JPH0820524B2 - Burial depth measuring device from detector of buried conductor - Google Patents

Burial depth measuring device from detector of buried conductor

Info

Publication number
JPH0820524B2
JPH0820524B2 JP58057534A JP5753483A JPH0820524B2 JP H0820524 B2 JPH0820524 B2 JP H0820524B2 JP 58057534 A JP58057534 A JP 58057534A JP 5753483 A JP5753483 A JP 5753483A JP H0820524 B2 JPH0820524 B2 JP H0820524B2
Authority
JP
Japan
Prior art keywords
magnetic field
buried
conductor
field direction
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58057534A
Other languages
Japanese (ja)
Other versions
JPS59183387A (en
Inventor
徳紀 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Nippon Electric Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP58057534A priority Critical patent/JPH0820524B2/en
Publication of JPS59183387A publication Critical patent/JPS59183387A/en
Publication of JPH0820524B2 publication Critical patent/JPH0820524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • G01V3/06Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current using ac

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明はガス管や水導管,電力ケーブル,通信ケーブ
ル等の比較的長距離に渡って海底に埋設された導体の埋
設深さを測定する埋設深度測定装置に関する。
The present invention relates to a buried depth measuring device for measuring a buried depth of a conductor buried in a seabed over a relatively long distance such as a gas pipe, a water conduit, an electric power cable, a communication cable and the like.

ガス管や電力ケーブル等の海底に敷設される導体は、
船舶の錨,漁船の底引漁具等によって機械的損傷を受け
ないように、また逆に導体の存在によって漁業活動等に
支障をきたすことのなないように、海底の土砂に埋設さ
れることが多い。しかし、埋設後の導体の埋設深度は漂
砂や海流その他の天然現象あるいは砂利採取等の影響に
より施工当初よりその埋設位置が変化していることがあ
る。特に、深度が浅くなった場合、導体が障害を受けや
すくなる。したがって、導体の保守のためにも、その埋
設状況を把握する必要がある。
Conductors laid on the seabed such as gas pipes and power cables are
It may be buried in the sediment of the sea bottom so that it will not be mechanically damaged by the anchors of ships, bottom fishing gear of fishing boats, etc., and conversely the presence of conductors will not hinder fishing activities. Many. However, the buried depth of the conductor after burial may change from the beginning of construction due to the influence of drifting sand, ocean currents and other natural phenomena, or gravel sampling. In particular, when the depth becomes shallow, the conductor is easily damaged. Therefore, it is necessary to know the buried status for the maintenance of the conductor.

従来、海底埋設導体の埋設深さの測定方法として超音
波を用いた方法が提案され、一部では実用化されてい
る。この方法は、海中に埋設した超音波発生器(送波
器)から発生した超音波(周波数は数KHz〜数10KHz)
は、海底面で反射すると同時に、一部は、海底の土砂を
透過して土砂中の導体に当って反射する。したがって、
この2つの反射波を海中に設置した受波器で受け、両者
の時間差Tを求める。土砂中での超音波の伝搬速度をv
とすれば、埋設深さDは次式で算出される。
Conventionally, a method using ultrasonic waves has been proposed as a method for measuring the buried depth of an undersea buried conductor, and some of them have been put to practical use. This method uses ultrasonic waves (frequency of several KHz to several tens of KHz) generated from an ultrasonic generator (transmitter) buried in the sea.
At the same time, is reflected on the sea bottom, and at the same time, part of the light penetrates the sea bottom and hits the conductor in the earth and is reflected. Therefore,
The two reflected waves are received by the wave receiver installed in the sea, and the time difference T between them is obtained. The propagation velocity of ultrasonic waves in soil is v
Then, the burial depth D is calculated by the following equation.

