として後続のシャフト式還元
炉に鉄鉱石の還元ガスとして導かれ。
CO2 + N2 - 5%, H2 20-30%, and the temperature depends on the charging temperature, operating conditions, etc., but is usually 90%.
0-1000'C, preferably about 950'C. This high-calorie, high-temperature recovered gas is mainly led to the subsequent shaft-type reduction furnace as iron ore reducing gas.

残余は、その他還元ガス、燃料ガスとして、或いは化学
原料ガス等として有利に利用できる。
The remainder can be advantageously used as other reducing gases, fuel gases, chemical raw material gases, and the like.

生成する溶鉄は、通例コークス充填−を(加熱部として
機能)を1500〜1600℃で液下し、成分は凡そ、
C4,5%l Si O,2%、Mn0.2%、PO,
12%。
The molten iron produced is usually filled with coke (which functions as a heating part) and is lowered at 1500 to 1600°C, and the components are approximately:
C4,5%l SiO,2%, Mn0.2%, PO,
12%.

SO,0,3%(燃料として微粉炭、装入原料として還
元鉄を用いた場合)となり、流下途中において、適度(
塩基度1.0〜1.5程度)に塩基度調節された溶滓に
より脱硫されて、下部の湯溜りに収集される。
SO, 0.3% (when using pulverized coal as fuel and reduced iron as charging material), and moderate (
The slag is desulfurized with basicity adjusted to about 1.0 to 1.5 and collected in a slag at the bottom.

溶解ガス出炉への装入物は、シャフト式還元炉で生成す
る還元鉄を用い、コークス充填層の消耗の補給としてコ
ークス、さらに滓の流動性、塩基度調節のため石灰石等
の造滓材を装入する。
The charged material to the melted gas outlet furnace is reduced iron produced in a shaft-type reduction furnace, and coke is used to replenish the consumption of the coke packed bed, and slag making materials such as limestone are used to adjust the fluidity and basicity of the slag. Charge.

こ゛の装入物として用いる還元鉄又は半速丸鉄は一般に
金属化率(M、Fe/T、Fe )約75%以上のもの
(好ましくは80%以上)のもので足り、シャフト式還
元炉の能力とのバランス等を考慮して必要により鉱石と
還元鉄の混合物をも用いることができる。
The reduced iron or half-speed round iron used as the charge generally has a metallization ratio (M, Fe/T, Fe) of about 75% or more (preferably 80% or more), and is suitable for shaft type reduction furnaces. A mixture of ore and reduced iron can also be used if necessary, taking into consideration the balance with the ability of iron.

酸素は、純酸素(99%以上)が好ましいが96〜97
%の工業用酸素、その他コスト等を考慮し、02約90
%以上のものも用いられる。
Oxygen is preferably pure oxygen (99% or more), but 96-97
% industrial oxygen, considering other costs, etc., approximately 90%
% or more is also used.

コークス充填−の空隙は、下方から高温ガスが上昇する
とともに、これと向流にて還元鉄が溶解して生成する溶
鉄と、鉄酸化物を含む滓とが滴下できるに十分なものと
する。コークスは凡そ径30騙以上のものを用いるが、
炉のサイズ、操業条件等により可変である。このコーク
ス充填層の高さは、溶銑の浸炭、滓中の酸化物の還元等
を考慮して定められるが、  2000t/日の炉で凡
そ羽ロレペルからの高さ4〜5mとなる。
The voids filled with coke are sufficient to allow high-temperature gas to rise from below and drop in molten iron produced by melting reduced iron and slag containing iron oxide in a countercurrent flow. The coke used is approximately 30 mm or larger in diameter,
It is variable depending on the furnace size, operating conditions, etc. The height of this coke packed bed is determined in consideration of carburization of the hot metal, reduction of oxides in the slag, etc., but in a 2000 t/day furnace, it will be approximately 4 to 5 m high from the vane roll.

コークス充填層は、その上部に還元鉄、コークス1石灰
等の装入物を保持するに十分な強度金偏えるものとし炉
中において主体部を成す。但し半乾留コークスも用いる
ことができる。
The coke packed bed has enough strength to hold charges such as reduced iron and coke 1 lime on its upper part, and forms the main body in the furnace. However, semi-carbonized coke can also be used.

コークス充填層の下部には、燃料を燃焼ガス化させるた
めの燃焼室が適宜羽目の前方に形成される。羽目は好ま
しくはコークス充填層下部周縁部に放射状に形成される
。羽目からの水蒸気吹込みにより、燃焼室(燃焼ガス)
温度は所定値にコントロールされる。
A combustion chamber for combusting and gasifying fuel is appropriately formed in the lower part of the coke-filled bed in front of the lining. The grains are preferably formed radially at the lower peripheral edge of the coke packed bed. The combustion chamber (combustion gas) is
The temperature is controlled to a predetermined value.

コークス充填層の断面形状は、炉の断面によって定まる
が通例円形ないし多角形となり、各燃焼室の外方に羽目
が開口してお91羽口がら燃料、酸素、必要により水蒸
気、さらに所望によジ石灰石粉等の造滓剤を吹込む。
The cross-sectional shape of the coke packed bed is determined by the cross-section of the furnace, but it is usually circular or polygonal, with 91 tuyeres opening outward from each combustion chamber to store fuel, oxygen, and if necessary steam. Inject a slag-forming agent such as limestone powder.

コークス充填層の下部中心部は上層部からの荷重を支え
、ガス及び滴下流の通過を確保するよう適当な径をもっ
て保持され、゛その下部には溶銑及びスラグがその空隙
に貯溜される。
The lower central part of the coke packed bed supports the load from the upper part and is maintained with a suitable diameter to ensure the passage of gas and dripping stream, and hot metal and slag are stored in the voids in the lower part.

コークス充填層は、その下部の燃焼室の壁部を構成し燃
料の燃焼ガス化に伴い消耗されるので、一般に炉頂装入
口より還元鉄と共に装入補給する。
The coke packed bed forms the wall of the lower combustion chamber and is consumed as the fuel is combusted and gasified, so it is generally charged and replenished together with reduced iron from the furnace top charging port.

