JPS58168983A - Submarine investigating device - Google Patents

Submarine investigating device

Info

Publication number
JPS58168983A
JPS58168983A JP57051876A JP5187682A JPS58168983A JP S58168983 A JPS58168983 A JP S58168983A JP 57051876 A JP57051876 A JP 57051876A JP 5187682 A JP5187682 A JP 5187682A JP S58168983 A JPS58168983 A JP S58168983A
Authority
JP
Japan
Prior art keywords
machine
investigating
sonar
towed
geosoner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57051876A
Other languages
Japanese (ja)
Inventor
Yuzo Tokumaru
得丸 雄三
Yoshizo Noji
野地 吉蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Heavy Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57051876A priority Critical patent/JPS58168983A/en
Publication of JPS58168983A publication Critical patent/JPS58168983A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oceanography (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To improve observation precision, by mounting a geo-sonar on an investigating machine run on the sea bottom by being towed by a tugboat. CONSTITUTION:The investigating machine 1 is run on the sea bottom 3 by being towed by the tugboat. The investigating machine 1 mounts a plow excavation type hardness measuring device 4 and the geo-sonar 12. The investigating machine 1 tows a towing buoy and the fish 8 of a side sonar through a winch 6 and a cable 7. Further, the investigating machine 1 tows a magnetic prospecting machine 10 through a towing rope 11. The geo-sonar 12 is mounted on the investigating machine 1 to transmit and receive an ultrasonic wave at a position close to the sea bottom, so its output is reduced.

Description

【発明の詳細な説明】 本発明は海底調査装置に関し、より特別には超音波機器
を使用して海底地質を調査する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for investigating the ocean floor, and more particularly to an apparatus for investigating the geology of the ocean floor using ultrasonic equipment.

従来、地質調査用の超音波機器すなわちジオソーナを使
用して海底地質を調査するには、曳船により該ジオソー
ナを包蔵せるフイラスが海表面もしくは海中を走行する
とと(該フイラスを曳航し、ジオソーナより海底面に対
し垂直に超音波を送信し、反射波を受信することにより
海底地質の変化つで観察[−てきた。しかしながら、上
記従来の方法では海中を往復伝播する超音波の減衰量が
太ぎいために該減衰量を見込んだ大きな超音波出方が必
すとされろ。また、このように海底面より相当離、)シ
rこ位置にあるジオソーナから人出方の超音波を送信し
て行う方法は、海底下数百メートルの地質を観察するよ
うな精度の粗い調査は可能であるが、例えばケーブル埋
設の可−否を判断すべ(海底下1〜2メートルの地質を
観察するごとき精度の細い調査をrテうことはできない
Conventionally, in order to investigate the geology of the ocean floor using an ultrasonic device for geological surveys, that is, a geosoner, the filus containing the geosoner is run on the sea surface or underwater by a towboat (the filasse is towed, By transmitting ultrasonic waves perpendicular to a surface and receiving the reflected waves, changes in seafloor geology have been observed. Therefore, it is necessary to have a large ultrasonic wave output that takes into account the amount of attenuation.In addition, it is necessary to transmit ultrasonic waves in the direction of people from a geosoner located at a considerable distance from the ocean floor. Although it is possible to conduct surveys with rough precision, such as observing the geology several hundred meters below the seabed, it is also possible to conduct surveys with low precision, such as observing the geology 1 to 2 meters below the seafloor. It is not possible to conduct a thorough investigation.

本発明は上記従来の欠点を除去すべ(なされたものであ
−って、このため本発明は 曳船によりジオソーナを曳航し、該ジオンーナより海底
面に向は超音波を送信し、反射波を受信して海底地質を
調査する海底調査装置において、前記ジオンーナを曳船
により牽引されて海底面上を滑走する調査機に搭載した
ことを特徴とする。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional technology.For this purpose, the present invention involves towing a geosoner by a tugboat, transmitting ultrasonic waves from the geosoner toward the ocean floor, and receiving reflected waves. A submarine survey device for investigating the geology of the seabed is characterized in that the geona is mounted on a surveying machine that is towed by a tugboat and slides on the seabed surface.

以下、本発明の一実施例を添附図に沿って説明−rる。An embodiment of the present invention will be described below with reference to the accompanying drawings.