しかし、この方法では、土砂の特性によって、超音波
の伝搬速度vが異なり、さらに土砂の特性は経年変化等
を生ずる場合が多いため、測定精度を上げるためには、
この測定とは別に対象となる土砂の伝搬特性を測定して
おく等の対策が必要である。さらに、埋設工事から数年
程度の土砂では、土砂中に気泡を多く含んでおり、この
ため、超音波の減衰が著しく、導体の検出すらもできな
い場合がある。
However, in this method, the propagation velocity v of the ultrasonic wave varies depending on the characteristics of the earth and sand, and since the characteristics of the earth and sand often change over time, in order to improve the measurement accuracy,
In addition to this measurement, it is necessary to take measures such as measuring the propagation characteristics of the target sediment. Furthermore, the earth and sand that have been around for several years since the burial work contains a lot of bubbles in the earth and sand, so that the attenuation of ultrasonic waves is significant and even the detection of conductors may not be possible.

本発明の目的は、このような海底の土砂による影響を
なくし、かつ簡単な方法により埋設深度を測定できるよ
うにした海底埋設導体の検知器からの埋設深さ測定装置
を提供することにある。
It is an object of the present invention to provide a buried depth measuring device from a detector of a buried conductor for a seabed, which is capable of measuring the buried depth by a simple method while eliminating the influence of the sediment on the seabed.

本発明は、海底に埋設された近似的には直線の導体に
交流電流を供給する電源装置と、前記交流電流によって
前記導体より生じる交流磁場の方向を検知する複数の磁
場方向検知器を所定の間隔をおいて載置した移動台と、
この移動台をけん引する測定用船と、この測定用船上で
前記各磁場方向検知器の磁場方向信号を受ける受信装置
と、この受信装置により得られた前記各磁場方向検知器
の磁場方向信号によって、これら磁場方向検知器から前
記導体までの深さを演算する演算装置とを含むことを特
徴とする海底埋設導体の検知器からの埋設深さ測定装置
である。
The present invention provides a power supply device that supplies an alternating current to an approximately linear conductor buried in the seabed, and a plurality of magnetic field direction detectors that detect the direction of an alternating magnetic field generated by the conductor due to the alternating current. A mobile table placed at intervals,
By a measuring ship towing this moving table, a receiving device for receiving the magnetic field direction signals of the magnetic field direction detectors on the measuring ship, and a magnetic field direction signal of the magnetic field direction detectors obtained by the receiving device. A buried depth measuring device from a detector for a buried conductor in a seabed, comprising: a computing device for computing the depth from the magnetic field direction detector to the conductor.

本発明においては、海底埋設導体に交流電流を供給す
ることにより、その導体の周囲に磁場を発生させ、この
磁場の方向を複数の磁場方向検知器により検出して海底
埋設導体の検知器(測定点)の位置から計った埋設深さ
を求めるようにしたもので、測定方法を簡単化したこと
を特徴とする。
In the present invention, by supplying an alternating current to the undersea buried conductor, a magnetic field is generated around the conductor, and the direction of this magnetic field is detected by a plurality of magnetic field direction detectors to detect the undersea buried conductor (measurement). The burial depth measured from the position (point) is obtained, and the feature is that the measuring method is simplified.

以下本発明を図面により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例に用いられる海底埋設導体に
交流電流を流す手段の一例の構成図を示す。海底埋設導
体1の陸上に引き上げられている部分に、被測定区間を
挾むように接続点T1,T2を定め、一方の接続点T1には交
流電流源とその接地電極TEとを接続し、この接地電極TE
を海中あるいは地中に接地する。また、他方の接続点T2
には接地電極TEを接続し同様に接地する。
FIG. 1 is a block diagram showing an example of means for supplying an alternating current to a buried undersea conductor used in an embodiment of the present invention. Connection points T 1 and T 2 are defined in the part of the buried conductor 1 which is pulled up to the ground so as to sandwich the section to be measured, and one connection point T 1 is connected to an alternating current source and its ground electrode T E. And this ground electrode T E
Is grounded in the sea or underground. Also, the other connection point T 2
The ground electrode T E is connected to and grounded similarly.