なお必要に応じ炉頂装入口から石灰石等の造滓剤を装入
し滓の塩基度、流動性、脱硫効果等を調節する。
If necessary, a slag-forming agent such as limestone is charged from the furnace top charging inlet to adjust the basicity, fluidity, desulfurization effect, etc. of the slag.

なお、コークス充填層の温度は下で凡そ1800〜20
00℃、上部で凡そ16oo〜1650Cとなる。
In addition, the temperature of the coke packed bed is approximately 1800 to 20
00°C, and the temperature at the top is about 16oo~1650°C.

還元鉄はコークスと混合又は交互に炉頂から装入されコ
ークス充填層の上部に還元鉄(又はコークスとの混合)
充填et−形成して、下方からの上昇高温ガスにより加
熱され、逐次溶解される。通気性保持と飛散防止の観点
から還元鉄の形状を選定するが、好ましくは5m以上の
ものを用いる。
Reduced iron is mixed with coke or alternately charged from the top of the furnace, and reduced iron (or mixed with coke) is placed on top of the coke packed bed.
Filled et-formed, heated by rising hot gas from below and sequentially melted. The shape of the reduced iron is selected from the viewpoint of maintaining air permeability and preventing scattering, but preferably one with a length of 5 m or more is used.

上述の如ぎ基本構成全有する溶解ガス化炉からの回収ガ
スの全部又は一部を次いでシャフト式還元炉に送り、こ
こに装入される鉄鉱石の還元ガスとして用いる。
All or part of the recovered gas from the melting and gasifying furnace having the basic configuration as described above is then sent to the shaft type reduction furnace and used as reducing gas for the iron ore charged therein.

シャフト式還元炉としては、高圧で還元可能なものを用
いることができる。即ち、溶解ガス化炉の炉内圧の調整
により所望の高圧還元ガスを回収できるからである。シ
ャフト式還元炉は移動養成(連続式)が好ましいが、必
要に応じ固定1式を用いることもできる。移動層式還元
炉として本発明に適するのは、例えばMidrex法、
Ar司eo法、Durofer法、新日本製鉄法等であ
る。
As the shaft-type reduction furnace, one capable of reducing at high pressure can be used. That is, the desired high-pressure reducing gas can be recovered by adjusting the internal pressure of the melting and gasifying furnace. The shaft-type reduction furnace is preferably a mobile training (continuous type), but a fixed type can also be used if necessary. Examples of moving bed reduction furnaces suitable for the present invention include the Midrex method,
These include the Arseo method, the Durofer method, and the Nippon Steel method.

移動1武運元炉は、炉体上部に鉱石装入口とガス取出口
を、炉体側壁部にガス吹込口を、炉体下部に還元鉄切出
口をそれぞれ有し、炉内に鉱石装入口から装入する鉄鉱
石(粒状鉄酸化物)の充填t@全形成せしめ、還元ガス
吹込口から吹込む還元ガスを前記粒状鉄酸化物層を通し
て上昇させながら粒状鉄酸fヒ物を還元して粒状還元鉄
を生成させた後、ガス取出口からガスを回収するように
し。
Move 1 Buun Genko has an ore charging inlet and a gas outlet in the upper part of the furnace body, a gas inlet in the side wall of the furnace body, and a reduced iron cutting outlet in the lower part of the furnace body. The iron ore (granular iron oxide) to be charged is fully formed, and while the reducing gas blown from the reducing gas inlet is raised through the granular iron oxide layer, the granular ferric acid and arsenic are reduced to become granular. After generating reduced iron, the gas is collected from the gas outlet.

生成した粒状還元鉄を還元鉄切出口から取出すように構
成したものである。
The structure is such that the generated granular reduced iron is taken out from the reduced iron cutting port.

第1図のフローシートに基本構成として示す通り、シャ
フト式還元炉20によシ還元された還元鉄7は、溶解ガ
スfヒ炉1へ、必要に応じ冷却の後供給される。
As shown in the basic configuration in the flow sheet of FIG. 1, the reduced iron 7 reduced by the shaft-type reduction furnace 20 is supplied to the dissolved gas furnace 1 after being cooled as necessary.

シャフト式還元炉20において一般に炉内温度は800
〜950C1好ましくは900 C1好ましくは高圧還
元方式で炉内圧は2.0〜2.5気圧において還元が行
われる。必要に応じ装入鉄鉱石14は予熱される。
In the shaft type reduction furnace 20, the temperature inside the furnace is generally 800.
~950 C1 Preferably 900 C1 Preferably, the reduction is performed using a high pressure reduction method at a furnace pressure of 2.0 to 2.5 atmospheres. The charged iron ore 14 is preheated if necessary.

第2図に溶解ガス化炉1と移動層式還元炉2゜を組合せ
た本発明の一貫工程を略示する。即ち、移動層式還元炉
20の還元鉄切出口24から切出した還元鉄Tは、必要
に応じ冷却(図示省略)の後還元鉄供給ライン29を経
て還元鉄ホンパ25に貯留され、装入シュート26を介
し溶解ガス化炉1の炉頂装入口2からコークス8がシュ
ート27を介し装入される石灰石等の造滓剤その他の副
原料13と共に装入される。
FIG. 2 schematically shows an integrated process of the present invention in which a melting-gasification furnace 1 and a moving bed reduction furnace 2° are combined. That is, the reduced iron T cut out from the reduced iron cutting port 24 of the moving bed type reduction furnace 20 is stored in the reduced iron pumper 25 via the reduced iron supply line 29 after cooling (not shown) if necessary, and then transferred to the charging chute. Coke 8 is charged from the furnace top charging port 2 of the melting and gasifying furnace 1 through a chute 27 along with a sludge-forming agent such as limestone and other auxiliary raw materials 13 charged through a chute 27 .