図は本発明の一実施例料示す概略図で、図において1は
図示しない海水面上の曳船より牽索2を介して牽引され
海底面3上を滑走する$a状の調査機、4は該調査機に
昇降可能に設けられ海ゾ(に突出可能な鋤掘削式硬さ測
定装置、5は調査機1上のウィンチ6にケーブル7を介
して連結された曳航ブイ、8は該曳航ブイ5より曳航ケ
ーブル9を介して牽引されろ海底地形調査用の超音波機
器すなわちサイドソナーのフイシュ、10は調査機1よ
り曳行索11を介して牽引され海底面上を滑走する揚状
の磁気探査機である。
The figure is a schematic diagram showing an embodiment of the present invention. In the figure, 1 is a $A-shaped survey aircraft that is towed by a tugboat on the sea surface (not shown) via a tug 2 and slides on the seabed 3, and 4 is a A plow excavation type hardness measuring device that is installed on the surveying machine so that it can be raised and lowered and that can be projected into the ocean; 5 is a towing buoy that is connected to a winch 6 on the surveying machine 1 via a cable 7; 8 is the towing buoy; 5 is a towed ultrasonic device for underwater topography survey, ie a side sonar fish, which is towed from 5 via a towing cable 9; 10 is a lift-shaped magnetic surveying device which is towed by a surveying device 1 via a towing cable 11 and glides over the seafloor surface; It is a machine.

しかして、本発明においては、図示のように、海底地質
調査用のジオソーナ12を調査機1上に搭載し、海底面
に近接した位置から超音波を送受信するようにした。ジ
オソーナ12は海底面に対し直接かつ垂直に超音波が送
受信されるように調査機上に配置されろ。該ジオソーナ
12の周波数は海底下2m以浅の底質変化を判別するに
iま5Kl(z前後とされ、2〜6種の周波数に切替可
能とすることが好ましい。これらジオソーナからの超音
波の送受信および周波数の切替えは図示しないコントロ
ールグープルを介して曳船上より行われろ。
Therefore, in the present invention, as shown in the figure, a geosoner 12 for seabed geological survey is mounted on the surveying device 1, and ultrasonic waves are transmitted and received from a position close to the seabed surface. The geosoner 12 is placed on the survey vehicle so that ultrasonic waves are transmitted and received directly and perpendicularly to the seafloor surface. The frequency of the geosonar 12 is set to be around 5Kl (z) for determining changes in bottom sediment at a depth of 2 m or less below the seafloor, and it is preferable to be able to switch between 2 to 6 different frequencies. And frequency switching is performed from the towboat via a control group (not shown).

なお、受信信号の処理は曳゛船上にて公知の方法で行う
ことができる。このようにジオソーナを海底面上を滑走
する調査機上に塔載することにより従来のように海中を
伝播する際の超音波の大きな減衰がないのでジオソーナ
の出力を大巾に低減させろことができ、またこのように
ジオソーナを海底面より至近距離に位置させ小さな出力
にて行うことにより精度の細い調査が可能となり、海底
下1〜2mの底質変化を判別することができる。
Incidentally, the processing of the received signal can be performed onboard the towboat using a known method. In this way, by mounting the geosoner on a research aircraft that glides over the ocean floor, there is no large attenuation of ultrasonic waves when they propagate underwater, as in conventional methods, and the output of the geosoner can be significantly reduced. In addition, by positioning the geosoner at a close distance from the seabed surface and using a small output power, it is possible to perform highly accurate surveys, and it is possible to determine changes in the bottom sediment 1 to 2 meters below the seafloor.

なお、上記硬さ測定装置4は鋤前面に土圧計測用の圧力
センサを埋込み、鋤に加わる土圧を測定することにより
硬さを判定するもので、圧力センサを上下に複数個設け
ることにより掘削深さに対応した硬さの判定が可能であ
る。また、上記サイドソーナのフイシュ8はウィンチ6
を巻戻すことにより海底面から一定高さで曳航されるも
ので、■ 調査機1の速度が変化してもサイドソーナ8の高さが変
化しないように曳航ブイ5を先行させている。さらに、
上記磁気探査装置10はフラックスゲート方式の磁気探
知器10aを複数個並べて非金属材料を主体とt7たm
10bに搭載したものである。これら硬さ測定装置4、
サイドソーナ8および磁気探知器10は上記ジオソーナ
12と組合わせて海底地質、硬さ、地形および磁気探査
を同時に行うことができる。
The hardness measuring device 4 has a pressure sensor for measuring soil pressure embedded in the front surface of the plow, and determines the hardness by measuring the soil pressure applied to the plow. It is possible to judge the hardness according to the excavation depth. Also, the fish 8 of the side sonar mentioned above is the winch 6.
The towing buoy 5 is placed in front so that the height of the side sonar 8 does not change even if the speed of the research aircraft 1 changes. moreover,
The above-mentioned magnetic exploration device 10 is constructed by arranging a plurality of magnetic detectors 10a of the fluxgate type and using non-metallic materials as the main material.
This is what was installed on the 10b. These hardness measuring devices 4,
The side sonar 8 and the magnetic detector 10 can be combined with the geosoner 12 to simultaneously conduct seabed geology, hardness, topography, and magnetic exploration.

