JPS5816180B2 - Signal interpolation method in memory device - Google Patents

Signal interpolation method in memory device

Info

Publication number
JPS5816180B2
JPS5816180B2 JP52037198A JP3719877A JPS5816180B2 JP S5816180 B2 JPS5816180 B2 JP S5816180B2 JP 52037198 A JP52037198 A JP 52037198A JP 3719877 A JP3719877 A JP 3719877A JP S5816180 B2 JPS5816180 B2 JP S5816180B2
Authority
JP
Japan
Prior art keywords
memory device
signal
value
interpolation method
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52037198A
Other languages
Japanese (ja)
Other versions
JPS53123201A (en
Inventor
坂本卓
糸岡晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP52037198A priority Critical patent/JPS5816180B2/en
Priority to DE19782813519 priority patent/DE2813519C2/en
Priority to GB1214578A priority patent/GB1595122A/en
Publication of JPS53123201A publication Critical patent/JPS53123201A/en
Publication of JPS5816180B2 publication Critical patent/JPS5816180B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4007Interpolation-based scaling, e.g. bilinear interpolation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/17Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method
    • G06F17/175Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method of multidimensional data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6016Conversion to subtractive colour signals
    • H04N1/6019Conversion to subtractive colour signals using look-up tables

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えばカラースキャナもしくはカラーファク
シミリ等の如く、光電走査により色分解画像を作製する
装置における画像信号の色修正等に使用されるメモリ装
置の補正信号を補間する方法に関する。 従来、多色印刷用の写真製版作業における色修正には、
写真的マスキングによる方法が広く行なわれてきたが、
この写真的方法には、色修正能力に限界があること、熟
練した技術者を多数必要とすること、色分解結果が安定
せず、品質にムラができやすいこと、工程が複雑なこと
等、多くの欠点を有していた。 そのため、電子色分解装置、いわゆるカラースキャナに
よる色分解ならびに色修正(マスキング)方法が普及し
てきており、いまでは、この方法が主流となっている。 現在実用されているカラースキャナは、色修正計算の処
理速度を高めるために、はとんどが、アナログ信号によ
る計算方式を採用している。 しかしながら、アナログ信号による方式は、色計算機能
が限定されていて自由な計算式を導入することが困難な
こと、構成電気素子としての演算増幅器等の数が多く、
温度ドリフトおよびノイズ等の影響を避けがたいこと、
調整項目が多くなると、そのためのボリュームスイッチ
等が多くなって、操作性が低下すること、製作コストが
高いこと等、種々の欠点を有している。 と云って、現用のカラースキャナにおけるアナログ計算
部を、広い色修正可変範囲、高操作性等の利点を有する
ディジタル計算装置に、単に置換えただけでは、色修正
計算の速度が大幅に低下し処理能力が悪化して、実用的
ではなくなる。 一方、最近の印刷製版業界においては、より美しく、よ
り高品質の印刷物の要求が高まると同時に、作業の迅速
化をはかるため、カラースキャナによる色分解と同時に
、最終印刷物における画像寸法まで倍率変換し、網かけ
作業までを行なってしまう、いわゆるダイレクトスキャ
ナが出現している。 この場合、在来の如くスキャナで色分解した後、製版カ
メラで倍率変換および網かけを行なう方法とは異なり、
色分解後に、追加マスクやバンドレタッチにより色修正
を加える可能性が制約を受けるために、これらの要求に
応え、アナログ型カラースキャナにおける高速色計算処
理能力と、ディジタル型の高信頼性、広い色修正可変範
囲、高操作性等の利点を兼備する色修正方法が考えられ
ている。 すなわち、カラースキャナは、カラー原画を光電走査し
て、R(赤)、G(緑)、B(青)の3色分解信号を得
、これらのR,G、 B色分解信号を色演算回路に入れ
て、最終的にO(シアン)、M(マゼンタ)、Y(イエ
ロー)、K(ブラック:等の記録用信号を得るものであ
る。 この場合、カラー原画に対応する成る特定の色を、印刷
物として最も適正に再現するためには、C1へ4、Yイ
ンキ量(Kは説明を簡単にするため省略する)の組合わ
せも成る特定の組合わせとなるすなわち、3色分解信号
R,G、 Bの値の組合わせが決まれば、一義的にイン
キ量C,M、Yの組合わせが決定する。 したがって、R,、G、B値の成る組合わせによって、
対応するC、M、Y値の組合イっせを選択して色修正を
行なうには、あらかじめメモリ装置にそれぞれのR,G
、B値の組合わせに対応する色修正済みのC,M、Y値
の各組合わせを記憶蓄積しておき、R,G、B値の組合
わせをアドレス指定信号として、色修正済みのC,M、
Y値の組合わせを読み出す様にすれば良いと云うことに
なる。 しかしながら、R,、G、B値を、例えば個々の色濃度
の視覚上の段階として、それぞれ200段階にすると、
メモリ装置には、対応するC 、M。 Y値の組合わせを2003 (二s、ooo、ooo)
組記憶させなければならず、メモリ装置の価格が高価と
なり実用的でない。 そこで、メモリ装置の記憶容量を減少させるために、R
、G t B各色の値の濃度段階を例えば16段階とす
ると、前記対応するC、M、Y値の組合わせは163(
=4096)組となり、メモリ装置の記憶容量を減少す
ることができるが、実際には、濃度段階が粗らすぎて、
出力濃度差が目立ち、結果印刷物の品質が悪化するため
、各濃度段階の中間値を適宜補間する必要がある。 第1図は、説明を簡単にするため、補間する単位区分を
1とした2次元の場合を示す。 かかる場合において、単位補間区分A、BCD内に含ま
れる任意の点Pの値U(X t y ) −U(xi+
x (t y i+y f)を、数学的に妥当と思われ
る補間法により求めることを考えてみる。 ここでXiおよびylは整数、Xfおよびyfは小数部
分を示す。 そのためには、点Pが含まれている単位補間区分の各頂
点に、B、C,Dに、既知の値U (x アyi)、
U(xi+1、yi)、U(x1+]、yi+1)、U
(xl、y7+1)が付与されていることが必要であり
、しかも、求められたT−J (x 、y )の値が、
XfyflU(xl、yl)、U(x、+1、yi)、
U(x、+1、yi+1)、U(xl、y、+1)の関
数となっており、かつU(x + y )におけるXf
、yfが、Xf==Q、yr二〇の時にはU(Xl、y
、)に、x f=1. 、 y (二〇の時にはU(x
1+]−、y、)にXf−1、yf二1の時にはU (
x ++1.yi+1)に、Xf二二〇 、 y f=
=1の8償こはU(XI。 y +1)となっていることが必要である。 この様な条件を満たす補間方法には、次の様なものがあ
る。 すなわち、第1図と同様単位補間区分ABCDに含まれ
る点Pの値U (x + y )を求めるためには、第
2図に示す如く、まず、点Pから各辺AB 、 BC。 CD、DAに垂線を下して、各辺と交わる点をそれぞれ
Ql、C2,C3,C4とし、各頂点A、B。 C,Dにおける既知の値U(Xl、y。 )、U(x汁” t yi )、U(x、+1.y1+
1)、U(xl、yI+1)に、それらの頂点の対角位
置にある矩形の面積を乗じ、それらの積を加算して求め
る方法である。 U(xty)=U(x1+xf+yi+yf)”U(X
i 、Y i )・(1−x ()・(1−yf)+
U(xi+1tyi)・xf(1−yf)+U(x7.
yH+’)・(’ xf)・yf十U(X1+1tY
i+’)・XfYf・・・・−・−・・・・(I)こ
の(1)式に示す補間方法は、前記した条件を満す、数
学的に妥当なもので、この方法は、3次元の場合にも適
用されている。 第3図は、補間したい点Pを含む平面により、8個の直
方体に分割された単位立方体を示すもので、この場合は
、単位立方体における各頂点の既知の値に、各頂点と対
角位置にある直方体の体積を乗じ、それらの積を加算す
ることにより、点Pの値U(X、y、z)求めることが
できる。 すなわち、 U(X9yツz);U(Xi+xf、yi+yfツzi
+zf)=U(x i 、yH,z 1)(1−xl)
(1y f) 0(1−zf)+U(xi+1tVit
zi)”f(17()”(1−zf)+U(xi、yi
+Lzi)・(’−Xf)”yf(1−zf)+U(x
ityi 、xi+1)”(1−Xf)・(1−yf)
・zf+U(xi、yi+1、zi+1 ) ・(1−
x4)yf°zf+U(xi+1tyi )zi +1
)”f(” 3’f)”zf+U(xi+1tYi+1
tZi)”XfYfCI Zf’。 +U(Xi+1.yi−)−1,zi−)1)、xf@
yf、zf・・・・・・・・・・・・・・・・・・・・
・・・・・・・(II)かかる(II)式に示す補間方
法においては、補間区分の境界で補間値が不連続になる
ことはなく、単位立方体の各面心位置における補間値は
、その面に含まれる各頂点が有する既知の値の平均値と
なり、体心位置における補間値は、該単位立方体の8個
の頂点が有する既知の値の平均値となり、数値的にも妥
当な方法である。 しかしながら、かかる補間方法は、前記(II)式から
も明白な如く、4次の乗算を8回行ない、さら。 にそれらの積を加算する必要があるため、高速で演算す
ることが必要とされるメモリ装置の補間方法としては、
必ずしも最適の方法であるとはいえない。 また、前記(II)式に示す補間方法は、各単位立方。 体内部においては、連続した滑らかな接続の補間値が得
られるが、隣接する単位立方体の境界では、補間値の変
化分が不連続となり、その不連続の程度が大きくなる恐
れがある。 第4図は、かかる不都合を生ずる理由を簡単に・説明す
るため、前記(If)式の根拠となる(I)式で求めた
補間値の分布例を示すものである。 これは、前記(1)式に示す方法によって補間した際、
単位区分の境界における補間値の変化分が不連続となり
、しかもその不連続の程度が最も大きくなる場合の1例
を図示したもので、単位区分内における補間値の分布が
、いわゆる「鞍型」の面になっている。 この様な場合、単位区分ABCD内では、連続した滑ら
かな接続の補間値が得られるが、隣接する単位区分BE
FCとの境界では、補間値の変化分が不連続となる程度
が大きいと云う欠点がある。 かかる欠点を緩和するためには、第5図に示す如く、単
位区分ABCDにおける各頂点の既知の値に加え、各頂
点における値の平均値を有する面心01をも考慮して補
間する方法がある。 すなわち、補間したい点が単位補間区分0.AB、0□
BC。 0、CD、01DAのいずれに含まれるかを判別し、し
かる後、各単位補間区分についてリニアに補間する方法
である。 かかる方法は、前記した第4図に示す方法と比較して、
単位区分ABCD内においても、補間値の変化分が不連
続となる部分を生ずるが、隣接する単位区分BEFCと
の境界において補間値の変化分が不連続となる程度をか
なり小さくすることができる。 本発明は、補間したい単位区分を単位補間区分に分割し
、補間したい点がどの単位補間区分に含まれるかを判別
した後、判別された単位補間区分について、リニアに補
間する新規な方法を3次元まで発展させたもので、簡単
な計算式でジャンプのない補間値が得られ、高速での演
算を必要とされるメモリ装置の補間方法に最適な方法を
提供することを目的とする。 第6図は、3次元の基本立体である4面体ABCDを示
すもので、各頂点A、B、C,Dに既知の値が蓄積され
ている場合の4面体ABCD内に含まれる点Pの値を、
リニアな補間方法で求めてみる。 まず、4面体の各頂点A、B、C,Dと補間したい点P
とを結び、それらの各延長線が各頂点に対向する面と交
わる点を、それぞれA’、 B’、 C’、 D’とす
れば、点Pにおける補間値は、頂点Aにおける既知の値
とP A’/A A’、頂点Bにおける既知の値とpn
7gm′、頂点Cにおける既知の値とPC’/σで′、
頂点りにおける既知の値とP D’/毛)′を、それぞ
れ乗算したものの和として求められる。 第7図は、本発明に係る補間方法を説明するための単位
立方体である。 この単位立方体の各頂点A、B、C,D、E、F、G。 ■(には、既知の値すなわち、その点の函数として決め
られた値[J(Xi+yi+Zi)、U(x 1+1
t y 1Z 1 )、U(xi+1 +yi−1−1
.zi)、IJ(Xi、yi+1゜Z + )、IJ(
Xit Y i、z 1 + 1 )、U(Xi+1.
yl、X1モ1、)、U(Xi+1.yi+1.Xi+
1)、U(x7.yi+1゜zi+1)が蓄積されてお
り、面心Q0.Q21Q3゜Q4 + Q5 + Q6
については、その点の函数を各面心が含まれる面の4個
の頂点の函数の算術平均値とすることに、また体心0に
ついてはその点の函数を、当該立方体の全頂点の8個の
函数値の算術平均値とすることに定め、これは、補間す
べき単位立方体が定まった時点であらかじめ演算により
求めておくことにする。 本発明に係る方法は、単位立方体を、各頂点に既知の函
数値が蓄積された4面体である単位補間区分に分割し、
補間したい点がどの単位補間区分に含まれるかを判別し
た後、判別された単位補間区分についてリニアに補間す
るものである。 すなわち、第7図の如く、単位立方体ABCDEFGI
−Iを隣接する2個の頂点と、その左右いずれかの面心
と、体心とで形成される4面体24個に分割し、それら
4面体を単位補間区分として、補間したい点がいずれの