ここで海底埋設導体1に交流電流Iを流すと、交流電
流Iが、第2図に示すような交流磁場Hを作る。この図
で海底埋設導体1の埋設方向は紙面に垂直な方向であ
る。この場合、海底埋設導体1に流れる交流電流Iが任
意の点Pで作る交流磁場Hは、点Pを含み、海底埋設導
体1に垂直な平面内で、海底埋設導体1と点Pを結ぶ直
線に直角な方向をもつ。従って、海底面AB上で埋設方向
と直交する方向に距離x0離れた2点P1,P2において、交
流磁場Hの方向、すなわち海底面ABとの成す角β1
を測定すれば、測定点P1、P2の位置から計った埋設深さ
r0は次の(1)式で求めることができる。
When an alternating current I is passed through the submarine buried conductor 1, the alternating current I produces an alternating magnetic field H as shown in FIG. In this figure, the buried direction of the seabed buried conductor 1 is a direction perpendicular to the paper surface. In this case, the alternating magnetic field H generated by the alternating current I flowing through the undersea buried conductor 1 at an arbitrary point P includes the point P and is a straight line connecting the undersea buried conductor 1 and the point P in a plane perpendicular to the undersea buried conductor 1. It has a direction perpendicular to. Therefore, at two points P 1 and P 2 on the seabed AB that are separated by a distance x 0 in the direction orthogonal to the embedding direction, the directions of the alternating magnetic field H, that is, the angles β 1 and β 2 formed with the seabed AB.
Is measured, the burial depth measured from the measurement points P 1 and P 2
r 0 can be calculated by the following equation (1).

また測定点P1、P2から海底埋設導体の真上の点Oまで
の距離x1、x2はそれぞれ次の(2)式で表わされる。
Further, the distances x 1 and x 2 from the measurement points P 1 and P 2 to the point O just above the seabed buried conductor are respectively expressed by the following equation (2).

以上の例では、簡単のために測定点P1、P2は、海底埋
設導体1に垂直な面内の点としたが、P1とP2を結ぶ線が
海底埋設導体に垂直な方向でない(ただし平行ではな
い)2点でも測定できる。第3図(A)は本発明を説明
するための図で、(B)は(A)を真上からみた平面図
である。第3図において、測定点P1とP2の間隔S0は既知
であり、P1とP2は水平面上にあるとし、海底埋設導体の
方向は水平面に平行とする。
In the above example, the measurement points P 1 and P 2 are points in the plane perpendicular to the seabed buried conductor 1 for simplification, but the line connecting P 1 and P 2 is not in the direction perpendicular to the seabed buried conductor. It can measure at two points (but not parallel). FIG. 3 (A) is a diagram for explaining the present invention, and FIG. 3 (B) is a plan view of (A) as seen from directly above. In FIG. 3, the distance S 0 between the measurement points P 1 and P 2 is known, P 1 and P 2 are on the horizontal plane, and the direction of the buried conductor is set parallel to the horizontal plane.

P1とP2から海底埋設導体1に下ろした垂線の埋設導体
1との交点をそれぞれQ1、Q2とする。Q1、Q2から真上に
延ばした水平面との交点をそれぞれR1、R2とする。R1
ら水平面上で立てたR1とR2を結ぶ方向に垂直な線の、P1
とP2を結ぶ線との交わり角をγとする。磁場H1、H2の方
向と水平面とのなす角をそれぞれβ、βとする。
The intersections of the perpendiculars from P 1 and P 2 to the buried conductor 1 on the seabed are designated Q 1 and Q 2 , respectively. The points of intersection with the horizontal plane extending directly above Q 1 and Q 2 are defined as R 1 and R 2 , respectively. Of a line perpendicular to the direction connecting the R 1 and R 2 stood on a horizontal plane from R 1, P 1
Let γ be the angle of intersection with the line connecting P 2 and P 2 . The angles formed by the directions of the magnetic fields H 1 and H 2 and the horizontal plane are β 1 and β 2 , respectively.