以上のように、本発明によれば小出力でかつ精度のよい
海底調査装置が得られる。
As described above, according to the present invention, it is possible to obtain a low-output, high-precision submarine survey device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略側面図、第2図は
同平面図である。 1・・・調査機、     12・・・ジオソーナ。 特許出願人  住友電気工業株式会社 同    住友重機械工業株式会社
FIG. 1 is a schematic side view showing one embodiment of the present invention, and FIG. 2 is a plan view thereof. 1...Research machine, 12...Geosona. Patent applicant: Sumitomo Electric Industries, Ltd. Sumitomo Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 曳船によりジオソーナを曳航し、該ジオンーナより海底
面に向は超音波を送信し、反射波を受信して海底地質を
調査する海底調査装置において、前記ジオソーナを曳船
により牽引されて海底面上を滑送する調査機に搭載した
ことを特徴とする海底調査装置。
In an undersea survey device, a geosoner is towed by a tugboat, and the geosoner transmits ultrasonic waves toward the ocean floor and receives reflected waves to investigate the geology of the ocean floor. An underwater survey device characterized by being installed on a survey aircraft.
JP57051876A 1982-03-30 1982-03-30 Submarine investigating device Pending JPS58168983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051876A JPS58168983A (en) 1982-03-30 1982-03-30 Submarine investigating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051876A JPS58168983A (en) 1982-03-30 1982-03-30 Submarine investigating device

Publications (1)

Publication Number Publication Date
JPS58168983A true JPS58168983A (en) 1983-10-05

Family

ID=12899077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051876A Pending JPS58168983A (en) 1982-03-30 1982-03-30 Submarine investigating device

Country Status (1)

Country Link
JP (1) JPS58168983A (en)

Similar Documents

Publication Publication Date Title
CA1230403A (en) Method for determining the far field signature of a marine seismic source from near field measurements
US7417924B2 (en) Apparatus, systems and methods for determining position of marine seismic acoustic receivers
US4726315A (en) Apparatus for towing arrays of geophysical devices
CA2072107C (en) Seismic cable device
US4845686A (en) Method and device for determining the position of immersed objects with respect to the ship which tows them
US6005828A (en) Acoustic positioning of seismic ocean bottom cable
US4781140A (en) Apparatus for towing arrays of geophysical devices
CA2531801A1 (en) Geophysical data acquisition system
EP2307913A2 (en) Electromagnetic and seismic streamer cable and method for using such a streamer cable
CN113534260B (en) Broadband near-seafloor deep sea geological structure acoustic detection system and method
CN101140329A (en) System for localising and positioning towed acoustic linear antennas system
US4709356A (en) Seismic array positioning
USRE31026E (en) Navigation system for maneuvering a structure about a submerged object
KR20040092508A (en) System for investigation of river bottom topography and fluctuation using GPS and GPR
US4025895A (en) Navigation system for maneuvering a structure about a submerged object
JP3374376B2 (en) Undersea exploration equipment
Chesterman et al. Acoustic surveys of the sea floor near Hong Kong
Bowen A high-resolution seismic profiling system using a deep-towed horizontal hydrophone streamer
JPS58168983A (en) Submarine investigating device
JP2003019999A (en) Sea bottom stratum exploration system
CN101937103B (en) For the method comprising definition and generation acoustic cycles step that auxiliary towing cable is located
JP3259544B2 (en) Method and apparatus for exploring undersea buried objects
JPH0820524B2 (en) Burial depth measuring device from detector of buried conductor
JPH0581872B2 (en)
Spiess et al. Fine scale mapping near the deep sea floor