4面体に含まれているかを判別し、第6図で説明した如
くリニアに補間するものである。 第8図は、第7図示の単位立方体を分割した4面体の一
つを示す。 今、補間したい点Pが、(Xi+Xf、yi+yf。 X i+Z f )なる座標を有し、当該点Pが第8図
に示す如く、4面体ABQ10に含まれている場合(X
f−y(≧O,yf−z(−≧0、xf+y「1≦0の
場合))点Pにおける補間値u(xyytx)を求めて
いる。 4面体の各頂点A、B 、Ql、Oに蓄積された既知の
函数値をそれぞれC〜)、CB)、(Qt) 。
The present invention relates to a method for interpolating a correction signal of a memory device used for color correction of an image signal in an apparatus that creates color-separated images by photoelectric scanning, such as a color scanner or a color facsimile. Traditionally, color correction in photoengraving work for multicolor printing involves
Although methods using photographic masking have been widely used,
This photographic method has a limited ability to correct colors, requires a large number of skilled technicians, produces unstable color separation results, tends to have uneven quality, and has a complicated process. It had many drawbacks. Therefore, color separation and color correction (masking) methods using electronic color separation devices, so-called color scanners, have become widespread, and these methods are now the mainstream. Most color scanners currently in use use a calculation method using analog signals in order to increase the processing speed of color correction calculations. However, the method using analog signals has limited color calculation functions, making it difficult to introduce free calculation formulas, and requires a large number of operational amplifiers as constituent electric elements.
unavoidable effects of temperature drift and noise;
As the number of adjustment items increases, the number of volume switches and the like increases, resulting in various drawbacks such as decreased operability and high manufacturing costs. However, simply replacing the analog calculation unit in current color scanners with a digital calculation device, which has advantages such as a wide variable range of color correction and high operability, will significantly slow down the speed of color correction calculations and slow down the process. The ability deteriorates and becomes impractical. On the other hand, in recent years in the printing and plate making industry, the demand for more beautiful and higher quality printed matter has increased, and at the same time, in order to speed up the work, color separation using a color scanner and magnification conversion to the image dimensions of the final printed matter are being carried out. , so-called direct scanners have appeared that even perform shading operations. In this case, unlike the conventional method of separating the colors using a scanner and then converting the magnification and shading using a prepress camera,
Because the possibility of color correction using additional masks or band retouching after color separation is limited, in order to meet these demands, we developed the high-speed color calculation processing capability of analog color scanners and the high reliability and wide color range of digital scanners. Color correction methods have been considered that have advantages such as a variable range of correction and high operability. In other words, a color scanner photoelectrically scans a color original image to obtain three color separation signals of R (red), G (green), and B (blue), and sends these R, G, and B color separation signals to a color calculation circuit. Finally, recording signals such as O (cyan), M (magenta), Y (yellow), K (black) are obtained. , in order to reproduce the printed matter most appropriately, a specific combination of C1 to 4, Y ink amount (K is omitted for simplicity of explanation) is required, that is, the three color separation signals R, Once the combination of G and B values is determined, the combination of ink amounts C, M, and Y is uniquely determined. Therefore, depending on the combination of R, G, and B values,
To perform color correction by selecting a set of corresponding C, M, and Y values, store each R, G value in the memory device in advance.
, each combination of color-corrected C, M, and Y values corresponding to the combination of R, G, and B values is stored in memory, and the color-corrected C, M, and B value combinations are used as addressing signals. ,M,
This means that it is sufficient to read out the combination of Y values. However, if the R, G, and B values are set to 200 levels each as visual levels of individual color densities, for example,
The memory devices have corresponding C and M. The combination of Y values is 2003 (2s, ooo, ooo)
The memory device must be stored as a set, making the memory device expensive and impractical. Therefore, in order to reduce the storage capacity of the memory device, R
, G t B If the density levels of each color value are, for example, 16 levels, the combinations of the corresponding C, M, and Y values are 163 (
=4096), which can reduce the storage capacity of the memory device, but in reality, the density steps are too coarse,
Since the difference in output density is noticeable and the quality of printed matter deteriorates, it is necessary to appropriately interpolate the intermediate value of each density level. In order to simplify the explanation, FIG. 1 shows a two-dimensional case in which the unit segment to be interpolated is one. In such a case, the value U(X ty ) −U(xi+
Let us consider finding x (t y i + y f) using an interpolation method that seems to be mathematically valid. Here, Xi and yl are integers, and Xf and yf are decimal parts. To do this, for each vertex of the unit interpolation section in which point P is included, B, C, and D have known values U (x yi),
U(xi+1, yi), U(x1+], yi+1), U
It is necessary that (xl, y7+1) is given, and the value of T-J (x, y) obtained is
XfyflU(xl, yl), U(x, +1, yi),
It is a function of U(x, +1, yi+1), U(xl, y, +1), and Xf at U(x + y)
, yf is U(Xl, y
), x f=1. , y (at the age of 20, U(x
1+]-,y,), when Xf-1, yf21, U (
x ++1. yi+1), Xf220, y f=
It is necessary that the 8 compensation of =1 is U(XI. y +1). Interpolation methods that satisfy these conditions include the following. That is, in order to obtain the value U (x + y) of the point P included in the unit interpolation section ABCD, as in FIG. 1, first, as shown in FIG. 2, each side AB, BC is calculated from the point P. Drop perpendicular lines to CD and DA, and let the points that intersect with each side be Ql, C2, C3, and C4, respectively, and the vertices A and B. Known values U(Xl,y.), U(x"t yi), U(x,+1.y1+
1), U(xl, yI+1) is multiplied by the area of a rectangle located diagonally to these vertices, and the products are added together. U(xty)=U(x1+xf+yi+yf)”U(X
i , Y i )・(1−x ()・(1−yf)+
U(xi+1tyi) xf(1-yf)+U(x7.
yH+')・('xf)・yf1U(X1+1tY