埋設導体が測定点P1、P2に作る磁場をそれぞれH1、H2
とする。H1を垂直成分(鉛直方向)HV1と水平成分Ha1
分け、更に水平成分をP1とP2を結ぶ方向に平行な成分H
s1と水平面上でHs1に垂直な成分HH1に分ける。
The magnetic fields created by the buried conductor at the measurement points P 1 and P 2 are H 1 and H 2 respectively.
And H 1 is divided into vertical component (vertical direction) H V1 and horizontal component H a1 , and the horizontal component is parallel to the direction connecting P 1 and P 2.
divided into component perpendicular H H1 to H s1 on s1 and the horizontal plane.

このとき次の関係式が成り立つ。 At this time, the following relational expression holds.

従って 同様に また cosγ=Hs1/Ha1=Hs2/Ha2 従って P2からR1とP1を結ぶ延長線に下ろした垂線の交点をP2
とする。P1とP2′の長さをx0とすると となる。γやx0の測定では測定点P1、P2のとちらの磁場
方向成分を用いてもよい。また測定点P1、P2から海底埋
設導体の真上の点R1、R2までのそれぞれの距離x1、x2
次のようになる。
Therefore As well Also, cosγ = H s1 / H a1 = H s2 / H a2 P 2 the intersection of perpendicular line to an extension line from P 2 connecting R 1 and P 1 '
And If the length of P 1 and P 2 ′ is x 0 , Becomes In the measurement of γ and x 0 , the magnetic field direction components between the measurement points P 1 and P 2 may be used. Also, the distances x 1 and x 2 from the measurement points P 1 and P 2 to the points R 1 and R 2 just above the seabed buried conductor are as follows.

x1=r0tanβ x2=r0tanβ 検知器からの埋設深さr0は、x2−x1=x0であるから、 r0tanβ−r0tanβ=x0 から、第1図の場合同様に次の式で表される。x 1 = r 0 tan β 1 x 2 = r 0 tan β 2 Since the buried depth r 0 from the detector is x 2 −x 1 = x 0 , from r 0 tanβ 2 −r 0 tanβ 1 = x 0 , As in the case of FIG. 1, is expressed by the following equation.

以上説明したように、2つの測定点が海底埋設導体に
垂直な面内にない場合でも、海底埋設導体1に流れる交
流電流Iの作る磁場Hを距離のわかっている2点でのそ
れぞれの磁場方向成分を検知器で測定することで、測定
点からの海底埋設導体の深さを知ることができる。なお
2つの測定点を結ぶ方向が、海底埋設導体と平行の場合
は測定できないが、その確率は小さく、実用上は問題な
い。仮にその場合測定できなければ、測定点を少しずら
して角度を変えれば測定可能となる。
As described above, even when the two measurement points are not in the plane perpendicular to the undersea buried conductor, the magnetic field H generated by the alternating current I flowing through the undersea buried conductor 1 is obtained at each of the two known magnetic fields. By measuring the directional component with the detector, the depth of the submarine buried conductor from the measurement point can be known. When the direction connecting the two measurement points is parallel to the undersea buried conductor, measurement cannot be performed, but the probability is small and there is no practical problem. If the measurement cannot be performed in that case, the measurement can be performed by slightly shifting the measurement point and changing the angle.

以上のように、検知器から導体までの深さr0は、測定
点P1,P2の距離S0と磁場方向信号として交流磁場の垂直
方向角β、βと水平方向角γがわかれば、式(5)
(6)から計算することができる。
As described above, the depth r 0 from the detector to the conductor is determined by the distance S 0 between the measurement points P 1 and P 2 and the vertical direction angles β 1 and β 2 and the horizontal direction angle γ of the AC magnetic field as the magnetic field direction signals. If you know, formula (5)
It can be calculated from (6).