溶解ガス化炉1の炉内圧は、主としてシャフト式還元炉
に還元ガスとして用い、或いはさらにその副生ガスを他
の目的に用いる等の目的に応じ高圧に保持され2〜5(
勺以上、好ましくは約5Kp/Jの圧力とする。
The internal pressure of the melting and gasification furnace 1 is maintained at a high pressure depending on the purpose, such as mainly using it as reducing gas in the shaft type reduction furnace or using the by-product gas for other purposes.
The pressure is preferably about 5 Kp/J or more.

第2図に1本発明に用いる溶解ガス化炉1の例を示し炉
体(上部1a、中間拡幅部1c、下部大径部1b)の下
部よりに配した羽口4.底部近傍に配した出銑口5、出
滓口6、上部に配したガス取出口3及び炉頂の原料装入
口2から成り、炉体内に上部から還元鉄充填層a、加熱
部をなすコークス充填rfIlb、滓渣C1及び湯溜v
dが形成され。
FIG. 2 shows an example of the melting and gasifying furnace 1 used in the present invention. Tuyeres 4. The furnace body consists of a tap hole 5 placed near the bottom, a slag hole 6, a gas outlet 3 placed at the top, and a raw material charging port 2 at the top of the furnace. Filling rfIlb, slag C1 and sump v
d is formed.

羽口4前方には燃焼室eが形成される。A combustion chamber e is formed in front of the tuyere 4.

羽口4からは、酸素9、微粉炭、コークス粉、重油、天
然ガス等の羽口吹込燃料好ましくは微粉炭10、必要に
応じて水蒸気11及び粉状造滓剤13a等を吹込む。炉
頂の原料装入口2からは。
From the tuyere 4, oxygen 9, tuyere-injected fuel such as pulverized coal, coke powder, heavy oil, natural gas, etc., preferably pulverized coal 10, and optionally steam 11, powdered slag forming agent 13a, etc. are injected. From raw material charging port 2 at the top of the furnace.

還元鉄7、コークス8石灰石等の造滓剤を含む副羽口吹
込燃料10は酸素9によりCO及び)L2を主体とする
還元性の高温ガス(1800℃以上)となり、コークス
充填層(力ロ熱部)b、還元鉄充填層(溶解部)a’(
r経て還元鉄を溶解した後、ガス取出口3に至る。
The auxiliary tuyere-injected fuel 10 containing reduced iron (7), coke (8), limestone, and other slag-forming agents becomes a reducing high-temperature gas (1800°C or higher) mainly composed of CO and hot part) b, reduced iron packed bed (melting part) a' (
After melting the reduced iron through the process, the gas reaches the gas outlet 3.

溶解ガス化炉1のガス取出口3から高圧、高温で取出さ
れた還元ガス12は、管路12at経て移動層還元炉2
0aの還元ガス吹込口21に導き、余剰還元ガスは管路
12bにより系外へ導く。
The reducing gas 12 taken out at high pressure and high temperature from the gas outlet 3 of the melting and gasification furnace 1 is transferred to the moving bed reduction furnace 2 through a pipe 12at.
The excess reducing gas is led to the reducing gas inlet 21 at 0a, and the excess reducing gas is led out of the system through the pipe line 12b.

場合により、移動層還元炉20aに9代り固定層式還元
炉酸素と燃料とにより生成するCOとH2を主体とする
還元性高温ガスは、コークス充填層(加熱部)bk上昇
して、還元鉄をその顕熱で溶解し、かつ溶解した還元鉄
、還元鉄に内包されている脈石、その他未還元の金属酸
化物等はコークス充填層す全流下ないしは滴下しつつ上
昇する高温ガスと熱交換し、また浸炭反応、溶融物中5
i02  還元反応等を生じ、一方で生成するコークス
、微粉炭等燃料中の灰分及び石灰等の造滓剤溶融物の混
合スラグと共に炉下部に滴下、湯溜vdに貯留され、溶
滓CとなV、出銑滓口5,6から抽出される。
In some cases, the reducing high temperature gas mainly composed of CO and H2 produced by oxygen and fuel in the fixed bed reduction furnace 20a rises to the coke packed bed (heating section) bk and is converted into reduced iron. is melted by its sensible heat, and the dissolved reduced iron, gangue contained in the reduced iron, and other unreduced metal oxides are heat exchanged with the high-temperature gas that rises under the entire flow or drips through the coke packed bed. In addition, carburizing reaction, 5 in the melt
i02 A reduction reaction occurs, and on the other hand, the generated coke, ash in the fuel such as pulverized coal, and mixed slag of molten slag forming agent such as lime drip into the lower part of the furnace, are stored in the sump vd, and become slag C. V, extracted from the tap slag ports 5 and 6.

なお、溶解して滴下する分の還元鉄は、装入口(3)か
ら補充供給され、常に一定量の還元鉄層に維持されてい
る。また、加熱部(blのコークスも、その消耗分が装
入口(31から補充供給され、常に一定量のコークス充
填ebに維持される。
Note that the amount of reduced iron that is dissolved and dripped is replenished from the charging port (3), and a constant amount of reduced iron layer is always maintained. Further, the consumed amount of coke in the heating section (bl) is replenished from the charging port (31), and a constant amount of coke filling eb is always maintained.

シャフト、式還元炉は溶解ガス化炉との処理能力のバラ
ンスのため適当数用いられる。
An appropriate number of shaft and type reduction furnaces are used to balance the processing capacity with the melting and gasification furnace.

移動層式還元炉20aの内部には移動Ifが形成され、
上昇する還元ガス12により、装入鉄鉱石又は粒状鉄酸
化物14が次第に加熱還元されつつ下降し、還元鉄7と
なって炉下部の還元鉄切出口24から切出され、還元ガ
ス12は、副生ガス30としてガス回収口22.清浄化
装置28を経て回収される。
A moving If is formed inside the moving bed reduction furnace 20a,
By the rising reducing gas 12, the charging iron ore or granular iron oxide 14 is gradually heated and reduced and falls, becoming reduced iron 7 and being cut out from the reduced iron cutting port 24 in the lower part of the furnace, and the reducing gas 12 is Gas recovery port 22 as by-product gas 30. It is collected through a cleaning device 28.