i+')・XfYf・・・・−・−・・・・(I) The interpolation method shown in equation (1) is a mathematically valid one that satisfies the above-mentioned conditions. It is also applied to the case of dimensions. Figure 3 shows a unit cube divided into eight rectangular parallelepipeds by a plane containing the point P to be interpolated. In this case, each vertex and diagonal position are By multiplying by the volume of the rectangular parallelepiped and adding the products, the value U(X, y, z) of the point P can be obtained. That is, U(X9yz); U(Xi+xf, yi+yfz
+zf)=U(x i ,yH,z 1)(1-xl)
(1y f) 0(1-zf)+U(xi+1tVit
zi)"f(17()"(1-zf)+U(xi, yi
+Lzi)・('-Xf)"yf(1-zf)+U(x
ityi, xi+1)” (1-Xf)・(1-yf)
・zf+U(xi, yi+1, zi+1) ・(1-
x4)yf°zf+U(xi+1tyi)zi+1
)"f("3'f)"zf+U(xi+1tYi+1
tZi)"XfYfCI Zf'. +U(Xi+1.yi-)-1,zi-)1), xf@
yf, zf・・・・・・・・・・・・・・・・・・
(II) In the interpolation method shown in equation (II), the interpolated value does not become discontinuous at the boundary of the interpolation section, and the interpolated value at each face center position of the unit cube is The interpolated value at the body center position is the average value of the known values of the 8 vertices of the unit cube, which is a numerically valid method. It is. However, as is clear from equation (II), this interpolation method performs 4th order multiplication 8 times. The interpolation method for memory devices that requires high-speed calculations is as follows:
This is not necessarily the best method. Furthermore, the interpolation method shown in equation (II) above is based on each unit cube. Inside the body, continuous and smoothly connected interpolated values are obtained, but at the boundaries of adjacent unit cubes, the amount of change in interpolated values becomes discontinuous, and the degree of discontinuity may become large. FIG. 4 shows an example of the distribution of interpolated values obtained using equation (I), which is the basis for equation (If), in order to simply explain the reason for this inconvenience. When interpolated using the method shown in equation (1) above,
This figure shows an example of a case where the change in interpolated values at the boundary of a unit section is discontinuous, and the degree of discontinuity is the largest.The distribution of interpolated values within a unit section is so-called "saddle-shaped". It is on the side of In such a case, a continuous and smoothly connected interpolated value can be obtained within the unit section ABCD, but if the adjacent unit section BE
There is a drawback that the change in interpolated values is largely discontinuous at the boundary with FC. In order to alleviate this drawback, as shown in FIG. 5, there is a method of interpolation that takes into account not only the known values of each vertex in the unit segment ABCD but also the face center 01 which has the average value of the values at each vertex. be. In other words, the point you want to interpolate is in the unit interpolation section 0. AB, 0□
B.C. 0, CD, or 01DA, and then performs linear interpolation for each unit interpolation section. Compared to the method shown in FIG. 4 described above, this method has the following advantages:
Even within the unit section ABCD, there are parts where the change in the interpolated value is discontinuous, but the extent to which the change in the interpolated value becomes discontinuous at the boundary with the adjacent unit section BEFC can be considerably reduced. The present invention provides a novel method of dividing a unit segment to be interpolated into unit interpolation segments, determining which unit interpolation segment includes a point to be interpolated, and then linearly interpolating the determined unit interpolation segment. The purpose of this method is to provide an interpolation method for memory devices that requires high-speed calculations and that can obtain jump-free interpolated values using simple calculation formulas. Figure 6 shows the tetrahedron ABCD, which is a three-dimensional basic solid, and shows the points P included in the tetrahedron ABCD when known values are stored at each vertex A, B, C, and D. The value,
Try finding it using a linear interpolation method. First, each vertex A, B, C, D of the tetrahedron and the point P you want to interpolate.
If we connect the points where each extension line intersects with the surface facing each vertex as A', B', C', and D', then the interpolated value at point P is the known value at vertex A. and P A'/A A', the known value at vertex B and pn
7gm′, with the known value at vertex C and PC′/σ′,
It is obtained as the sum of the products of the known value at the apex and P D'/hair)'. FIG. 7 is a unit cube for explaining the interpolation method according to the present invention. Each vertex A, B, C, D, E, F, G of this unit cube. () has a known value, that is, a value determined as a function at that point [J(Xi+yi+Zi), U(x 1+1
ty 1Z 1 ), U(xi+1 +yi-1-1
.. zi), IJ(Xi, yi+1゜Z + ), IJ(
Xit Y i,z 1 + 1 ), U(Xi+1.
yl, X1mo1, ), U(Xi+1.yi+1.Xi+
1), U(x7.yi+1°zi+1) are accumulated, and the face center Q0. Q21Q3゜Q4 + Q5 + Q6
, the function at that point is taken as the arithmetic mean value of the functions of the four vertices of the face containing each face center, and for the body center 0, the function at that point is taken as the arithmetic mean value of the functions of the four vertices of the face containing each face center. It is determined that the arithmetic mean value of the function values is determined, and this value is calculated in advance when the unit cube to be interpolated is determined. The method according to the invention divides a unit cube into unit interpolation sections that are tetrahedrons in which known function values are accumulated at each vertex,
After determining which unit interpolation section includes a point to be interpolated, linear interpolation is performed for the determined unit interpolation section. That is, as shown in Figure 7, the unit cube ABCDEFGI
- Divide I into 24 tetrahedra formed by two adjacent vertices, their left and right face centers, and the body center, and use these tetrahedra as unit interpolation sections to determine which point you want to interpolate. It is determined whether it is included in a tetrahedron, and linear interpolation is performed as explained in FIG. FIG. 8 shows one of the tetrahedrons obtained by dividing the unit cube shown in FIG. Now, if the point P to be interpolated has the coordinates (Xi+Xf, yi+yf.X i+Z f ), and the point P is included in the tetrahedron ABQ10 as shown in FIG.
f-y (≧O, yf-z (-≧0, xf+y (if 1≦0)) Finds the interpolated value u (xyytx) at point P. Each vertex of the tetrahedron A, B, Ql, O Let the known function values stored in C~), CB), and (Qt) respectively.

