JPS5816589B2 - electronic microscope - Google Patents

electronic microscope

Info

Publication number
JPS5816589B2
JPS5816589B2 JP51115663A JP11566376A JPS5816589B2 JP S5816589 B2 JPS5816589 B2 JP S5816589B2 JP 51115663 A JP51115663 A JP 51115663A JP 11566376 A JP11566376 A JP 11566376A JP S5816589 B2 JPS5816589 B2 JP S5816589B2
Authority
JP
Japan
Prior art keywords
coils
image
deflection
current flowing
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51115663A
Other languages
Japanese (ja)
Other versions
JPS5340264A (en
Inventor
成瀬幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP51115663A priority Critical patent/JPS5816589B2/en
Publication of JPS5340264A publication Critical patent/JPS5340264A/en
Publication of JPS5816589B2 publication Critical patent/JPS5816589B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電子顕微鏡に関し、特に電子顕微鏡において像
の結像位置を移動させるために用いて好適な偏向装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron microscope, and more particularly to a deflection device suitable for use in moving an image forming position in an electron microscope.

従来電子顕微鏡においては例えば第1図に示される様に
結像レンズ1の下部に固定絞り2及び直交する2組の偏
向コイルよ、り成る偏向装置3とを設け、乾板4上にお
ける試料像の結像位置を任意に変化させることにより、
第2図に示される様に乾板4上に複数の像Z1〜Z4を
露出することが行われている。
In a conventional electron microscope, for example, as shown in FIG. 1, a fixed diaphragm 2 and a deflection device 3 consisting of two sets of orthogonal deflection coils are provided below an imaging lens 1, and a sample image on a dry plate 4 is By arbitrarily changing the imaging position,
As shown in FIG. 2, a plurality of images Z1 to Z4 are exposed on a dry plate 4.

この様にすれば1枚の乾板、フィルム等を有効に使うこ
とができる。
In this way, one dry plate, film, etc. can be used effectively.

又乾板、フィルム等を移動させずに連続して撮影できる
ので極めて速い試料の変化の状態を観察することができ
もところが上記の様に偏向装置を用いて試料像を移動さ
せると、光軸から離れるに従って像に発生する歪が大き
くなってしまう。
Furthermore, since images can be taken continuously without moving the dry plate or film, it is possible to observe extremely rapid changes in the sample. However, if the sample image is moved using a deflection device as described above, As the distance increases, the distortion that occurs in the image increases.

これは結像レンズによって試料像が結像されるのは第3
図に示される球面Q上であるのに対し、撮影する乾板、
フィルム等は平面であることに起因する。
This means that the sample image is formed by the imaging lens at the third point.
On the spherical surface Q shown in the figure, the dry plate to be photographed,
This is due to the fact that films and the like are flat.

即ち偏向装置を作動させない場合の像Zは乾板上にZF
として第4図aに示される如く光軸0を中心として投影
され、その際の歪は像の端部に発生するがそれ程大きく
なく無視し得る。
That is, the image Z when the deflection device is not activated is ZF on the dry plate.
As shown in FIG. 4A, the image is projected around the optical axis 0, and distortion occurs at the edges of the image, but it is not so large and can be ignored.

しかし偏向装置を作動させて角度θ偏向させた場合の像
Z′は乾板上にZF’として投影され、光軸0から離れ
るに従って第4図すに示される如く拡大されてしまい大
きな投影歪が発生する。
However, when the deflection device is operated to deflect the image by an angle θ, the image Z' is projected onto the dry plate as ZF', and as it moves away from the optical axis 0, it is enlarged as shown in Figure 4, resulting in large projection distortion. do.

本発明は上記の点に鑑みてなされたものであり、像を偏
向移動させた時発生する投影歪を除去し得る偏向装置を
提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a deflection device that can eliminate projection distortion that occurs when an image is deflected and moved.

以下本発明を図面に基づき詳説する。The present invention will be explained in detail below based on the drawings.

第5図は本発明を実施した偏向装置の一例を示す構成図
であり、同図において11は環状コアである。
FIG. 5 is a block diagram showing an example of a deflection device embodying the present invention, and in the figure, 11 is an annular core.

該コア11には励磁電源12によって励磁される一対の
同一巻数をもつコイル13.14が対向して巻回されて
おり、各コイルに流れる励磁電流値は電流調整回路15
.16によって可変できる。
A pair of coils 13 and 14 having the same number of turns are wound around the core 11 and are excited by an excitation power source 12, and the excitation current value flowing through each coil is determined by a current adjustment circuit 15.
.. It can be varied by 16.

