JPS58161396A - Soldering method using laser beam - Google Patents

Soldering method using laser beam

Info

Publication number
JPS58161396A
JPS58161396A JP4267582A JP4267582A JPS58161396A JP S58161396 A JPS58161396 A JP S58161396A JP 4267582 A JP4267582 A JP 4267582A JP 4267582 A JP4267582 A JP 4267582A JP S58161396 A JPS58161396 A JP S58161396A
Authority
JP
Japan
Prior art keywords
solder
laser beam
soldering
printed circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4267582A
Other languages
Japanese (ja)
Inventor
鈴木 宗伸
近岡 良作
諸井 深水
昇 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4267582A priority Critical patent/JPS58161396A/en
Publication of JPS58161396A publication Critical patent/JPS58161396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はプリント回路板の部品の実装方法に係り、特に
プリント回路基板と実装電子部品の接合に好適な半田付
は方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for mounting components on a printed circuit board, and particularly to a soldering method suitable for joining a printed circuit board and mounted electronic components.

従来のプリント回路板は、基板に電子部品を装着後、半
田ごて、半田浴への浸漬等によって半田付けされて実装
さnていた。これらの方法は、例えば半田ごてでは能率
が悪く、また半田浴への浸漬では熱やフラツクスの影響
を受は易い電子部品へは適用できないなどの制約がめっ
た。
Conventional printed circuit boards are mounted by mounting electronic components on the board and then soldering them using a soldering iron, dipping in a solder bath, or the like. These methods have many limitations, such as being inefficient when used with a soldering iron, and being unable to be applied to electronic components that are easily affected by heat and flux when immersed in a solder bath.

本発明の目的は、上記した従来技術の欠点をなくし、電
子部品に影#を与えることなく簡単に半田付けが行える
方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method that eliminates the above-mentioned drawbacks of the prior art and allows easy soldering without casting a shadow on electronic components.

このため本発明は、局部を瞬間的に加熱できるレーザビ
ームを用いて基板および電子部品のIJ−ド線を加熱し
、半田として線状半田を用い、線状半田ヲレーザビーム
で予熱して半田付けを行うようにしたものである。
For this reason, the present invention uses a laser beam that can instantaneously heat local parts to heat the IJ-wires of the board and electronic components, uses linear solder as the solder, and preheats the linear solder with the laser beam to perform soldering. This is what I decided to do.

第1図に本発明の原理図、第2図に半田付は過程の熱サ
イクルを示す。第1図において、プリント基板1のスル
ホール2に挿入された電子部品のリード線4の上部よシ
レーザピーム5(レーザビーム発生装置及び東光光学系
は図示せず)を照射し、被接合部が一定温度に達したと
ころで、被接合部より一定間隔tに保っておった線状半
田6を供給して(供給装置は図示せず)半田付けを行う
ものである。
Fig. 1 shows the principle of the present invention, and Fig. 2 shows the thermal cycle of the soldering process. In FIG. 1, a laser beam 5 (laser beam generator and Toko optical system are not shown) is irradiated onto the top of a lead wire 4 of an electronic component inserted into a through hole 2 of a printed circuit board 1, and the part to be joined is kept at a constant temperature. When this is reached, soldering is performed by supplying linear solder 6 kept at a constant interval t from the parts to be joined (the supply device is not shown).

第2図は上述の半田付は過程の熱サイクルを模式的に示
したものである。レーザ照射によって被接合部は実線の
ように温度上昇する。レーザ照射と同時スタートした線
状半田は、レーザビームに進入すると点線のように温度
上昇して、半田の先端が溶融して被接合部に達すると、
被接合部が予熱されているため溶融半田は容易に周囲へ
広がる。
FIG. 2 schematically shows the thermal cycle of the soldering process described above. As a result of laser irradiation, the temperature of the part to be joined increases as shown by the solid line. The linear solder, which started at the same time as the laser irradiation, rises in temperature as shown by the dotted line as it enters the laser beam, and when the tip of the solder melts and reaches the part to be joined,
Since the parts to be joined are preheated, the molten solder easily spreads to the surrounding area.

線状半田はさらにt2間送給され、その後すみやかに引
き戻され次の準備に入る。レーザビームは線状半田引戻
し開始後引続いて18間照射し、被接合部への溶融半田
の浸透を確実にさせる。
The linear solder is further fed for a period of t2, after which it is immediately pulled back to prepare for the next step. The laser beam is continuously irradiated for 18 hours after the start of linear solder pullback to ensure that the molten solder penetrates into the parts to be joined.