〔0〕とし、各頂点A t B 、Ct Dと点Pとを
結ぶ延長線が各頂点に対向する面と交わる点を、それぞ
れA’、 B’、 C’、 D’とすれば、U(x、y
+z)=U(x1+xf、y1+yftz1+z3=〔
A〕・PA、7A A’+ CB )・P B’/B
B’+ (Q、 )・PQ′1/Q1Q1′+−
[0], and if the points where the extension line connecting each vertex A t B , Ct D and point P intersects with the surface facing each vertex are A', B', C', D', then U (x, y
+z)=U(x1+xf, y1+yftz1+z3=[
A]・PA, 7A A'+ CB)・PB'/B
B'+ (Q, )・PQ'1/Q1Q1'+-

〔0〕
・PO700’= (A、 )・(−(xf+y f−
1))+(B) ・(x f−y f)+(Qt ’:
1−(2(yf−zf))+(0)・(2zf) =
==−−(IIDたたし、(A ) = U (X i
t Y i 、Z i )〔B〕=U(X1+1.y
i、Zi) cQl ) =a (U(Xi +yi + Zi)+
U(X1+1 tyi+zi)±U(xi+12.Y7
+I tzi)+U(Xityi+11Xi)) ■ (0)= T−(U(X、 ty、 tz、 )+U(
X、+1. 。 yl、zl)+U(Xi+1 +yi+1t”i)”U
(Xity i+1 、zi)+U(x; ty7tz
i+1)+U(x7 +11 y iHz1+ 1)+
U(xi+’ tyi+1 、Z、−1−1)+u(x
i、y ;+17 z 、+1 ) )として求まる
。 同様にして、分割された残り23個の4面体に補間した
い点Pが含まれる場合について求め、まとめたものを第
9図に示す。 第9図において、Xf、yf、zf間等の大小関係など
を比較した判別欄によって、点Pがいずれの4面体に含
まれるかを、簡単に決定することができ、しかも、点P
における値を補間により求めるための計算式は、簡単な
加減算により求まる4つの係数と、対応する4個の頂点
に蓄積された既知の値とを乗算した後、それらの積を加
算するだけであるため、前記(II)式で説明した従来
の補間方法と比較して、はるかに容易な計算式となる。 ただし、判別欄の符号にに)を付した条件は、他の3つ
の条件が決まれば必然的に決まってしまうもので、判別
時には不要である。 しかも、かかる補間方法は、前記(II)式で説明した
従来の方法と同様、分割した単位補間区分の内部および
隣接する他の単位補間区分との境界で補間値が不連続と
なる恐れが全くない。 以上、本発明に係る一般的な:3次元の場合の補間方法
について記述したが、次に、本発明に係る補間方法を、
カラースキャナのメモリ装置管ニ適用する場合の如く、
より実際的な場合について検討を加えることとする。 本発明に係る補間方法をカラースキャナのメモリ装置に
適用する場合、記憶される信号は、前記した如く色補正
済み色分解信号であり、かかる信号値は、通常、比較的
単調な変化をするため、前記(III)式の補間方法の
場合に採用された単位立方体の各面心位置および体心位
置における値を省略し、単位立方体の各頂点に付与され
た既知の値だけを使用して、リニアに補間しても、生ず
る誤差は極くわずかで、実用的には無視し得る程度であ
る。 第10図は、本発明に係る補間方法を、より実剛的な方
法とするための単位立方体の分割法を図示したものであ
る。 便宜上、単位立方体の各頂点の座標を、図示する如く、
(Xi、yi、Zi)、(xi+1.yi、zi)、(
Xi+17yi+15Zi)、(xi、yi+Lzi)
、(Xi 9yi*Zi+1)、(x、−)−12Yi
tZi+1)。 (xi+12yi+1.zi+1)、(xi、yi+1
.zi+1)とすると、頂点(xi、yitZi)、(
xi+Ly i+Lz i)、 (x i ty i
、z i+1)、 (x i+1゜yi+1.zi
+1)を通るxf−yfなる平面、頂点(xi、yi、
zi)、(xi+1.yi、zi)(xi+1、yi+
1tZi+1)、(xi t 3’ i + 1 t
Z i+ 1 )を通るyf”Zfなる平面、および頂
面(X1t)’i 、zi(x i+1.y i、z
i+1)、 (x i+Ly i+1.z i+1)
、(xi、yi+1.zi)を通るzf=Xfなる平面
とで、6個の4面体に分割する方法である。 今、補間値を求めたい点Pの座標が(Xi+X1−+y
i+yf、zi+zf)で:、xftyftzr間に1
> x f≧Yf≧Zf≧Oなる関係がある場合、点
Pは第11図に示す如く、頂点の座標が(Xi、Yi、
Zi)、(xi+Lyitzil (xi+Lyi+L
zi))(x i+1 t y1+ 1 t Z i+
’ )なる4面体ABCD内に′″″:::4°、や、
9o8ゆ6イ60.。 (X、Yt2)を求めるには、前記した(IID式の場
合と同様、各頂点と点Pとを結ぶ姓長線が、各頂点に対
向する面と交わる点を、それぞれA′、B′、C′、D
′とし、各頂点における既知の値をU(xi、yi、z
i)、U(xi+1tyitz i)、U(xi+1t
y1+1tz1)、U(xi+1ty1+Lzi+1)
として、リニアに補間する。 すなわち、U(X、y、z)−U(Xi十xf、yi+
Y f > Z i+z O:U(x it Y it
z i) °PA’/A A’+U (x i+1
t y + t z i) ・PB’/B B’+ U
(xs +’ tY 1+i 、 z i) ・PC
’/CC’+U(x i+1 、 y i+1.Zi+
1)・可V面′=U(・i、Yi、”i)’(’ ”i
)+U(xi+1、yi、zi) ・(xf−y4)+
U(xi+1、yi+1、zi)・(yf−Zf)+U
(xi+1、yi+l、zi+1)・zf同様にして、
第10図の如く分割された残り5個の4面体に点Pが含
まれる場合についてまとめたものを第12図に示す。 この方法は、前記(nD式に示す方法と比較して、補間
したい点Pが有する座標値xf、yf、zfの大小関係
だけで、点Pがどの4面体に含まれているかが簡単に判
別できるとともに、点Pにおける補間値を求めるための
計算式も、さらに簡単な減算により求まる4つの係数と
、対応する4個の頂点における既知の値を乗算した後、
それぞれを加算するだけであるため、前記(III)式
と比較して、さらに実用的な補間方法と云える。 しかも、単位補間区分である4面体の内部は勿論、隣接
する他の単位補間区分との境界において、補間値が不連
続となる恐れは全くない。 第13図および第14図は、第10図の場合と同様、よ
り実用的で、かつその補間値が不連続とならない補間方
法を提供するため、単位立方体を4面体に分割する他の
方法、および該方法により分割された4面体を示すもの
である。 第13図および第14図に示す補間方法は、単位立方体
の互いに隣接する3個の面心を含む4千面で5個の4面
体に分割し、前記同様補間したい点Pがいずれの4面体
に含まれるかを判別した後、点Pが含まれる4面体につ
いてリニアに補間するものである。 かかる補間方法も、前記(IID式に示す方法と比較し
て、第10図で説明した方法と同様、単位補間区分の判
別および補間値を求めるための計算式が簡略化され、実
用的であり、しかも単位補間区分の内部は勿論、隣接す
る他の単位補間区分との境界で補間値が不連続になる恐
れは全くない。 これら第10図、第13図、第14図において説明した
補間方法では、前記した如く、単位立方体の各面心位置
および体心位置における補間値が、前記(III)式の
場合の様に、各面心が含まれる面における各頂点の函数
値の算術平均値、および該立方体の8個の頂点の函数値
の・算術平均値とは正確に一致しないで若干具なってく
る。 しかしながら、カラースキャナのメモリ装置として使用
される場合の如く、単位立方体に蓄積される信号値の変
化が極く単調な場合には、かかる誤差は無視することが
でき、逆により実用的な補間方法と云える。 以上の様に、本発明に係る信号補間方法は、単位立方体
を単位補間区分である4面体に分割し、補間したい点が
いずれの4面体に含まれているかを判別した後、判別さ
れた4面体についてリニアに補間するものであるため、
従来の補間方法に比較して、かなり簡単な計算式でジャ
ンプのない補間値が得られるとともに、隣接する単位立
方体の境界における補間値の変化分が不連続となる程度
を小さくすることができるため、該境界部分においても
、滑らかな補間が可能となる。 また、従来の補間方法と比較して、補間するための計算
式がかなり簡単になるため、高速での演算が必要とされ
るメモリ装置の補間方法に適しており、実装上からも演
算回路の作製が容易となる。
[0]
・PO700'= (A, )・(-(xf+y f-
1))+(B) ・(x f−y f)+(Qt':
1-(2(yf-zf))+(0)・(2zf)=
==--(IID addition, (A) = U (X i
t Y i , Z i ) [B]=U(X1+1.y
i, Zi) cQl ) = a (U(Xi +yi + Zi)+
U(X1+1 tyi+zi)±U(xi+12.Y7
+I tzi)+U(Xityi+11Xi)) ■ (0)=T-(U(X, ty, tz, )+U(
X, +1. . yl, zl)+U(Xi+1 +yi+1t"i)"U
(Xity i+1, zi)+U(x; ty7tz
i+1)+U(x7 +11 y iHz1+ 1)+
U(xi+' tyi+1 , Z, -1-1)+u(x
i, y ; +17 z , +1 ) ). Similarly, the cases where the point P to be interpolated is included in the remaining 23 divided tetrahedrons are determined, and a summary is shown in FIG. In FIG. 9, it is possible to easily determine which tetrahedron the point P is included in by using the judgment column that compares the size relationships among Xf, yf, zf, etc.
The calculation formula for finding the value of by interpolation is simply to multiply the four coefficients found by simple addition and subtraction by the known values accumulated at the corresponding four vertices, and then add those products. Therefore, the calculation formula is much simpler than the conventional interpolation method explained using formula (II) above. However, the conditions marked with ) in the discrimination column are necessarily determined once the other three conditions are determined, and are not necessary at the time of determination. Moreover, in this interpolation method, as with the conventional method explained in equation (II) above, there is no possibility that interpolated values will become discontinuous within the divided unit interpolation sections and at the boundaries with other adjacent unit interpolation sections. do not have. The general three-dimensional interpolation method according to the present invention has been described above.Next, the interpolation method according to the present invention is described as follows.
As in the case of color scanner memory device applications,
Let's consider a more practical case. When the interpolation method according to the present invention is applied to a memory device of a color scanner, the signals stored are color-corrected color separation signals as described above, and such signal values usually change relatively monotonically. , omitting the values at each face-centered position and body-centered position of the unit cube adopted in the case of the interpolation method of formula (III) above, and using only the known values given to each vertex of the unit cube, Even with linear interpolation, the error that occurs is extremely small and can be ignored in practical terms. FIG. 10 illustrates a method of dividing a unit cube to make the interpolation method according to the present invention more rigid. For convenience, the coordinates of each vertex of the unit cube are as shown in the figure.
(Xi, yi, Zi), (xi+1.yi, zi), (
Xi+17yi+15Zi), (xi, yi+Lzi)
, (Xi 9yi*Zi+1), (x,-)-12Yi
tZi+1). (xi+12yi+1.zi+1), (xi, yi+1
.. zi+1), the vertices (xi, yitZi), (
xi+Ly i+Lz i), (x i ty i
,z i+1), (x i+1゜yi+1.zi
+1), the plane xf-yf passes through the vertex (xi, yi,
