JPS58158937A - Surface defect detector - Google Patents

Surface defect detector

Info

Publication number
JPS58158937A
JPS58158937A JP4080782A JP4080782A JPS58158937A JP S58158937 A JPS58158937 A JP S58158937A JP 4080782 A JP4080782 A JP 4080782A JP 4080782 A JP4080782 A JP 4080782A JP S58158937 A JPS58158937 A JP S58158937A
Authority
JP
Japan
Prior art keywords
light
mask
defect
scanning
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4080782A
Other languages
Japanese (ja)
Inventor
Masakuni Akiba
秋葉 政邦
Hiroyuki Shida
啓之 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4080782A priority Critical patent/JPS58158937A/en
Publication of JPS58158937A publication Critical patent/JPS58158937A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect surface defect within a short time by a method wherein a condensing means is installed traversing above an object for inspection to be fed rectilinear to the traversing direction for optical scanning in the traverse direction. CONSTITUTION:A table 12 is slidden on a fixed table 11 by a pulse motor 14 moving a mask 1 in X direction with respect to a condenser 15 to emit laser light 19 and scanning the mask 1 through a Kalvar's mirror 20 to project parallel scanning luminous flux 23 in Y direction on the surface of the mask 1. When the projected light irradiates a defect 5 on the mask 5, turbulent reflected light is projected into the condenser 15 through a slit 16 to be detected 17 through optical fiber. A detected signal is processed 25 and making use of feed amount 27 in X direction, scanned amount 28 of laser light in Y direction to compute 26 a defective position. The patterns on the glass mask 1 are preliminarily memorized by the operator 26 and the defect detecting signals from the condenser 15 corresponding to the patterns are erased and obtain the defect and address as required. Through said constitution, the detecting precision may be improved since the table 12 may be simplified while accelerating scanning speed and increasing the density of detecting points.

Description

【発明の詳細な説明】 本発明は、表−の欠@検量Mll#C係り、脅に、ホト
リングラフィ用のガラスマスクの表面に付着管たに形成
した異物中傷等【欠陥として検出する場合に使用するの
に好適な表面の欠陥検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to defects in the table Mll #C, and the present invention is directed to the detection of defects such as foreign matter formed on the surface of a glass mask for photolithography. The present invention relates to a surface defect inspection device suitable for use in.

一般に、シリコン牛導体装置の製造に不可欠なホトリソ
グラフィ(写真処[1)Kは半尋体基板牧面にmaした
永トレジス)(71元性耐蝕倒脂)Il′?を選択的に
感光させる王権が必要となる。この感光処理は、透明ガ
ラス板の一表面にクロム等からなる不透明elk所要の
パターンに形成してなるガラスマスク【使用し、ホトレ
ジストM【形成したウェハ状の半尋体基板の映画に密着
させた状態で露光して選択的に感光させることKより行
なわれる。そして、1枚のガラスマスクは数百枚のウェ
ハ罠対する感光処理に使用され、その間&Cはガラスマ
スクO表面VC異物や傷か付く仁とかめる。このような
14′4IJや傷かあると、ホトレジスト談が所管とす
るパターンと異なるパターンが感覚され、不良発注OI
g因となる。し友かつて、ガラスマスクは使用回数に応
じて時々、異物や傷等の欠陥の有無を検査される。
In general, photolithography is essential for the production of silicon conductor devices (photography studio [1) K is a long-lasting resist that has been applied to a half-layered substrate) (71-element corrosion-resistant fat) Il'? A royal authority is required to selectively expose the area to light. This photosensitive treatment uses a glass mask [formed in the desired pattern of opaque elk made of chromium, etc.] on one surface of a transparent glass plate, and a photoresist (M) [is used] that is brought into close contact with the film of the formed wafer-shaped semicircular substrate. This is done by selectively exposing the material to light. One glass mask is used to expose hundreds of wafers, and during this process, &C collects VC foreign matter and scratches on the surface of the glass mask. If there is such a 14'4 IJ or scratch, a pattern different from the one under the jurisdiction of the photoresist consultant will be sensed, and a defective order will be issued.
It causes g. In the past, glass masks were occasionally inspected for defects such as foreign objects and scratches, depending on the number of times they were used.