一方、固定1武運元炉では、還元は回分式に行われ、還
元は移動層に代り固定層において行われる。移動層式、
固定層式共にシャフト式還元炉の下部に、冷却帯を設け
るか、又は、炉外に冷却装置を設けることができ、切出
した還元鉄の顕熱は好ましくは回収する。
On the other hand, in the fixed 1 Buun Genha, the reduction is carried out in a batch manner, and the reduction is carried out in the fixed bed instead of the moving bed. moving bed type,
A cooling zone may be provided at the lower part of the shaft type reduction furnace for both fixed bed type and shaft type reduction furnaces, or a cooling device may be provided outside the furnace, and the sensible heat of the cut reduced iron is preferably recovered.

なお、溶解ガスfヒ炉は連続操業ができ、対応して移動
層式還元炉を用いることが好ましいが、場合により、複
数の固定層式の還元炉に順次還元ガスを通じ、事実上連
続化することが可能である。
It should be noted that the dissolved gas furnace can be operated continuously, and it is preferable to use a moving bed type reduction furnace accordingly.However, in some cases, reducing gas can be sequentially passed through a plurality of fixed bed type reduction furnaces to make the process virtually continuous. Is possible.

このような構成:ζよジ、本発明においては、まず従来
別途製造されていたシャフト式還元炉のための還元ガス
を系〕ニて溶解ガス化炉からの回収ガスとして高温、高
圧で取り出すことができるので、従来のシャフト式還元
炉に比べて大幅な省エネルギーが達成され、大規模な高
炉法と比べても本発明はより小型の炉を用いて省エネル
ギーfヒできる。
Such a configuration: ζ In the present invention, first, the reducing gas for the shaft-type reducing furnace, which has been manufactured separately in the past, is taken out at high temperature and high pressure as recovered gas from the melting and gasification furnace. As a result, significant energy savings can be achieved compared to conventional shaft-type reduction furnaces, and even compared to large-scale blast furnace methods, the present invention can save energy by using a smaller furnace.

溶解ガス化炉の生成還元ガスは一酸化炭素と水素を主成
分とし、N2 t”はとんど含まない還元性の強い高温
のガスであり、シャフト式還元炉での還元効率が高く、
またシャフト式還元炉の所要圧力に応じて供給還元ガス
の圧力を溶解ガス化炉により調節できる。
The reducing gas produced in the melting and gasifying furnace is a highly reducing, high-temperature gas whose main components are carbon monoxide and hydrogen, and almost no N2t.
Further, the pressure of the supplied reducing gas can be adjusted by the melting and gasifying furnace according to the required pressure of the shaft type reducing furnace.

この溶解ガス化炉を用いることにより、単に還元鉄の溶
解が効率的となるばかりでなく、石炭。
By using this melting and gasifying furnace, not only reduced iron melting becomes efficient, but also coal.

コークス(特に低品質のもの)等の燃料を直接に燃焼ガ
ス化して用いることができるという利点がある。
It has the advantage that fuel such as coke (especially of low quality) can be directly converted into combustion gas and used.

本発明によれば溶解ガス化炉において多量の微粉炭、コ
ークス粉、又はタール、重油等の燃料を純酸素によりガ
ス化し、還元鉄を溶解する点で、一方溶解ガス化炉の回
収ガスを還元ガスとしてシヤフト式還元炉において鉄鉱
石を還元する点で高炉とは基本的に異る。
According to the present invention, a large amount of fuel such as pulverized coal, coke powder, tar, heavy oil, etc. is gasified with pure oxygen in a melting and gasifying furnace, and reduced iron is melted. It differs fundamentally from a blast furnace in that iron ore is reduced as a gas in a shaft-type reduction furnace.

本発明のその他の利点は次の通りである。Other advantages of the invention are as follows.

+I+  羽口から酸素吹込みを行うので微粉炭(02
1Nrr?当り微粉炭1〜1.5 V4まで可能)、そ
の他の燃料の多量吹込みができ全燃料の約6割以上をコ
ークス以外の燃料とすることができる。
+I+ Since oxygen is injected from the tuyere, pulverized coal (02
1Nrr? It is possible to inject a large amount of pulverized coal (up to 1 to 1.5 V4 per pulverized coal) and other fuels, and more than 60% of the total fuel can be made up of fuels other than coke.

(2)  還元鉄を溶解するため、コークスの反応劣化
がない。従って装入コークスとして低強度コークスが使
用でき、半乾留コークスも使用できる。
(2) Since reduced iron is dissolved, there is no reaction deterioration of coke. Therefore, low-strength coke can be used as charging coke, and semi-carbonized coke can also be used.

(3)溶解ガス化炉の構造は簡単かつ小型化でき。(3) The structure of the melting and gasifying furnace is simple and can be downsized.

また還元ガスは高カロリーのためシャフト式還元炉も小
型化でき装置コストが小である。
Furthermore, since the reducing gas has a high calorie, the shaft-type reduction furnace can be made smaller and the equipment cost is low.

(4)溶解ガス化炉内でコークス充填11に介して向流
で溶銑及び溶滓と高温燃焼ガスとが、またシャフト式還
元炉でもガスと鉱石が向流で還元ガスとが熱交換でき熱
効率がよい。
(4) Heat exchange between hot metal and slag and high-temperature combustion gas in a countercurrent flow through the coke filling 11 in a melting gasification furnace, and heat exchange between gas and ore in a countercurrent flow in a shaft type reduction furnace with the reducing gas, resulting in thermal efficiency. Good.

(5)  シャフト式還元炉内では融着が生じにぐ<、
(5) Fusion does not occur in the shaft type reduction furnace.
.