zi), (xi+1.yi, zi) (xi+1, yi+
1tZi+1), (xi t 3' i + 1 t
yf''Zf passing through Z i+ 1 ), and the top surface (
i+1), (x i+Ly i+1.z i+1)
, (xi, yi+1.zi) and the plane zf=Xf, which divides the plane into six tetrahedrons. Now, the coordinates of the point P for which you want to find the interpolated value are (Xi+X1-+y
i+yf, zi+zf): 1 between xftyftzr
> x f≧Yf≧Zf≧O, the point P has the coordinates of the apex (Xi, Yi,
Zi), (xi+Lyitzil (xi+Lyi+L
zi)) (x i+1 t y1+ 1 t Z i+
' ) in the tetrahedron ABCD ''''':::4°, ya,
9o8yu6i60. . To find (X, Yt2), as in the case of the above-mentioned (IID formula), find the points where the long line connecting each vertex and point P intersects with the surface facing each vertex, A', B', B', C', D
′ and the known value at each vertex is U(xi, yi, z
i), U(xi+1tyitz i), U(xi+1t
y1+1tz1), U(xi+1ty1+Lzi+1)
, linearly interpolate. That is, U (X, y, z) - U (Xi + xf, yi +
Y f > Z i+z O:U(x it Y it
z i) °PA'/A A'+U (x i+1
t y + t z i) ・PB'/B B'+ U
(xs +' tY 1+i, z i) ・PC
'/CC'+U(x i+1, y i+1.Zi+
1)・Possible V surface′=U(・i, Yi, “i)′(′ “i
)+U(xi+1, yi, zi) ・(xf-y4)+
U(xi+1, yi+1, zi)・(yf-Zf)+U
(xi+1, yi+l, zi+1)・zf Similarly,
FIG. 12 shows a summary of the case where point P is included in the remaining five tetrahedra divided as shown in FIG. 10. Compared to the method shown in the above (nD formula), this method allows you to easily determine which tetrahedron a point P is included in by simply looking at the magnitude relationship of the coordinate values xf, yf, and zf of the point P you want to interpolate. At the same time, the calculation formula for determining the interpolated value at point P is as follows: After multiplying the four coefficients found by simple subtraction by the known values at the corresponding four vertices,
Since it is only necessary to add each value, it can be said that this is a more practical interpolation method than the above-mentioned formula (III). Moreover, there is no possibility that the interpolated values will be discontinuous not only inside the tetrahedron that is the unit interpolation section but also at the boundary with other adjacent unit interpolation sections. As in the case of FIG. 10, FIGS. 13 and 14 show another method of dividing a unit cube into tetrahedrons in order to provide an interpolation method that is more practical and does not cause discontinuity in interpolated values. and shows a tetrahedron divided by this method. In the interpolation method shown in FIGS. 13 and 14, a unit cube is divided into 5 tetrahedrons by 4,000 faces including three mutually adjacent face centers, and the point P to be interpolated is located on which tetrahedron as described above. After determining whether the point P is included in the tetrahedron, linear interpolation is performed for the tetrahedron in which the point P is included. Similar to the method explained in FIG. 10, this interpolation method also simplifies the calculation formula for determining the unit interpolation category and determining the interpolation value, compared to the method shown in the formula (IID), and is more practical. Moreover, there is no possibility that the interpolated value will be discontinuous not only inside the unit interpolation section but also at the boundary with other adjacent unit interpolation sections.The interpolation method explained in FIGS. 10, 13, and 14 Then, as described above, the interpolated value at each face center position and body center position of the unit cube is the arithmetic mean value of the function value of each vertex on the surface including each face center, as in the case of equation (III) above. , and the arithmetic mean value of the function values of the eight vertices of the cube do not exactly match and are slightly different. When the change in signal value is extremely monotonous, such errors can be ignored, and it can be said that this is a more practical interpolation method.As described above, the signal interpolation method according to the present invention It divides into tetrahedrons which are unit interpolation sections, determines which tetrahedron contains the point to be interpolated, and then linearly interpolates the determined tetrahedron.
Compared to conventional interpolation methods, interpolated values without jumps can be obtained using a fairly simple calculation formula, and the degree of discontinuity in changes in interpolated values at the boundaries of adjacent unit cubes can be reduced. , smooth interpolation is possible even at the boundary portion. In addition, since the calculation formula for interpolation is considerably simpler compared to conventional interpolation methods, it is suitable for interpolation methods for memory devices that require high-speed calculations, and from an implementation perspective, Fabrication becomes easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、単位区分が1である2次元の場合の補間方法
を説明するための図、第2図および第3図は、それぞれ
2次元および3次元の場合における従来の補間方法を説
明するための単位区分および単位立方体を示す図、第4
図は、従来法の欠点を説明するための補間値の分布例、
第5図は、第4図に示す分布を改良した補間値の分布例
、第6図は、4面体内の点における補間値をリニアに求
める方法を説明するためのもの、第7図は、本発明に係
る補間方法を説明するための単位立方体、第8図は、第
7図に示す単位立方体を分割した4面体の1つ、第9図
は、第7図に示す単位立方体を分割した24個の4面体
の相互関係を示す表。 第10図は、本発明に係る補間方法の他の実施例を説明
するための単位立方体、第11図は、第10図の単位立
方体を分割した単位補間区分、第12図は、第10図に
示す単位立方体を分割した6個の4面体のおのおのと、
補間したい点との関係を示す表、第13図および第14
図は、それぞれ本発明に係る補間方法のさらに他の実施
例を説明するための単位立方体と分割された単位補間区
分を示すものである。
Figure 1 is a diagram for explaining the interpolation method in a two-dimensional case where the unit division is 1, and Figures 2 and 3 are diagrams for explaining the conventional interpolation method in the two-dimensional and three-dimensional cases, respectively. Figure 4 showing unit divisions and unit cubes for
The figure shows an example of the distribution of interpolated values to explain the drawbacks of the conventional method.
FIG. 5 shows an example of the distribution of interpolated values that is an improved version of the distribution shown in FIG. A unit cube for explaining the interpolation method according to the present invention, FIG. 8 is one of the tetrahedrons obtained by dividing the unit cube shown in FIG. 7, and FIG. 9 is a tetrahedron obtained by dividing the unit cube shown in FIG. 7. A table showing the mutual relationships of 24 tetrahedra. FIG. 10 is a unit cube for explaining another embodiment of the interpolation method according to the present invention, FIG. 11 is a unit interpolation section obtained by dividing the unit cube in FIG. 10, and FIG. Each of the six tetrahedrons obtained by dividing the unit cube shown in
Tables showing the relationship with the points you want to interpolate, Figures 13 and 14
The figures each show a unit cube and divided unit interpolation sections for explaining still other embodiments of the interpolation method according to the present invention.