第4図は本発明の実施例の磁場測定用移動台の斜視図
である。この実施例において、移動台3はそり状の脚4
を有し、けん引によって海底面上を移動することがで
き、その移動台3の長辺方向の両端付近に磁場方向を測
定するための磁場方向検知器5を設けている。この磁場
方向検出器5の一例は、第5図に示される。この磁場方
向検知器5は、フラックスゲート型磁気センサあるいは
誘導磁力計の指向性を持つ磁気センサSを3個、それぞ
れの最大感度方向が互いに直交するように固定したもの
である。
FIG. 4 is a perspective view of a moving table for measuring a magnetic field according to an embodiment of the present invention. In this embodiment, the carriage 3 comprises a sled-shaped leg 4
And can move on the seabed by towing, and magnetic field direction detectors 5 for measuring the magnetic field direction are provided near both ends of the moving base 3 in the long side direction. An example of this magnetic field direction detector 5 is shown in FIG. This magnetic field direction detector 5 comprises three magnetic sensors S having a directivity of a fluxgate type magnetic sensor or an induction magnetometer, which are fixed so that their maximum sensitivity directions are orthogonal to each other.

第6図は本発明の実施例の構成図である。この実施例
は、第4図に示した移動台3を、測定用船6とけん引ロ
ープWで連結し、海底埋設導体1上を横切るようにして
けん引するものである。任意の時点における2個の磁場
方向検知器5の出力を、制御ケーブルKを通して測定用
船6に備えた受信器7に送る。受信された2個の磁場方
向検知器5の出力信号は、記録器に記録し、前記
(1),(3),(5)式を用いて埋設深さを算出す
る。あるいは受信信号を直接電子計算機を含む信号処理
装置に入力し、埋設深さを連続的に測定することもでき
る。
FIG. 6 is a block diagram of an embodiment of the present invention. In this embodiment, the movable table 3 shown in FIG. 4 is connected to the measuring boat 6 by a towing rope W and is towed across the undersea buried conductor 1. The outputs of the two magnetic field direction detectors 5 at arbitrary points of time are sent to the receiver 7 provided in the measuring ship 6 through the control cable K. The received output signals of the two magnetic field direction detectors 5 are recorded in a recorder, and the burial depth is calculated using the equations (1), (3) and (5). Alternatively, the received signal can be directly input to a signal processing device including an electronic computer, and the burial depth can be continuously measured.

また、前記(1)〜(5)式を用いれば、移動台3と
海底埋設導体1との相対位置が求まるから、超音波セン
サ等により測定用船6と、移動台3の相対位置を求め、
さらに、ロラン等によって測定用船6の位置を求めれ
ば、海底埋設導体1の陸地に対する位置を求めることが
できる。
Further, since the relative positions of the moving table 3 and the seabed buried conductor 1 can be obtained by using the equations (1) to (5), the relative positions of the measuring boat 6 and the moving table 3 are obtained by an ultrasonic sensor or the like. ,
Further, if the position of the measuring vessel 6 is obtained by Loran or the like, the position of the undersea buried conductor 1 with respect to the land can be obtained.

以上の実施例において、移動台3が海底埋設導体1上
を横切るようにけん引する例を示したが、これは、この
実施例の移動台3上の2個の磁場方向検知器5が海底埋
設導体1と平行な方向に並んで(1)式においてβ
βとが一致することを避けるためである。
In the above embodiment, an example in which the moving base 3 is pulled so as to cross over the undersea buried conductor 1 is shown. This is because the two magnetic field direction detectors 5 on the moving base 3 in this embodiment are buried undersea. This is to prevent β 1 and β 2 from being aligned in the equation (1) in parallel with the conductor 1.

第7図は本発明においてけん引を任意の方向で行える
ようにした移動台の実施例の斜視図である。すなわち、
この移動台3は3個の磁場方向検知器5を三角形の各頂
点に位置するように配置したものである。したがって移
動台3が海底埋設導体1に平行にけん引される場合で
も、海底埋設導体1に平行でない方向に並んだ1対以上
の磁場方向検知器5が存在するので、これらの測定値か
ら埋設深さを算出することができる。
FIG. 7 is a perspective view of an embodiment of a movable table which can be towed in an arbitrary direction in the present invention. That is,
The moving table 3 has three magnetic field direction detectors 5 arranged at respective apexes of a triangle. Therefore, even when the movable table 3 is towed in parallel to the undersea buried conductor 1, there are one or more pairs of magnetic field direction detectors 5 arranged in a direction not parallel to the undersea buried conductor 1, and therefore, the buried depth is determined from these measured values. Can be calculated.