また溶解ガス化炉でも急激に溶解されるので融着が生じ
にくいので、低品質の鉄鉱石又は塊成鉱を用いることが
できる。
Furthermore, since it is rapidly melted in a melting and gasifying furnace, it is difficult for fusion to occur, so low-quality iron ore or agglomerate ore can be used.

(6)  シャフト式還元炉により低品質鉄鉱石を用い
ても金網化率が高く(85〜96%以上)かっ。
(6) Even if low-quality iron ore is used, the shaft-type reduction furnace has a high rate of wire meshing (85-96% or more).

そのまま溶解ガス化炉へ、装入可能な粒状の還元鉄が得
られる。
Granular reduced iron that can be directly charged into a melting and gasifying furnace is obtained.

(7)  シャフト式還元炉を含めて系全体の操業は安
定しており、制御が容易である。
(7) The operation of the entire system, including the shaft-type reduction furnace, is stable and easy to control.

(8)  溶解ガス化炉の回収還元ガスをそのままシャ
フト式還元炉へ吹込めるので、還元ガスの製造、処理(
改質、昇圧、昇温)が不要でありエネルギー、装入コー
クスに低減できる。
(8) The recovered reducing gas from the melting gasification furnace can be directly injected into the shaft-type reducing furnace, making it easier to produce and process reducing gas (
There is no need for reforming, pressure raising, temperature raising), and energy and coke charging can be reduced.

(9)  溶銑中のSは、石灰石等の造滓剤による滓の
成分コントロールにより、 0.0.3%以下に保つこ
とができる。
(9) S in hot metal can be kept at 0.0.3% or less by controlling the composition of slag using a slag-forming agent such as limestone.

次に、この発明法の実施例にりいて説明する。Next, an embodiment of this invention method will be explained.

〔実施例〕〔Example〕

第2図に示す構造で、下記に示す溶解ガス化炉1基と移
動層式還元炉2基を使って、以下に示す操業を実施して
銑鉄を得た。
With the structure shown in FIG. 2, pig iron was obtained by carrying out the operation shown below using one melting gasification furnace and two moving bed reduction furnaces shown below.

第1図は、炉の上部に生還丸鉄とコークスの装入口2.
並びにガス取出口3を有し、炉の側壁部に酸素と水蒸気
、並びに微粉炭と、必要に応じて粉石灰石吹込み用羽目
4を有し、炉の下部に出銑滓口5,6を有してなる炉1
を示す。この炉1は。
Figure 1 shows the charging port 2 for recycled round iron and coke at the top of the furnace.
It also has a gas outlet 3, a wall 4 for blowing oxygen, steam, and pulverized coal into the side wall of the furnace, and powdered limestone as required, and tap slag ports 5, 6 at the bottom of the furnace. Furnace 1
shows. This furnace 1.

下部が径大となった略円筒状の炉であり、炉頂に装入口
2とガス取出口3.径大部内上部の周壁に羽口4、その
下方の径大部周壁に順次上から出滓口6、出銑口5を備
える。
It is a roughly cylindrical furnace with a larger diameter at the bottom, and has a charging inlet 2 and a gas outlet 3 at the top of the furnace. A tuyere 4 is provided on the inner upper circumferential wall of the large-diameter portion, and a slag tap port 6 and a tap hole 5 are provided on the large-diameter portion circumferential wall below the tuyere in this order from above.

この炉1の装入口2からコークスを装入し、炉内に予め
コークス充填層biその内部に所足の空隙を備えて形成
し、コークス充填ebの上部に未溶解の半還元鉄充填壱
aを形成し、コークス充填pmbO下に滓@c、溶銑湯
溜りd會影形成、羽口4の前方(コークス充填層、下部
周縁飼)に燃焼室eを形成する。
Coke is charged from the charging port 2 of this furnace 1, and a coke-filled bed (bi) is formed in advance in the furnace with a sufficient amount of space therein. Under the coke-filled pmbO, a slag @c, a hot metal puddle d are formed, and a combustion chamber e is formed in front of the tuyere 4 (coke-filled bed, lower periphery).

この形式の炉を次の諸元として用いる。即ち。This type of furnace is used with the following specifications. That is.

内径190訳の羽目とその前方に位置する燃焼室を4組
設け、コークス充填層小径部内径4m、下部の大径部内
径6m、生還丸鉄充填層と羽口レベル間の高さ5mのシ
ャフトとする。
A shaft with an inner diameter of 190 cm and four combustion chambers located in front of it, an inner diameter of 4 m in the small diameter part of the coke packed bed, a 6 m inner diameter in the large diameter part at the bottom, and a height of 5 m between the recycled round iron packed bed and the tuyere level. shall be.

この溶解ガス化炉1を第2表の諸元で操業し。This melting and gasification furnace 1 was operated with the specifications shown in Table 2.

第1表の諸元に示す移動層式還元炉20ai第3表に示
す諸元で操業した。
The moving bed reduction furnace 20ai shown in the specifications in Table 1 was operated under the specifications shown in Table 3.

第1表 移動層式還元炉(2基) 炉有効容積:150m”/l基 内   径  : 5 m ガス吹込ロー移動層上端間隔8.5m 吹込還元ガス圧力 2.5Kg/cJ 炉内圧損     0.5Kg/cJ 溶解ガス化炉1において、第2表に示す諸元により、酸
素9.微粉炭101石灰石粉13a及び水蒸気11を羽
口4から吹込み、装入口2がら還元鉄7.コークス8(
粒径40a以上)1−石灰石13と共に装入しつつ、炉
内圧力(燃焼室)5〜/dにて操業し、還元ガス12を
ガス取出口3がら回収し、1500 Cの溶銑を炉下部
の出銑口5がら抽出した。溶滓は出滓口6から適宜排出
した。
Table 1 Moving bed type reduction furnace (2 units) Furnace effective volume: 150 m"/l Base inner diameter: 5 m Gas injection low moving bed upper end interval 8.5 m Injection reducing gas pressure 2.5 Kg/cJ Furnace pressure drop 0. 5Kg/cJ In the melting and gasifying furnace 1, according to the specifications shown in Table 2, oxygen 9, pulverized coal 101, limestone powder 13a, and steam 11 are blown into the tuyere 4, and reduced iron 7. coke 8 (
Particle size 40a or more) 1- While charging with limestone 13, operate at an internal pressure (combustion chamber) of 5~/d, collect reducing gas 12 from gas outlet 3, and pour hot metal at 1500 C into the lower part of the furnace. It was extracted from the taphole 5. The slag was appropriately discharged from the slag outlet 6.