Claims (1)

【特許請求の範囲】 13次元のアドレス指定第1信号系の値に対応する第2
信号系の値が蓄積されたメモリ装置を用いて、所与の第
1信号系の入力値からそれに対応する第2信号系の値を
求めるに際して、前記メモリ装置アドレスを構成する単
位立方体を複数個の4面体に分割し、第1信号系の入力
値に対応する点を含む4面体の各頂点における第2信号
系の蓄積された値により、第1信号系の入力値に対応す
る第2信号系の値を、リニアに補間して求めることを特
徴とするメモリ装置における信号補間方法。 2 メモリ装置アドレスを構成する単位立方体を、該立
方体において隣接する2個の頂点と、該2個の頂点を含
む面の一方の面心と、当該立方体の体心とを頂点とする
24個の4面体に分割することを特徴とする特許請求の
範囲1記載のメモリ装置における信号補間方法。 3 メモリ装置アドレスを構成する単位立方体を、該立
方体の対角線方向に対向する2個の頂点においてそれぞ
れ隣接した3本の稜線のうち、対応する各陵線を結んで
形成される3平面により6個の4面体に分割することを
特徴とする特許請求の範囲1記載のメモリ装置における
信号補間方法。 4 メモリ装置アドレスを構成する単位立方体を、該立
方体における各頂角まわりに隣接する3本の稜線よりな
る4個の4面体、及びこれら4個の4面体で囲まれる内
部の4面体の5個の4面体に分割することを特徴とする
特許請求の範囲1記載のメモリ装置における信号補間方
法。
[Claims] 13-dimensional addressing The second signal system corresponding to the value of the first signal system
When determining the corresponding value of the second signal system from a given input value of the first signal system using a memory device in which values of the signal system are stored, a plurality of unit cubes constituting the memory device address are used. The second signal system corresponding to the input value of the first signal system is divided into four tetrahedrons, and the second signal system corresponding to the input value of the first signal system is calculated by the accumulated value of the second signal system at each vertex of the tetrahedron including the point corresponding to the input value of the first signal system. A signal interpolation method in a memory device, characterized in that a system value is obtained by linear interpolation. 2. A unit cube constituting a memory device address is divided into 24 cubes whose vertices are two adjacent vertices, the center of one of the faces containing the two vertices, and the body center of the cube. 2. The signal interpolation method in a memory device according to claim 1, wherein the signal interpolation method is performed in a memory device by dividing the signal into tetrahedrons. 3. A unit cube constituting a memory device address is divided into six units by three planes formed by connecting corresponding ridge lines among three adjacent ridge lines at two diagonally opposite vertices of the cube. The signal interpolation method in a memory device according to claim 1, characterized in that the signal interpolation method in a memory device is divided into four tetrahedrons. 4 The unit cube that constitutes the memory device address is divided into four tetrahedra consisting of three ridge lines adjacent to each vertex of the cube, and five internal tetrahedra surrounded by these four tetrahedra. The signal interpolation method in a memory device according to claim 1, characterized in that the signal interpolation method in a memory device is divided into four tetrahedrons.
JP52037198A 1977-04-01 1977-04-01 Signal interpolation method in memory device Expired JPS5816180B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52037198A JPS5816180B2 (en) 1977-04-01 1977-04-01 Signal interpolation method in memory device
DE19782813519 DE2813519C2 (en) 1977-04-01 1978-03-29 Interpolation method for color signals
GB1214578A GB1595122A (en) 1977-04-01 1978-03-29 Linear interpolating method for colour signals in a memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52037198A JPS5816180B2 (en) 1977-04-01 1977-04-01 Signal interpolation method in memory device