半田付は条件としては、ビーム出力(投入パワー)、照
射時間、集光レンズの焦点距離、ビームの焦点位置、供
給半田の線径、供給速度、供給量(供給時間)、予熱及
び後熱サイクルなど多くの因子がある。
The conditions for soldering are beam output (input power), irradiation time, focal length of the condensing lens, focal position of the beam, wire diameter of supplied solder, supply speed, supply amount (supply time), preheating and post-heating cycles. There are many factors such as

ビーム出力及び照射時間は被接合部の形状、挿入部品の
寸法、材質などヒートマスによって決まるもので、個々
に適正条件を定めておく。集光レンズの焦点距離、ビー
ムの焦点位置は、接合部でのビームの拡が9に関係し、
線状半田の供給条件と密接に関連してくる。
The beam output and irradiation time are determined by the heat mass, such as the shape of the part to be joined, the dimensions of the inserted parts, and the material, and appropriate conditions are determined individually. The focal length of the condensing lens and the focal position of the beam are related to the spread of the beam at the junction.
This is closely related to the supply conditions of linear solder.

第3図はビームの焦点位置を模式的に3つの状態で示し
たものであるが、(A)は被接合部光面より内部(矢印
方向にレーザビームが照射され、プリント基板1よシ下
)で、(B)は表面C1(C)は上部で、それぞれ集光
されていることを示している。この3つの状態の中では
、被接合部全体を加熱し、しかも供給半田の予熱も兼用
できるという点で、(C)の状態が好ましい。(A)の
状態でも極端に焦点位fI!、を下げれば(C)と同じ
効果が期待できるが、基板の下にある挿入部品へ損Sk
与える危険がある。(C)の方法で焦点位置をどこにと
るかは、ビーム出力及び照射時間と同じく被接合部の状
態によって決まる個有の条件である。
Figure 3 schematically shows the focal position of the beam in three states. (A) shows the position inside the optical surface of the part to be joined (the laser beam is irradiated in the direction of the arrow, and the position is below the printed circuit board 1). ), and (B) shows that the surface C1 (C) is the upper part and the light is focused respectively. Among these three states, state (C) is preferable in that it can heat the entire part to be joined and also preheat the supplied solder. Even in state (A), the focal position fI is extremely high! The same effect as (C) can be expected by lowering , but the loss to the inserted parts under the board will be
There is a danger of giving. Where to place the focal point in the method (C) is a unique condition determined by the state of the parts to be joined, as well as the beam output and irradiation time.

半田の供給条件は、半田の予熱、溶融過程に関連する。The solder supply conditions are related to solder preheating and melting process.

第4図において、(A)は線状半田6がレーザビームで
加熱される範囲に入る直前(点線より右側がレーザビー
ムによる加熱域)を示し、(B)は線状半田がレーザビ
ームを通過中に加熱され、被接合部に接触する直前では
先端部が半溶融状態になっていることを示している。即
ち線状半田の供給速度は(A)の位置を起点にして(B
)の状態になる速度を目標に選定される。また線状半田
の供給時間は被接合部を埋めつくすのに必要な半田量か
ら決められる。
In FIG. 4, (A) shows the linear solder 6 just before entering the range where it is heated by the laser beam (the area to the right of the dotted line is the area heated by the laser beam), and (B) shows the linear solder 6 passing through the laser beam. This shows that the tip is heated inside and is in a semi-molten state just before contacting the part to be joined. In other words, the supply speed of linear solder is from position (A) as the starting point to position (B).
) is selected based on the target speed. Further, the supply time of the linear solder is determined based on the amount of solder required to completely fill the parts to be joined.

第5図および第6図は具体的な装置構成を示す図である
。基本構成は、レーザビームを発生させるレーザ発振器
12.レーザビームを半田付は部まで導く加工光学ユニ
ット13.あるいはファイバーユニット19.半田を自
動供給する半田自動供給装置14.プリント基板5を移
動させるXYzステージ16.あるいはレーザビームを
移動させるロボット20.レーザビームの出力、照射時
間などを制御するレーザ制御盤10.XYZステージを
制御するNetttt+a盤17.あるいはロボットを
制御するロボット制御盤21.全体を制御するシーケン
サ18で構成されている。
FIG. 5 and FIG. 6 are diagrams showing a specific device configuration. The basic configuration consists of a laser oscillator 12 that generates a laser beam. Processing optical unit 13 that guides the laser beam to the soldering part. Or fiber unit 19. Automatic solder supply device that automatically supplies solder 14. XYz stage 16 for moving the printed circuit board 5. Or a robot that moves the laser beam 20. Laser control panel 10 that controls laser beam output, irradiation time, etc. Netttt+a board that controls the XYZ stage 17. Or a robot control panel 21 that controls the robot. It is composed of a sequencer 18 that controls the entire system.