そしてコア内に形成された偏向磁場によって電子線が偏
向される。
The electron beam is then deflected by a deflection magnetic field formed within the core.

今光軸Oを中心として紙面に垂直に上から下の方向に進
む電子線EBを第6図に示される様にXの方向に偏向す
る場合について考えるみこの時コイル13,14には第
6図において矢印で示される方向を持つ偏向磁場丁が形
成゛される様な電流が供給される。
Let us now consider the case where the electron beam EB, which travels from top to bottom perpendicular to the plane of the paper with the optical axis O as the center, is deflected in the X direction as shown in FIG. A current is supplied such that a deflection magnetic field having the direction indicated by the arrow in the figure is formed.

又両コイルに供給される電流は等しくなく、コイル13
に供給される電流はコイル14に供給される電流よりも
小さい値を持つと共にその電流比も所定の値に調整され
る。
Also, the currents supplied to both coils are not equal;
The current supplied to the coil 14 has a smaller value than the current supplied to the coil 14, and the current ratio thereof is also adjusted to a predetermined value.

従って偏向磁場Yは第6図におけるA−A断面の磁場分
布をあられす第7図に示される様に磁場強度の傾きを持
ち、コイル13に近い部分和磁場強度が弱く、コイル1
4に近い程磁場強度が強い。
Therefore, the deflection magnetic field Y has a magnetic field distribution on the A-A cross section in FIG. 6. As shown in FIG.
The closer it is to 4, the stronger the magnetic field strength is.

そのため電子線EBの偏向角は場所的に異なり、例えば
第8図に示される様にコイル13に近い部分EBIが偏
向される角度θ1はコイル14に近い部分EB2が偏向
される角度θ2に比較して小さい。
Therefore, the deflection angle of the electron beam EB varies depending on the location. For example, as shown in FIG. 8, the angle θ1 at which the portion EBI near the coil 13 is deflected is compared with the angle θ2 at which the portion EB2 near the coil 14 is deflected. It's small.

即ち第8図において結像面Qに結像される像Z′は光軸
Oから離れる程縮小された像となり、該像Z′は平面で
ある乾板上に投影される時に光軸0から離れる程拡大さ
れるため結局乾板上には投影の際の歪が除去された像が
得られることとなる。
That is, in FIG. 8, the image Z' formed on the imaging plane Q becomes a reduced image as it moves away from the optical axis O, and when this image Z' is projected onto a flat dry plate, it moves away from the optical axis 0. Since the image is magnified as much as possible, an image is obtained on the dry plate in which distortion during projection has been removed.

そして、もう1枚像を撮影するためにXと反対の方向に
電子線を偏向する場合には、励磁電源12の極性を反転
しコイル13.14に流す電流の方向を逆転すると共に
、調整回路15.16を切換えてコイル14に流す電流
をコイル13に流す電流よりも小さくしてその大小関係
を逆転させ、第1図とは逆の傾きを持った偏向磁場分布
を生成するようにすれば良い。
When the electron beam is deflected in the opposite direction to X to take another image, the polarity of the excitation power source 12 is reversed, the direction of the current flowing through the coils 13 and 14 is reversed, and the adjustment circuit 15.16 to make the current flowing through the coil 14 smaller than the current flowing through the coil 13, reversing the magnitude relationship and generating a deflection magnetic field distribution with an opposite slope to that shown in Figure 1. good.

又、投影歪は偏向角度が大きくなるに従って大きくなる
ので偏向角度に応じてコイル13.14に流す電流の比
又は差を適宜変える様にすれば偏向角度に拘らず投影歪
を除去することができる。
Furthermore, since projection distortion increases as the deflection angle increases, projection distortion can be removed regardless of the deflection angle by appropriately changing the ratio or difference in the currents flowing through the coils 13 and 14 according to the deflection angle. .

上述した実施例では偏向方向は一方向であるが、更に1
対のコイルを90°回転させた位置に設ければあらゆる
方向に偏向可能となる。
In the above-mentioned embodiment, the deflection direction is one direction, but the deflection direction is one direction.
By placing the pair of coils at positions rotated by 90 degrees, deflection in all directions is possible.