Publications (2)

Publication Number Publication Date
JPS53123201A JPS53123201A (en) 1978-10-27
JPS5816180B2 true JPS5816180B2 (en) 1983-03-30

Family

ID=12490868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52037198A Expired JPS5816180B2 (en) 1977-04-01 1977-04-01 Signal interpolation method in memory device

Country Status (3)

Country Link
JP (1) JPS5816180B2 (en)
DE (1) DE2813519C2 (en)
GB (1) GB1595122A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2260669A (en) * 1991-10-17 1993-04-21 Fuji Xerox Co Ltd Method for transforming color signals and apparatusfor the method
US5719956A (en) * 1994-10-17 1998-02-17 Fuji Xerox Co., Ltd. Image processing apparatus with separate color conversion for CMY signals and K signal
JP2003263492A (en) * 1999-10-29 2003-09-19 Kao Corp Hair color advice system
US6893114B2 (en) 2002-07-03 2005-05-17 Canon Kabushiki Kaisha Ink jet printing apparatus, image processing method and control program
US8325397B2 (en) 2007-02-23 2012-12-04 Seiko Epson Corporation Image processing device and image display device
US8335019B2 (en) 2008-12-26 2012-12-18 Konica Minolta Business Technologies, Inc. Image formation apparatus, color conversion program embodied on computer readable medium, and color conversion method