半田付は位置の移動方法に関しては、第5図ではレーザ
ビームを固定として、プリント基板を移動させ、半田付
けを行う方法である。又、第6図は逆にプリント基板を
固定して、レーザビームを移動させ、半田付けを行う方
法である。
Regarding the method of moving the position of soldering, as shown in FIG. 5, the laser beam is fixed and the printed circuit board is moved to perform soldering. Moreover, FIG. 6 shows a method in which the printed circuit board is fixed and the laser beam is moved to perform soldering.

次にレーザビームの照射方法は、第5図では上から下方
向に照射する。第6図では、ファイバーを使用している
のでフレキシブルであシレーザビームを任意の位置に導
く事が容易である。この事から第7図(A)に示すよう
に横方向から照射が可能である。同じく第7図(B)の
ように下方向から、あるいは第7図(C)のように斜め
方向からと多方向からの照射が可能である。
Next, as for the method of irradiating the laser beam, in FIG. 5, the laser beam is irradiated from top to bottom. In FIG. 6, since a fiber is used, it is flexible and it is easy to guide the laser beam to any desired position. From this, it is possible to irradiate from the side as shown in FIG. 7(A). Similarly, irradiation can be performed from multiple directions, such as from below as shown in FIG. 7(B) or from an oblique direction as shown in FIG. 7(C).

実験の結果、どの方向からレーザビームを照射しても半
田付けが良好に行い得ることは確認済みである。これか
ら言えることは、現状のこて半田作業のように後付は部
品をプリント基板に挿入後、後付は部品がf#rちない
ようにピンの一部を曲げてプリント基板に仮固定し裏返
して半田付けを行うことがなくなる。後付は部品をプリ
ント基板に上から挿入したままの状態で下から半田付け
が可能となるので、後付は部品を自動挿入機で挿入後、
その状態のまま半田付けが可能となり、自動化が容易と
なる利点がある。
As a result of experiments, it has been confirmed that soldering can be performed well no matter which direction the laser beam is irradiated. What I can say from this is that, like the current soldering work with a soldering iron, in retrofitting, after inserting the component into the printed circuit board, in retrofitting, part of the pin is bent and temporarily fixed to the printed circuit board to prevent the component from f#r. There is no need to turn it over and solder. Retrofitting allows parts to be inserted into the printed circuit board from above and soldered from below, so after inserting the parts with an automatic insertion machine,
Soldering can be performed in that state, which has the advantage of facilitating automation.

ファイバーを使用できる他の利点として、第7図(D)
に示すようにファイバーを多数個差べて同時に多点の半
田付けが可能となる。又第7図(B)のようにファイバ
ーをスキャンさせて半田付けを行う事も可能である。
Another advantage of using fibers is as shown in Figure 7 (D).
As shown in Figure 2, it is possible to solder multiple points at the same time by connecting multiple fibers. It is also possible to perform soldering by scanning the fiber as shown in FIG. 7(B).

次に半田自動供給装置の送り部を第8図、半田供給の先
端部を第9図に一例として示す。第8図の動作としては
、線状半田31は矯正ローラ32の間を通ることによっ
て、反り9曲シを矯正される。次に線状半田31は外周
にローレット加工した送如ローラ33によって前方に送
られガイドチューブ35に送υ出される。線状半田31
は軟かいため曲シやすく、ガイドチューブ35の入口で
まるまってつまる現象が実験段階で発生し、これを予知
する手段として絶縁物36を介してチューブセットネジ
34と線状半田31が短絡した時の信号を利用するよう
にしたものである。
Next, the feed section of the automatic solder supply device is shown in FIG. 8, and the tip of the solder supply is shown in FIG. 9 as an example. In the operation shown in FIG. 8, the linear solder 31 passes between the correction rollers 32 to correct nine warps. Next, the linear solder 31 is sent forward by a delivery roller 33 whose outer periphery is knurled and delivered to a guide tube 35. Linear solder 31
Because it is soft, it bends easily, and a phenomenon in which the guide tube 35 curled up and got stuck at the entrance of the guide tube 35 occurred during the experimental stage.As a means of predicting this, the tube set screw 34 and the linear solder 31 were short-circuited through the insulator 36. It is designed to use time signals.