また、海底面のへどろ等により、そりによる海底面上
のけん引が困難な場合には、移動台を海中で曳航するよ
うにしてもよい。この場合の移動台の実施例を第8図に
示す。この実施例は、前後に磁場方向検知器5を備えた
2個の曳航体8を連結翼9で連結し、さらに各磁場方向
検知器5と海底面との最短距離を測定するための超音波
測長機10を備えている。この曳航体8は、けん引ロープ
Wにより測定用船に連結されて曳航される。海底埋設導
体付近の海中の任意の位置で曳航体8に備えられた各磁
場方向検知器5がそれぞれの位置での磁場の方向を検出
し、これら検出された信号はけん引ロープWと一緒に張
られた制御ケーブルKを通じて測定用船上で受信され
る。したがって、この受信信号を前記の式(1)〜
(5)に代入することにより、曳航体8と海底埋設導体
1との相対位置を求めることができる。さらに各磁場方
向検知器5と海底面との相対位置は、超音波測長機10に
より測定する。これにより海底埋設導体と海底面との相
対位置、すなわち埋設深さを求めることができる。たと
えば、第9図に示すように、曳航体8が海底面ABに対し
て傾斜している場合でも、距離x離れた磁場測定点P1,P
2での磁場方向測定結果がそれぞれα,βであり、かつ
両点の海底面ABとの距離の測定結果がそれぞれh1,h2
あれば、海底埋設導体1の埋設深さdは次式により求め
ることができる。
In addition, when it is difficult to pull on the sea bottom due to sledging due to sleds on the sea bottom, the mobile base may be towed under the sea. An example of the movable table in this case is shown in FIG. In this embodiment, two towed bodies 8 provided with magnetic field direction detectors 5 at the front and rear are connected by connecting wings 9 and ultrasonic waves for measuring the shortest distance between each magnetic field direction detector 5 and the sea bottom. Equipped with a length measuring machine 10. The towed body 8 is towed by being connected to a measuring boat by a towing rope W. Each magnetic field direction detector 5 provided on the towed body 8 detects the direction of the magnetic field at each position at an arbitrary position in the sea near the buried conductor, and these detected signals are stretched together with the tow rope W. It is received on the measuring vessel via the control cable K provided. Therefore, this received signal is expressed by the above equations (1) to
By substituting in (5), the relative position between the towed body 8 and the undersea buried conductor 1 can be obtained. Further, the relative position between each magnetic field direction detector 5 and the sea bottom is measured by the ultrasonic length measuring machine 10. Thereby, the relative position between the seabed buried conductor and the seabed, that is, the buried depth can be obtained. For example, as shown in FIG. 9, even when the towed body 8 is tilted with respect to the sea bottom AB, the magnetic field measurement points P 1 and P at a distance x are separated.
If the measurement results of the magnetic field direction at 2 are α and β, respectively, and the measurement results of the distances from both points to the sea bottom AB are h 1 and h 2 , respectively, the buried depth d of the buried conductor 1 is It can be obtained by a formula.

以上説明したように、本発明は、海底埋設導体の埋設
深さの測定において、海底埋設導体に流した交流電流の
作る交流磁場の測定によりその埋設深さを算出するた
め、海底の土砂の特性の影響や外部雑音を大いに低減す
ることができる。
As described above, in the present invention, in the measurement of the buried depth of the undersea buried conductor, the buried depth is calculated by the measurement of the alternating magnetic field generated by the alternating current flowing through the buried undersea conductor. It is possible to greatly reduce the influence of noise and external noise.