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052429B2 (en) * 1979-02-28 1985-11-19 大日本スクリ−ン製造株式会社 Color correction calculation method
DE3024459A1 (en) * 1979-07-03 1981-01-08 Crosfield Electronics Ltd PYRAMID INTERPOLATION
JPS57208765A (en) * 1981-06-18 1982-12-21 Dainippon Screen Mfg Co Ltd Signal interpolating method for memory device
JPS5827466A (en) * 1981-08-11 1983-02-18 Konishiroku Photo Ind Co Ltd Shading compensation device
GB2119600B (en) * 1982-04-14 1986-04-23 Fuji Photo Film Co Ltd Method and apparatus for digital color correction
JPS63162248A (en) * 1986-12-25 1988-07-05 Konica Corp Color separation image correction method and its apparatus
JPH01176561A (en) * 1987-12-29 1989-07-12 Konica Corp Color image processing apparatus
US5121196A (en) * 1988-11-18 1992-06-09 Konica Corporation Color processing method and apparatus with a color patch
WO1992018846A1 (en) * 1991-04-17 1992-10-29 Bemis Manufacturing Company Method and apparatus for data point analysis
DE59108557D1 (en) * 1991-10-16 1997-03-27 Abb Patent Gmbh KNOWLEDGE CONTROL AND CONTROL DEVICE
US5337166A (en) * 1992-02-14 1994-08-09 Fuji Xerox Co., Ltd. Color signal transforming apparatus
US5432892A (en) * 1992-11-25 1995-07-11 International Business Machines Corporation Volummetric linear interpolation
US5390035A (en) * 1992-12-23 1995-02-14 International Business Machines Corporation Method and means for tetrahedron/octahedron packing and tetrahedron extraction for function approximation
DE4343362C2 (en) * 1993-04-08 1996-08-14 Linotype Hell Ag Werk Kiel Process for creating harmonious color corrections
US5489921A (en) * 1993-04-08 1996-02-06 Linotype-Hell Ag Method for generating uniform color area definitions with addition and removal operators
US5737214A (en) * 1993-06-09 1998-04-07 Abb Patent Gmbh Method for controlling a function unit with a steering and control device
US5715376A (en) * 1994-01-31 1998-02-03 Canon Kabushiki Kaisha Data transformation apparatus
US6072464A (en) * 1996-04-30 2000-06-06 Toyota Jidosha Kabushiki Kaisha Color reproduction method
US6933949B1 (en) 1997-02-26 2005-08-23 Hewlett-Packard Company Method for interpolation of tristimulus color data
US5870077A (en) * 1997-02-26 1999-02-09 Hewlett-Packard Company Method for tristimulus color data non-linear storage, retrieval, and interpolation
FR2764415B1 (en) * 1997-06-09 2001-06-08 Art Quest PROCESS FOR CHROMATICALLY MODIFYING AN IMAGE IN ELECTRONIC FORMAT FOR ITS PRINTING
JP3912903B2 (en) 1998-07-02 2007-05-09 キヤノン株式会社 Data conversion method and apparatus
US7199900B2 (en) 2000-08-30 2007-04-03 Fuji Xerox Co., Ltd. Color conversion coefficient preparation apparatus, color conversion coefficient preparation method, storage medium, and color conversion system
JP4252748B2 (en) 2001-12-05 2009-04-08 ブラザー工業株式会社 Conversion table generation method, program, color copier
JP4062924B2 (en) 2002-01-24 2008-03-19 コニカミノルタホールディングス株式会社 Color image processing method and color image processing apparatus
JP4250493B2 (en) 2003-10-01 2009-04-08 キヤノン株式会社 Color conversion matrix generation method, color conversion table creation method and program
US7616210B2 (en) 2005-08-23 2009-11-10 Canon Kabushiki Kaisha Memory apparatus and memory control method
JP2007158968A (en) 2005-12-07 2007-06-21 Canon Inc Information processing apparatus and information processing method
JP4651108B2 (en) 2006-02-20 2011-03-16 キヤノン株式会社 Conversion table compression method and program, and conversion table compression apparatus
JP5159115B2 (en) * 2007-01-30 2013-03-06 キヤノン株式会社 Image processing apparatus and image processing method
US8164597B2 (en) 2007-04-10 2012-04-24 Kawasaki Microelectronics, Inc. Color conversion circuit and method of color conversion using interpolation from conversion coefficients some of which are substituted
JP4836867B2 (en) 2007-05-25 2011-12-14 株式会社リコー Color conversion apparatus, color conversion method, and color conversion program
JP5354875B2 (en) 2007-06-20 2013-11-27 キヤノン株式会社 Color processing apparatus and color processing method
DE102018202522A1 (en) * 2017-03-22 2018-09-27 Heidelberger Druckmaschinen Ag Method for optimized color control in a printing machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893166A (en) * 1972-01-05 1975-07-01 Crosfield Electronics Ltd Colour correcting image reproducing methods and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2260669A (en) * 1991-10-17 1993-04-21 Fuji Xerox Co Ltd Method for transforming color signals and apparatusfor the method
GB2260669B (en) * 1991-10-17 1995-11-08 Fuji Xerox Co Ltd Method for transforming color signals and apparatus for the method
US5719956A (en) * 1994-10-17 1998-02-17 Fuji Xerox Co., Ltd. Image processing apparatus with separate color conversion for CMY signals and K signal
JP2003263492A (en) * 1999-10-29 2003-09-19 Kao Corp Hair color advice system
US6893114B2 (en) 2002-07-03 2005-05-17 Canon Kabushiki Kaisha Ink jet printing apparatus, image processing method and control program
US8325397B2 (en) 2007-02-23 2012-12-04 Seiko Epson Corporation Image processing device and image display device
US8335019B2 (en) 2008-12-26 2012-12-18 Konica Minolta Business Technologies, Inc. Image formation apparatus, color conversion program embodied on computer readable medium, and color conversion method

Also Published As

Publication number Publication date
DE2813519C2 (en) 1982-05-27
DE2813519A1 (en) 1978-10-05
JPS53123201A (en) 1978-10-27
GB1595122A (en) 1981-08-05

Similar Documents

Publication Publication Date Title
JPS5816180B2 (en) Signal interpolation method in memory device
US4275413A (en) Linear interpolator for color correction
KR830001764B1 (en) Digital Color Correction
JP2994153B2 (en) Color signal converter
US4992861A (en) Color image reproduction apparatus having a digitally operated look-up table constructed by means of a least squares algorithm
US4511989A (en) Linear interpolating method and color conversion apparatus using this method
US4603348A (en) Method for composing addresses of a memory
US4060829A (en) Method of color correction
US5311332A (en) Interpolation method and color correction method using interpolation
US5751845A (en) Method for generating smooth color corrections in a color space, particularly a CIELAB color space
US4127871A (en) Method of color correction including transforming co-ordinate systems of color separation signals
US5696839A (en) Method and apparatus for reproducing an image employing a transformation of color solids
EP1221812B1 (en) Fast interpolation of large color lookup tables
US5564006A (en) Real time transformation between color spaces
USRE37940E1 (en) Interpolation method and color correction method using interpolation
US6108038A (en) Color video camera for generating a luminance signal with unattenuated harmonics
GB2198008A (en) Limiting component video signal
JPS5827146A (en) Interpolator for scanning line in photoengraving system for video image
JPS5941227B2 (en) Signal interpolation method in memory device
JPS58178355A (en) Method and device for digital color correction
WO1995033331A1 (en) Real time transformation between color spaces
JP3707091B2 (en) Color image processing device
JP3743036B2 (en) Color conversion method and color conversion apparatus
JPH0969961A (en) Color conversion device
JP3024370B2 (en) Imaging device with horizontal line interpolation function