第9図の構成はガイドチューブ35の外側に導電チュー
ブ(Cuメッキされたパイプ)を設け、その外周に半田
突出し長さ制御センサー37を設けだものである。前述
した通シ、半田は半田付は部に確実に常に一定量供給さ
れ、又レーザビームとタイミング良く供給、引戻しされ
、次の供給時は、第1図のtが常に一定の位置にあるこ
とが重要である。第9図は第1図のtの位fill全一
定にするための位置センサーの例である。線状半田31
は供給送りされ、半田終了後、Bの位置まで引き戻され
、再びAの位置まで送られる。この時点で線状半田31
と導電チューブ38が短絡した時の信号によって位置紫
一定に制御できる例である。
In the configuration shown in FIG. 9, a conductive tube (Cu-plated pipe) is provided on the outside of the guide tube 35, and a solder protrusion length control sensor 37 is provided on the outer periphery of the conductive tube. As mentioned above, the solder must always be supplied in a constant amount to the soldering part, and be supplied and pulled back in good timing with the laser beam, so that when the next supply is made, t in Figure 1 is always at a constant position. is important. FIG. 9 is an example of a position sensor for keeping the position t in FIG. 1 completely constant. Linear solder 31
is supplied and fed, and after soldering is completed, it is pulled back to position B, and then sent to position A again. At this point, the linear solder 31
This is an example in which the position can be controlled to be constant in purple by a signal when the conductive tube 38 is short-circuited.

線状半田31の送り速度、送り量、送給開始。Feed speed, feed amount, and feed start of linear solder 31.

停止及びレーザビームとの同期等の制御はプログラムで
自由に制御することができる。位置センサーの方式は、
なるべく半田付は部に近づけられることが理想であるの
で、小形で軽筐、レーザビームの熱影響の受けない方式
であれば望ましい。空気マイクロメータ式、@いリミッ
ト式、差動トランス式、光(レーザ)遮断式などが考え
られる。
Controls such as stopping and synchronization with the laser beam can be freely controlled by a program. The position sensor method is
Ideally, the soldering should be done as close to the parts as possible, so it is desirable to use a method that is small, has a light casing, and is not affected by the heat of the laser beam. Possible options include air micrometer type, @limit type, differential transformer type, and light (laser) blocking type.

次にレーザの焦点位置は第5図ではXYZステージの調
整で可能であり、第6図ではロボットの位置制御で自由
に制御可能である。
Next, the focal position of the laser can be freely controlled by adjusting the XYZ stage in FIG. 5, and by controlling the position of the robot in FIG. 6.

第10図はプリント回路板に装着されているコネクター
7のピン(リード端子)4をプリント基板1へ半田付け
する例を示しである。本芙施例では、(A)に示す各部
品を装着している面を裏にして、(B)に示す裏面側を
上にして半田付けしている。(C)は(B)のA−A’
断面で実施状況を示しているが、プリント基板は一般に
用いられている板厚1.6諺のエポキシ系樹脂で、スル
ホールは穴径1.0簡で半田メッキ8されている。コネ
クターのピン4の直径は0.8 mで、基板面より3+
m(ho)突き出ている。熱源としてはYAGレーザ(
波長1.06μm)を用い、次の条件で接合することに
よって、(D)に示すように、基板とピンが半田9で良
くぬれ、良好な結果が得られている。
FIG. 10 shows an example of soldering the pins (lead terminals) 4 of the connector 7 mounted on the printed circuit board to the printed circuit board 1. In this embodiment, soldering is performed with the side shown in (A) on which each component is mounted facing down, and the back side shown in (B) facing up. (C) is AA' of (B)
As shown in the cross section, the printed circuit board is made of a commonly used epoxy resin with a thickness of 1.6 mm, and the through holes have a diameter of 1.0 mm and are plated with solder. The diameter of pin 4 of the connector is 0.8 m, and it is 3+ from the board surface.
m(ho) protrudes. YAG laser (
By using a wavelength of 1.06 μm) and bonding under the following conditions, the substrate and pins were well wetted with the solder 9, as shown in (D), and a good result was obtained.