移動層式還元炉から切出される還元鉄7は粒径5〜15
wILの金属化率(M、Fe/T、Fe ) 90%の
ものであり、酸素は純酸素(0299%)、コークスは
固定炭素88.9%、灰分10.6  %粒径40m/
m以下。
The reduced iron 7 cut out from the moving bed reduction furnace has a particle size of 5 to 15
wIL metallization rate (M, Fe/T, Fe) is 90%, oxygen is pure oxygen (0299%), coke has fixed carbon 88.9%, ash content 10.6%, particle size 40m/
m or less.

0 ドラム指数D■15=85%のもの、微粉炭は炭素52
.1%、揮発分30%、灰分15.0%、水分2.2%
のものを用いた。
0 Drum index D ■ 15 = 85%, pulverized coal has carbon 52
.. 1%, volatile content 30%, ash content 15.0%, moisture 2.2%
I used the one from

第2表(溶解ガス化炉) 浴銑中のFe 1 ton当りの諸元 酸   素  373.2Nm’ 還元ガス  12 、10 Nm’  (ガス取出口3
から回収)温   度  950C カロリー 3448Mcal(2850Kcal/Nm
’)溶   銑  1048Kg (出銑口5から抽出
)スラグ   40s、gK4(塩基度1.2)第3表 (移動層式還元炉)      (溶銑中Fe  1t
on当V諸元)還元ガス          121O
Nrr?吹込温度: 950C 副生ガス         △121ONm”カロリー
 1815Mcal(1500Kcall/Nm’)ガ
ス取出口温度:〜200C ガス組成: co: 39*7 % CO2: 37−
6%、H2:11−7%還元鉄 (切出し温度:950C)      1289Kp(
還元鉄組成) 成分 T、Fe  FeOM、Fe  5iOICaO
Al2O3%  77.6 10 69.8 7.06
 6.896.25移動場式還元炉20aから約950
℃で切出した還元鉄7は図示外の冷却装置、還元鉄供給
ライン29を介してホッパ25に貯留し約5000で溶
解ガス化炉へ装入した。一方、鉄鉱石14として塊成鉱
(平均粒度12”)izoo℃に予熱して還元鉄切出し
量に対応して移動層式還元炉20aの装入口21から装
入した。
Table 2 (melting gasification furnace) Specifications per 1 ton of Fe in bath iron Oxygen 373.2 Nm' Reducing gas 12, 10 Nm' (Gas outlet 3
Temperature: 950C Calories: 3448Mcal (2850Kcal/Nm
') Hot pig iron 1048Kg (extracted from tap hole 5) Slag 40s, gK4 (basicity 1.2) Table 3 (moving bed reduction furnace) (Fe in hot metal 1t
on V specifications) Reducing gas 121O
Nrr? Blowing temperature: 950C By-product gas △121ONm" Calorie 1815Mcal (1500Kcall/Nm') Gas outlet temperature: ~200C Gas composition: co: 39*7% CO2: 37-
6%, H2: 11-7% reduced iron (cutting temperature: 950C) 1289Kp (
Reduced iron composition) Ingredients T, Fe FeOM, Fe 5iOICaO
Al2O3% 77.6 10 69.8 7.06
Approximately 950 from 6.896.25 mobile field reduction furnace 20a
The reduced iron 7 cut out at a temperature of 5,000° C. was stored in a hopper 25 via a cooling device (not shown) and a reduced iron supply line 29, and charged into a melting and gasifying furnace at about 5,000° C. On the other hand, as iron ore 14, agglomerate (average particle size 12'') was preheated to izoo°C and charged from the charging port 21 of the moving bed type reduction furnace 20a in accordance with the amount of reduced iron cut out.

溶解ガス化炉1のガス取出口3から回収される還元ガス
12(ガス組成第2表)は全量還元炉に導き、鉱石還元
後第3表に示す副生ガス3oとして回収された。
The reducing gas 12 (gas composition Table 2) recovered from the gas outlet 3 of the melting and gasifying furnace 1 was led to the reduction furnace, and after the ore was reduced, it was recovered as a by-product gas 3o shown in Table 3.

このようにして、溶銑87t/hrの製造を行った。In this way, 87 t/hr of hot metal was produced.

以上総合すると、溶銑中Felトン当りの塊成鉱からの
実質消費エネルギーは2840Mcal(副生ガス含有
エネルギーは回収するものとして消費エネルギーの中に
含めず)となり、酸素製造エネルギー600Mca/’
に含めて3440Mc alとなる。
In summary, the actual energy consumption from agglomerate ore per ton of Fe in hot metal is 2840 Mcal (the energy contained in by-product gas is not included in the energy consumption as it is recovered), and the oxygen production energy is 600 Mca/'
Including this, it becomes 3440 Mcal.

因みに高炉法では銑鉄中Fe 1 )ン当り約2900
Mcalであり1本実施例は高炉法より約500〜60
0Mcal多いが、コークス消費量が高炉法では約50
0Kf/ t、Fe  に対し本発明は約172なので
コークス製造に消費されるエネルギーで本方法による場
合、260Mcal、高炉法による場合540Mcal
を算入すると、実質上高炉法と同等になる。加えて、本
発明では低品質のコークス、石炭、塊成鉱等の原料、燃
料を使用できることの利点が明らかである。
By the way, in the blast furnace method, the amount of Fe in pig iron is approximately 2900
Mcal is approximately 500 to 60 in this example compared to the blast furnace method.
0 Mcal is more, but the coke consumption is about 50 Mcal in the blast furnace method.
0 Kf/t, Fe is about 172 in the present invention, so the energy consumed for coke production is 260 Mcal when using this method and 540 Mcal when using the blast furnace method.
If this is included, it becomes practically equivalent to the blast furnace method. In addition, the present invention clearly has the advantage of being able to use low-quality coke, coal, agglomerate, and other raw materials and fuels.