以上詳述した如く本発明によれば偏向に伴う投影歪を除
去することができ、その効果は極めて大きい。
As described in detail above, according to the present invention, projection distortion caused by deflection can be removed, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は像を移動させて1枚の乾板に複数枚
の像を投影することを説明するための図であり、第3図
及び第4図はその際発生する撮影歪を説明するための図
である。 第5図は本発明の一実施例を示す構成図であり、第6図
、第7図、第8図は第5図に示された実施例の動作を説
明するための図である。 11・・・・・・環状コア、12・・・・・・励磁電源
、13゜14・・・・・・コイル、15.16・・・・
・・電流調整回路。
Figures 1 and 2 are diagrams for explaining how multiple images are projected onto one dry plate by moving the image, and Figures 3 and 4 illustrate the photographic distortion that occurs at that time. It is a figure for explaining. FIG. 5 is a block diagram showing one embodiment of the present invention, and FIGS. 6, 7, and 8 are diagrams for explaining the operation of the embodiment shown in FIG. 5. 11... Annular core, 12... Excitation power supply, 13° 14... Coil, 15.16...
...Current adjustment circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 結像レンズの下部に少くとも一対のコイルから成る
電子線偏向装置を配置し、該コイルにより生成される偏
向磁場を珀い工試料像の結像位置を移動させ得るように
した電子顕微鏡において、前記一対のコイルに流す電流
値を異な゛らせる手段と、該コイルに流す電゛流の方向
を逆転する手段を設け、コイルに流す電流の方向の逆転
に対応して一対のコイルに流す電流値の大小関係を逆転
させるように構成したことを特徴とする電子顕微鏡。
1. In an electron microscope in which an electron beam deflection device consisting of at least one pair of coils is arranged below the imaging lens, and the deflection magnetic field generated by the coil can be used to move the imaging position of the specimen image. , a means for varying the value of the current flowing through the pair of coils, and a means for reversing the direction of the current flowing through the coils, and the current flowing through the pair of coils corresponds to the reversal of the direction of the current flowing through the coils. An electron microscope characterized in that it is configured to reverse the magnitude relationship of current values.
JP51115663A 1976-09-27 1976-09-27 electronic microscope Expired JPS5816589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51115663A JPS5816589B2 (en) 1976-09-27 1976-09-27 electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51115663A JPS5816589B2 (en) 1976-09-27 1976-09-27 electronic microscope

Publications (2)

Publication Number Publication Date
JPS5340264A JPS5340264A (en) 1978-04-12
JPS5816589B2 true JPS5816589B2 (en) 1983-03-31

Family

ID=14668213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51115663A Expired JPS5816589B2 (en) 1976-09-27 1976-09-27 electronic microscope

Country Status (1)

Country Link
JP (1) JPS5816589B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115544A (en) * 1956-04-25 1963-12-24 Hazeltine Research Inc Color-television receivers and deflection yokes
JPS4316532Y1 (en) * 1965-12-27 1968-07-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115544A (en) * 1956-04-25 1963-12-24 Hazeltine Research Inc Color-television receivers and deflection yokes
JPS4316532Y1 (en) * 1965-12-27 1968-07-09

Also Published As

Publication number Publication date
JPS5340264A (en) 1978-04-12

Similar Documents

Publication Publication Date Title
GB1564523A (en) Corpuscular beam transmission microscopes
JPS5961134A (en) Charged beam exposing device
US2360677A (en) Object support for electron microscopes
JPS585956A (en) Electron microscope
JPS5816589B2 (en) electronic microscope
US5745168A (en) Hole-size measuring system for CRT black matrix layer
JPH0697648B2 (en) Electron beam exposure system
SE438380B (en) METHOD OF PHOTOGRAPHIC PREPARATION OF IMAGES AND A PHOTOGRAPHIC NEGATIVE PLATE FOR USE THEREOF
US3401261A (en) Apparatus for investigating magnetic regions in thin material layers
JPS6333472Y2 (en)
JP2561739B2 (en) Lens device for electron microscope
US1740406A (en) Sound-recording apparatus
JPS5950042B2 (en) optical device
JPS5837043Y2 (en) Focusing device in microscope
JPS5928982B2 (en) Printing device
JPH1154401A (en) Electron-beam plotting method and device
JPS598905B2 (en) Cylindrical domain expander
JPS5868064A (en) Variable power image forming device
JPS5979525A (en) Electron beam exposure device
JPH0745506A (en) Electron beam lithography method and equipment
JPH02197051A (en) Permeation type phase difference electron microscope
JPS585954A (en) Dynamic focus correcting device
JPH0576512A (en) Image diagnostic device
JPH04188714A (en) Electron beam exposure device
JPS63141248A (en) Electron beam exposing device