接合条件 1、 レーザビーム (1)  ビーム出カニ40W(連続押力)(2)  
ビームの集魚位置 (9) h、ニア5關(集光レンズの焦点距離)h、:30m (3)照射時間:1.0秒(第2図のT)2.111i
l状半田の供給 (1)材質:60%Sn、40%Pb (7ラソクス入
り) (2)線径:0.8關 (3)送給速度: 10 g/5ec (4)レーザビームとの同期(第2図の各記号ン’+=
t/半田の送給速度−Q、 45ect 、 = 0.
5 sec 、  t 3: 0.1 sec’r =
 t、 十t、 +t、 = i、 osecL=4t
n 本発明は、上述のスルホールのあるプリント基板以外に
、例えばハイブリッド集積回路板への部品の而づけにも
適用でき、またレーザビームの種類、照射方向によって
制限されるものでない。さらに上述の接合条件は、被接
合部の形態によって決まる固有のもので、基板の材質、
装着部品の種類、接合部の形状及びサイズ等によって変
わる。
Bonding conditions 1, laser beam (1) beam output 40W (continuous pushing force) (2)
Fish gathering position of the beam (9) h, near 5 (focal length of the condensing lens) h, : 30m (3) Irradiation time: 1.0 seconds (T in Figure 2) 2.111i
Supply of L-shaped solder (1) Material: 60% Sn, 40% Pb (7 lasox included) (2) Wire diameter: 0.8 mm (3) Feeding speed: 10 g/5ec (4) Connection with laser beam Synchronization (each symbol in Figure 2)
t/solder feeding speed-Q, 45ect, = 0.
5 sec, t3: 0.1 sec'r =
t, 10t, +t, = i, osecL=4t
n The present invention is applicable not only to the above-mentioned printed circuit board with through holes, but also to mounting components on, for example, a hybrid integrated circuit board, and is not limited by the type of laser beam or the direction of irradiation. Furthermore, the above-mentioned bonding conditions are unique and determined by the form of the parts to be bonded, such as the material of the substrate,
It varies depending on the type of parts to be installed, the shape and size of the joint, etc.

(10) しかし個々に適正条件を求めておけば、全てのプリント
回路板に対し再現性良く半田付けすることができる。
(10) However, if appropriate conditions are determined for each individual, it is possible to solder all printed circuit boards with good reproducibility.

以上本発明によれば、局部を瞬間的に半田付けできるの
で、広範囲のプリント回路板に適用可能で、従来のとて
半田に比べて数分の−の短時間で半田付けを行うことが
できる。
As described above, according to the present invention, local parts can be soldered instantly, so it can be applied to a wide range of printed circuit boards, and soldering can be performed in a short time of several minutes compared to conventional soldering. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる半田付は方法を示す原理図、第2
図は熱サイクルを示す図、第3図はレーザビームの焦点
位置と基板との関係を示す図、第4図はレーザビームと
線状半田との関係を示す図、第5図および第6図は半田
付は装置の概略構成図、第7図はファイバーユニットと
基板との関係を示す図、第8図は線状半田自動供給装置
を示す図、第9図はm状半田の先端部を示す断面図、第
10図はプリント基板への電子部品の半田付けを示す図
である。 1・・・プリント基板、2・・・スルホーク、4・・・
リート第2図 戻り 第4図 ゛ (73) 、ニー、#”  ニニ馴叶” / / l8     21 (C)
Figure 1 is a principle diagram showing the soldering method according to the present invention;
The figure shows the thermal cycle, Figure 3 shows the relationship between the focal position of the laser beam and the substrate, Figure 4 shows the relationship between the laser beam and linear solder, and Figures 5 and 6. 7 is a diagram showing the relationship between the fiber unit and the board, FIG. 8 is a diagram showing the automatic linear solder supply device, and FIG. 9 is a diagram showing the tip of m-shaped solder. The sectional view shown in FIG. 10 is a diagram showing soldering of electronic components to a printed circuit board. 1...Printed circuit board, 2...Thulhawk, 4...
Return to Figure 2 of Lit Figure 4 ゛(73), Knee, #”Nini familiar” / / l8 21 (C)

Claims (1)

【特許請求の範囲】[Claims] 1、基板に電子部品を装着し、この電子部品のリード線
を前記基板に半田付けする方法において、前記基板およ
びリード線をレーザビームで加熱し、加熱状態で線状半
田を供給して前記レーザビームで予熱して半田付けを行
うようにしたことを特徴とするレーザビームを用い友半
田付は方法。
1. In the method of mounting an electronic component on a board and soldering the lead wire of the electronic component to the board, the board and the lead wire are heated with a laser beam, and linear solder is supplied in the heated state to solder the lead wire of the electronic component to the board. Friend soldering is a method using a laser beam, which is characterized in that the soldering is performed by preheating the beam.
JP4267582A 1982-03-19 1982-03-19 Soldering method using laser beam Pending JPS58161396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267582A JPS58161396A (en) 1982-03-19 1982-03-19 Soldering method using laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267582A JPS58161396A (en) 1982-03-19 1982-03-19 Soldering method using laser beam