また、本発明では測定は相対位置の既知な2点で単に
磁場方向を測定するだけで、海底埋設導体の検知器(測
定点)からの埋設深さを容易に算出することができる。
Further, in the present invention, by simply measuring the magnetic field direction at two points whose relative positions are known, the buried depth from the detector (measurement point) of the undersea buried conductor can be easily calculated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明で用いられる海底埋設導体に交流電流を
流す手段の実施例を示す構成図、第2図,第3図は本発
明の海底埋設導体に流れる交流電流がつくる磁場の方向
と海底埋設導体の位置の関係を示す座標図、第4図,第
7図および第8図は本発明に用いられる移動台の一例を
示す斜視図、第5図は本発明の磁場方向検知器の一例を
示す斜視図、第6図は本発明の実施例の構成図、第9図
は第8図の曳航体型移動台と海底面および海底埋設導体
との位置関係を示す座標図である。図において1……海
底埋設導体、2……交流電流源、3……移動台、4……
そり状脚、5……磁場方向検知器、6……測定用船、7
……受信器、8……曳航体、9……連結翼、10……超音
波側長機、TE……接地電極、AB……海底面、S……磁気
センサ、W……けん引ロープ、K……制御ケーブルであ
る。
FIG. 1 is a block diagram showing an embodiment of means for supplying an alternating current to a buried undersea conductor used in the present invention, and FIGS. 2 and 3 are directions of a magnetic field produced by an alternating current flowing through a buried undersea conductor of the present invention. Coordinate diagrams showing the positional relationship of the seabed buried conductors, FIGS. 4, 7, and 8 are perspective views showing an example of a moving table used in the present invention, and FIG. 5 is a magnetic field direction detector of the present invention. FIG. 6 is a perspective view showing an example, FIG. 6 is a configuration diagram of an embodiment of the present invention, and FIG. 9 is a coordinate diagram showing a positional relationship between the towed vehicle type moving base of FIG. 8 and the sea bottom and the seabed buried conductor. In the figure, 1 ... Submarine buried conductor, 2 ... AC current source, 3 ... Mobile base, 4 ...
Sled legs, 5 ... Magnetic field direction detector, 6 ... Measuring vessel, 7
…… Receiver, 8 …… Towing body, 9 …… Coupling wing, 10 …… Ultrasonic wave length machine, T E …… Grounding electrode, AB …… Sea bottom, S …… Magnetic sensor, W …… Towing rope , K ... Control cable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】海底に埋設された近似的には直線の導体に
交流電流を供給する電源装置と、前記交流電流によって
前記導体より生じる交流磁場の方向を検知する複数の磁
場方向検知器を所定の間隔をおいて載置した移動台と、
この移動台をけん引する測定用船と、この測定用船上で
前記各磁場方向検知器の磁場方向信号を受ける受信装置
と、この受信装置により得られた前記各磁場方向検知器
の磁場方向信号によって、これら磁場方向検知器から前
記導体までの深さを演算する演算装置とを含むことを特
徴とする海底埋設導体の検知器からの埋設深さ測定装
置。
1. A predetermined power supply device for supplying an alternating current to an approximately linear conductor buried in the seabed, and a plurality of magnetic field direction detectors for detecting the direction of an alternating magnetic field generated from the conductor by the alternating current. And a moving table placed at intervals
By a measuring ship towing this moving table, a receiving device for receiving the magnetic field direction signals of the magnetic field direction detectors on the measuring ship, and a magnetic field direction signal of the magnetic field direction detectors obtained by the receiving device. And a device for calculating the depth from the magnetic field direction detector to the conductor, the buried depth measuring device from the detector for buried seabed conductor.
JP58057534A 1983-04-01 1983-04-01 Burial depth measuring device from detector of buried conductor Expired - Lifetime JPH0820524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057534A JPH0820524B2 (en) 1983-04-01 1983-04-01 Burial depth measuring device from detector of buried conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057534A JPH0820524B2 (en) 1983-04-01 1983-04-01 Burial depth measuring device from detector of buried conductor