また装置的にも本発明の溶解ガス化炉は高炉法に比し小
さなものでよく、小さなものでも効率よく操業できるの
で、実用上の利点は大である。
Also, in terms of equipment, the melting and gasifying furnace of the present invention requires a smaller device than the blast furnace method, and even a small device can be operated efficiently, so it has great practical advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本構成を示すフローシート、第2
図は本発明の実施例を示す概略図、を夫々示す。 1・・・溶解ガス化炉、2・・・装入口、3・・・ガス
取出口、4・・・羽口、5・・・出銑口、6・・・出滓
口、a・・・還元鉄充填層(溶解部)、b・・・コーク
ス充填層(加熱部)、c・・−溶滓、d・・・湯溜Di
e・・・燃焼室、7・・・還元鉄、8・・・コークス、
9・・・酸素、10・・・燃料、11・・水蒸気、12
−・還元ガス、12a、12b・・・管路、13.13
a・・・副原料、14・・・鉄鉱石(塊成鉱)、2o・
・シャフト式還元炉(20a移動層式)、f・・・移動
層、21・・・鉄鉱石装入口。 22・・・ガス取出口、23・・・還元ガス吹込口、2
4・・・還元鉄切出口、25・・ホッパ、28・・・清
浄化装置、29・・・還元鉄供給ライン。 出願人 住友金属工業株式会社 代理人 弁理士 加 藤 朝 道 第1図
FIG. 1 is a flow sheet showing the basic configuration of the present invention, and FIG.
The figures each show a schematic diagram illustrating an embodiment of the invention. DESCRIPTION OF SYMBOLS 1... Melting gasifier, 2... Charging port, 3... Gas outlet, 4... Tuyere, 5... Tapping port, 6... Slag port, a...・Reduced iron packed bed (melting part), b... Coke packed bed (heating part), c... - Slag, d... Bottle Di
e... Combustion chamber, 7... Reduced iron, 8... Coke,
9...Oxygen, 10...Fuel, 11...Water vapor, 12
-・Reducing gas, 12a, 12b... Pipeline, 13.13
a... Auxiliary raw material, 14... Iron ore (agglomerate ore), 2o.
- Shaft type reduction furnace (20a moving bed type), f...moving bed, 21...iron ore charging inlet. 22...Gas outlet, 23...Reducing gas inlet, 2
4...Reduced iron cutting port, 25...Hopper, 28...Cleaning device, 29...Reduced iron supply line. Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Asa Kato Road Figure 1

Claims (1)

【特許請求の範囲】 1)鉄鉱石をシャフト式還元炉において溶解ガス化炉か
ら回収される還元ガスを用いて還元し。 生成する還元鉄を溶解ガス化炉で溶解して銑鉄を製造し
、該溶解ガス化炉において、内部にガスと溶銑及び溶滓
とが向流で通過できる空[−備えてその当部に未溶融の
還元鉄を保持するコークス充填1の下部において酸素と
必要に応じ水蒸気とにより炭素及び水素を主成分とする
燃料を燃焼ガス化して一酸化炭素及び水素を主成分とす
る高温ガスを生成させ、核高温ガスを前記コークス充填
場°内に上昇せしめて前記還元鉄t−溶解させた後回収
すると共に、還元鉄が溶解して生成する溶鉄と。 鉄酸化物を含む滓とを上昇高温ガスと向流で前記コーク
ス充填層内で流下させ、流下の過程で溶滓中の鉄酸化物
その他金属酸化物をコークスにより還元し、コークス中
の炭素を溶鉄中に溶解させて溶銑となし、生成した浴銑
及び滓全コークス充填層下部に収集して抽出することを
特徴とする銑鉄の製造方法。 2)炉体上部に還元鉄、副原料及びコークスを装入する
ための装入口及びガス取出口を備え炉体下部に出湯原註
金偏え、炉体中央部にガスと溶融金属及び溶滓とが向流
で通過できる空隙を有しその上部に未溶融の還元鉄を保
持するコークス充填11t備え、該コークス充填層の下
部炉体側壁に酸素及び必要により炭素と水素を主成分と
する燃料を吹込む羽口金偏え、該羽目前方に燃焼室を形
成して炉を構成し、該炉内において、該コークス充填層
の上方に該装入口から装入された還元鉄、副原料及びコ
ークスの充填層から成る溶解部と、炉体下部に湯溜Vを
形成して成る溶解ガス化炉と、鉄鉱石を還元するための
シャフト式還元炉と、前記溶解ガス化炉のガス取出口と
、前記シャフト式還元炉の還元ガス吹込口を接続する管
路とを有し、前記溶解ガス化炉から回収される還元ガス
により鉄鉱石をシャフト式還元炉で還元すると共に。 生成還元鉄を該溶解ガス化炉に供給する手段を有するこ
とを特徴とする銑鉄の製造装置。
[Claims] 1) Iron ore is reduced in a shaft-type reduction furnace using reducing gas recovered from a melting and gasifying furnace. Pig iron is produced by melting the produced reduced iron in a melting and gasifying furnace, and in the melting and gasifying furnace, there is an air space [-] in which the gas, hot metal, and molten slag can pass in countercurrent flow. In the lower part of the coke filling 1 that holds molten reduced iron, a fuel containing carbon and hydrogen as its main components is combusted and gasified using oxygen and, if necessary, steam to generate high-temperature gas containing carbon monoxide and hydrogen as its main components. , the nuclear high-temperature gas is raised into the coke filling field, the reduced iron is melted and then recovered, and the reduced iron is melted to produce molten iron. The slag containing iron oxide is allowed to flow down in the coke packed bed in countercurrent to the rising high-temperature gas, and in the process of flowing down, the iron oxide and other metal oxides in the slag are reduced by coke, and the carbon in the coke is reduced. A method for producing pig iron, which comprises dissolving it in molten iron to form hot metal, and collecting and extracting the generated bath pig iron and slag at the bottom of a packed bed of coke. 2) The upper part of the furnace body has a charging inlet and gas outlet for charging reduced iron, auxiliary raw materials, and coke, the lower part of the furnace body has a charging port for charging reduced iron, auxiliary raw materials, and coke; 11 tons of coke is packed in the upper part of which holds unmelted reduced iron and has a gap through which iron can pass through in a countercurrent flow, and a fuel containing oxygen and, if necessary, carbon and hydrogen as main components is provided on the side wall of the lower furnace body of the coke packed bed. A furnace is constructed by forming a combustion chamber in front of the tuyeres, and in the furnace, reduced iron, auxiliary materials, and coke are charged from the charging port above the coke packed bed. a melting section consisting of a packed bed, a melting and gasifying furnace having a molten metal V formed in the lower part of the furnace body, a shaft-type reduction furnace for reducing iron ore, and a gas outlet of the melting and gasifying furnace. and a pipe line connecting a reducing gas inlet of the shaft-type reduction furnace, and reduces iron ore in the shaft-type reduction furnace with the reducing gas recovered from the melting and gasification furnace. A pig iron manufacturing apparatus characterized by having means for supplying produced reduced iron to the melting and gasifying furnace.
JP5370382A 1981-06-10 1982-04-02 Method and device for production of pig iron Pending JPS58171515A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP5370382A JPS58171515A (en) 1982-04-02 1982-04-02 Method and device for production of pig iron
SE8202585A SE457265B (en) 1981-06-10 1982-04-26 PROCEDURE AND ESTABLISHMENT FOR PREPARATION OF THANKS
AU83022/82A AU537688B2 (en) 1981-06-10 1982-04-27 Combination gasification and smelting furnace for the production of pig iron
GB08212245A GB2100755B (en) 1981-06-10 1982-04-28 Process for coal-gasification and making pig iron and apparatus therefore
DE3216019A DE3216019C3 (en) 1981-06-10 1982-04-29 Method for producing pig iron and useful gas and use of a melting / gasification furnace for its implementation
FR8207445A FR2507624B1 (en) 1981-06-10 1982-04-29 PROCESS FOR THE GASIFICATION OF COAL AND THE MANUFACTURE OF CAST IRON AND INSTALLATION FOR ITS IMPLEMENTATION
CA000401962A CA1193867A (en) 1981-06-10 1982-04-29 Process for coal-gasification and making pig iron and apparatus therefor
US06/497,420 US4504043A (en) 1981-06-10 1983-05-24 Apparatus for coal-gasification and making pig iron
US06/617,912 US4564389A (en) 1981-06-10 1984-06-06 Process for coal-gasification and making pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5370382A JPS58171515A (en) 1982-04-02 1982-04-02 Method and device for production of pig iron