Publications (1)

Publication Number Publication Date
JPS58161396A true JPS58161396A (en) 1983-09-24

Family

ID=12642600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267582A Pending JPS58161396A (en) 1982-03-19 1982-03-19 Soldering method using laser beam

Country Status (1)

Country Link
JP (1) JPS58161396A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235065A (en) * 1985-04-12 1986-10-20 Nippei Toyama Corp Control method for soldering by laser beam
JPS62165071U (en) * 1986-04-07 1987-10-20
JPS62282773A (en) * 1986-05-30 1987-12-08 Apollo Seiko Kk Method and device for automatic soldering
JPS62292266A (en) * 1986-06-13 1987-12-18 Nippei Toyama Corp Laser soldering method
US6696668B2 (en) 2000-06-26 2004-02-24 Fine Device Co., Ltd. Laser soldering method and apparatus
JP2004119736A (en) * 2002-09-26 2004-04-15 Kyocera Corp Method of manufacturing thermoelectric module
JP2007129036A (en) * 2005-11-02 2007-05-24 Denso Corp Laser soldering method
JP2011029659A (en) * 2010-09-30 2011-02-10 Denso Corp Laser soldering method
JP2015133404A (en) * 2014-01-14 2015-07-23 株式会社ジャパンユニックス Laser type soldering device and soldering method
JP2018069315A (en) * 2016-11-02 2018-05-10 株式会社Subaru Laser brazing device, and cutting method of brazing wire using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235065A (en) * 1985-04-12 1986-10-20 Nippei Toyama Corp Control method for soldering by laser beam
JPS62165071U (en) * 1986-04-07 1987-10-20
JPH037072Y2 (en) * 1986-04-07 1991-02-21
JPS62282773A (en) * 1986-05-30 1987-12-08 Apollo Seiko Kk Method and device for automatic soldering
JPS62292266A (en) * 1986-06-13 1987-12-18 Nippei Toyama Corp Laser soldering method
US6696668B2 (en) 2000-06-26 2004-02-24 Fine Device Co., Ltd. Laser soldering method and apparatus
JP2004119736A (en) * 2002-09-26 2004-04-15 Kyocera Corp Method of manufacturing thermoelectric module
JP2007129036A (en) * 2005-11-02 2007-05-24 Denso Corp Laser soldering method
JP4631656B2 (en) * 2005-11-02 2011-02-16 株式会社デンソー Laser soldering method
JP2011029659A (en) * 2010-09-30 2011-02-10 Denso Corp Laser soldering method
JP2015133404A (en) * 2014-01-14 2015-07-23 株式会社ジャパンユニックス Laser type soldering device and soldering method
JP2018069315A (en) * 2016-11-02 2018-05-10 株式会社Subaru Laser brazing device, and cutting method of brazing wire using the same

Similar Documents

Publication Publication Date Title
US4963714A (en) Diode laser soldering system
US4877175A (en) Laser debridging of microelectronic solder joints
JPS58161396A (en) Soldering method using laser beam
US3717742A (en) Method and apparatus for forming printed circuit boards with infrared radiation
DE19839014C2 (en) Apparatus and method for joining optical elements by non-contacting soldering
JP2015076496A (en) Device and method for soldering
JPH06169167A (en) Upward soldering method by optical beam
US5413275A (en) Method of positioning and soldering of SMD components
JP3295967B2 (en) Electronic component joining method
JPH09162536A (en) Method for mounting parts on printed circuit board, parts to be mounted on printed circuit board, and printed circuit board
JPS5586679A (en) Method and apparatus for continuous soldering
JPS58169993A (en) Part mounting method
JP3945113B2 (en) Light beam soldering method
JPS6350867Y2 (en)
JPS59191397A (en) Soldering method
JP2001047221A (en) Soldering device for micro object
JPS6050881A (en) Method of connecting wirings of coated electric conductor
JPS61208893A (en) Soldering
JPH0513950A (en) Soldering device
JPH06140759A (en) Laser soldering device
JPS636898A (en) Method of soldering leadless electronic parts
JPS6037284A (en) Laser joining method
JPH09108827A (en) Light beam soldering method
JPH0613744A (en) Bonding of electronic component
JP2020009951A (en) Mounting method and mounting device of electronic component