Publications (2)

Publication Number Publication Date
JPS59183387A JPS59183387A (en) 1984-10-18
JPH0820524B2 true JPH0820524B2 (en) 1996-03-04

Family

ID=13058415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057534A Expired - Lifetime JPH0820524B2 (en) 1983-04-01 1983-04-01 Burial depth measuring device from detector of buried conductor

Country Status (1)

Country Link
JP (1) JPH0820524B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280580A (en) * 1985-10-03 1987-04-14 Nippon Telegr & Teleph Corp <Ntt> Searching machine for submarine buried cable
JPS62297777A (en) * 1986-06-17 1987-12-24 Nec Corp Position detecting method for buried conductor
JPH05107365A (en) * 1991-10-18 1993-04-27 Hitachi Plant Eng & Constr Co Ltd Cable layed position probing device
GB9409003D0 (en) * 1994-05-06 1994-06-22 Radiodetection Ltd Locator
US5654637A (en) * 1995-05-19 1997-08-05 Geonics Limited Method for detecting buried high conductivity objects including scaling of voltages for eliminating noise of a particular depth
JP6389450B2 (en) * 2015-08-25 2018-09-12 株式会社関海事工業所 Submarine cable position search method and submarine pipe position search method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561374A (en) * 1979-06-19 1981-01-09 Kokusai Denshin Denwa Co Ltd <Kdd> Cable detection system
JPS56140276A (en) * 1980-04-02 1981-11-02 Nippon Telegr & Teleph Corp <Ntt> Measuring device of buried position of underground cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561374A (en) * 1979-06-19 1981-01-09 Kokusai Denshin Denwa Co Ltd <Kdd> Cable detection system
JPS56140276A (en) * 1980-04-02 1981-11-02 Nippon Telegr & Teleph Corp <Ntt> Measuring device of buried position of underground cable

Also Published As

Publication number Publication date
JPS59183387A (en) 1984-10-18

Similar Documents

Publication Publication Date Title
US9176254B2 (en) Electromagnetic and seismic streamer cable and method for using such a streamer cable
US8913463B2 (en) Positioning system
US8148992B2 (en) Underwater electric field electromagnetic prospecting system
WO2021103697A1 (en) Submarine cable three-dimensional routing measurement method and measurement instrument based on magnetic vector data
CA1208428A (en) Method for determining the position of a marine seismic receiver cable
US9389331B2 (en) Long baseline navigation system
JPS60135783A (en) Method and system for surveying region of land formation under water area and displaying characteristic
JPS594676B2 (en) Cable detection method
US8582394B2 (en) Method for determining positions of sensor streamers during geophysical surveying
CN105629307B (en) A kind of submerged pipeline detection and measurement sound system and method
JPS5829875B2 (en) Cable search method
CN110927801B (en) Submarine cable route self-navigation line patrol method based on magnetic vector data and navigation detector
RU2670175C1 (en) Method of georadar survey of underwater linear objects
US20210124085A1 (en) Detecting objects submerged in a body of water or at least partly buried in a bed of the body of water
JPH0820524B2 (en) Burial depth measuring device from detector of buried conductor
CN108761470A (en) A kind of object localization method based on the parsing of towing cable shape equation
JP3374376B2 (en) Undersea exploration equipment
JPH0249676B2 (en)
Bharti et al. A semi-heuristic approach for tracking buried subsea pipelines using fluxgate magnetometers
CN208140187U (en) A kind of multi-beam marine charting detecting devices suitable for inland lake
CN209640490U (en) A kind of underwater sailing body acoustic-magnatic joint measuring system
JP3259544B2 (en) Method and apparatus for exploring undersea buried objects
RU2319178C2 (en) Method for searching flooded and silted objects on sea bottom
JPH04138008A (en) Method of confirming position of submarine cable
Hall Survey techniques in underwater archaeology