Publications (1)

Publication Number Publication Date
JPS58171515A true JPS58171515A (en) 1983-10-08

Family

ID=12950182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5370382A Pending JPS58171515A (en) 1981-06-10 1982-04-02 Method and device for production of pig iron

Country Status (1)

Country Link
JP (1) JPS58171515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156217A (en) * 1985-12-28 1987-07-11 Kawasaki Steel Corp Controller for gas quantity for fluidized bed prereduction furnace
JP2003518556A (en) * 1999-12-23 2003-06-10 フォエスト−アルピーネ・インドゥストゥリーアンラーゲンバオ・ゲーエムベーハー・ウント・コンパニー Pig iron production method
JP2011047053A (en) * 2004-07-30 2011-03-10 Posco Apparatus and method for producing molten iron including blowing fine carbonaceous material into melting gasifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156217A (en) * 1985-12-28 1987-07-11 Kawasaki Steel Corp Controller for gas quantity for fluidized bed prereduction furnace
JP2003518556A (en) * 1999-12-23 2003-06-10 フォエスト−アルピーネ・インドゥストゥリーアンラーゲンバオ・ゲーエムベーハー・ウント・コンパニー Pig iron production method
JP2011047053A (en) * 2004-07-30 2011-03-10 Posco Apparatus and method for producing molten iron including blowing fine carbonaceous material into melting gasifier

Similar Documents

Publication Publication Date Title
US4504043A (en) Apparatus for coal-gasification and making pig iron
NO142312B (en) PROCEDURE FOR MANUFACTURING LIQUID RAJJAR
JP4342104B2 (en) Direct smelting method
CN101956035B (en) Iron-containing material slag bath smelting reduction steelmaking technical method and device
US7220293B2 (en) Thermal synthesis production of steel
JPS58171515A (en) Method and device for production of pig iron
US20050151307A1 (en) Method and apparatus for producing molten iron
JPS58174512A (en) Method and apparatus for manufacting molten pig iron
JPS58174511A (en) Manufacture of pig iron and apparatus therefor
JP7348467B2 (en) Blast furnace operating method and pig iron manufacturing method
JPH06108132A (en) Cylindrical furnace and production of molten iron using this furnace
JPS58171512A (en) Method and device for production of pig iron
JPS5928512A (en) Method and apparatus for making pig iron
JPS58171510A (en) Method and device for producing pig iron
KR860000735B1 (en) Method & apparatus for coal gasification and making pig iron
JPS58171514A (en) Method and device for production of pig iron
JPS58171513A (en) Method and device for production of pig iron
JP2666385B2 (en) Hot metal production method
JPS5918443B2 (en) Pig iron manufacturing method
JPS58171511A (en) Method and device for producing pig iron
JPS58174513A (en) Manufacture of pig iron and apparatus therefor
JPS59116308A (en) Method and device for producing pig iron
JP2666397B2 (en) Hot metal production method
JPS58113307A (en) Production of pig iron
JPS63195244A (en) Production of ferromanganese