従来、この糧のガラスマスクの欠陥検量装置として、例
えば第1崗に示すようなものか提案されている。この装
置1は、XY方向に移動可能な載置台2の上方に受光器
3′に設け、載置台2上にガラスマスク11rその検査
対象面(以下表面という5)會上向きにして載置し、載
置台2を受光fit3かマスク表面に第1図に想嘗耐で
示す軌跡【相対的に描くようにXY肉方同に送り、同時
に1マスクlに表面と平行な欠陥検出用光14に一投射
し、この光蘇櫨か欠陥5によって乱反射された光を受光
器3で拾って検出するように、構成さnている。そして
、マスクl上における欠陥5の位Itは載置台2のXY
両両方への送り量と検出時期との関係によりXYI!1
11に求めるようになっている。
Hitherto, as a defect measuring device for glass masks, a device as shown in Fig. 1 has been proposed, for example. This device 1 is provided with a light receiver 3' above a mounting table 2 that is movable in the XY directions, and a glass mask 11r is placed on the mounting table 2 with its surface to be inspected (hereinafter referred to as the surface 5) facing upward. Place the mounting table 2 on the light-receiving fit 3 or on the mask surface along the trajectory shown in Fig. The light is projected and diffusely reflected by the defect 5, and the light is picked up by the light receiver 3 and detected. The position It of the defect 5 on the mask l is the XY position of the mounting table 2.
XYI! due to the relationship between the feed amount to both and the detection timing! 1
11.

しかしながら、別記のようなガラスマスクの欠陥検査装
置にあっては、マスク載置台QXY内方向に、移動して
欠陥検出点(受光器)かXY内方同に相対的に走査する
ようになっているため、検査時間が極めて長くかかると
いう欠点が控る。
However, in a glass mask defect inspection device as described separately, the mask mounting table moves inward in the QXY direction and scans the defect detection point (receiver) relatively in the same direction in the XY direction. This avoids the drawback that the inspection time is extremely long.

本発明は前記欠点會解消するた約になされたもので、検
査時間′に短期化することかできる表面の欠陥検査ta
r提供することt目的とする屯のである。
The present invention has been made to eliminate the above-mentioned drawbacks, and is a surface defect inspection method that can shorten the inspection time.
It is the purpose of providing this service.

この目的′に達成するため、本発明による表面の欠陥検
査iM−筐は、機構音物の表面上方に集光手段會横断架
設し、この横断方向と交差する方向に蕾檜食物を相対的
に送るとともに、検査用投光を前記横断方向に走査する
ことKより、機械的な送9を一方向のみとして高速化す
ることt−〜徴とするもの′Cある。
In order to achieve this objective, the surface defect inspection iM-casing according to the present invention is constructed by installing a light condensing means across the surface above the surface of the mechanical object, and relatively disposing the bud food in a direction crossing the transverse direction. At the same time as scanning the inspection light in the transverse direction, there is a method of speeding up the mechanical feeding 9 by moving it only in one direction.

以下、本発明7図面に示す実施例にしたがってさらに奴
明する。
Hereinafter, the present invention will be further explained according to the embodiments shown in the drawings.

第2図は本発明による表面の欠陥検査[1の一実施飼會
示す斜視図であり、ガラスマスクlのパターンが形成さ
n友@e面に何着箇たは形成し友典物や傷等の欠陥5を
検査する場合につき示している。このガラスマスクの欠
陥検査装置ILは固定テーブルll]備えており、この
テーブル11上[にマスクm11台12が一方向(以下
X方向という。)に往復摺動自在に設けられている。テ
ーブル11には送りねじ軸13がX方向に延在するよう
に配され回転自在に支承されており、このねじ軸13は
パルスモータ14等により回転駆動さnるようになって
いる。送りねじ軸13には載置台12の一部が螺合して
おり、載置台12はモー414の(ロ)転によりX方向
に所費量送られる5載重合12の上方に/fi多数本の
元ファイバを一体に束ねてなる集光手段としての集光体
15か載置台のX方向移動から独立するように、すなわ
ち相対的に移動し祷るように配設されている。集光体1
5rfM長す集光面1r庸し、この集光面は各党ファイ
バの先端面を揃えてIi鹸状に螢列されることにより形
成され、載置台12の上方においてX方向と直角に交差
する方向(以下Y方向とかう。)[1在し、かつ載m萱
12の上面に対向するように配設されている。集光体1
5の集光面の真下にはスリット部材16か配t&芒れ、
この部材のスリットはその真下で乱反射した光だfft
−集光面に入射させるようになっている3元ファイバ群
の後端を一束に結束してなる集光体M端部にはディテク
タ(受光器)17が接続され、”ディテクタは集′光体
15からの元r受けて電気的信号に変換するようになっ
ている。
FIG. 2 is a perspective view showing one implementation of the surface defect inspection [1] according to the present invention. This figure shows a case where a defect 5 such as the like is inspected. This glass mask defect inspection apparatus IL is equipped with a fixed table 11, on which a mask m11 12 is provided so as to be able to slide back and forth in one direction (hereinafter referred to as the X direction). A feed screw shaft 13 is disposed and rotatably supported on the table 11 so as to extend in the X direction, and this screw shaft 13 is rotatably driven by a pulse motor 14 or the like. A part of the mounting table 12 is screwed onto the feed screw shaft 13, and the mounting table 12 is arranged above the 5-mounted stack 12 which is sent by the required amount in the X direction by the rotation of the motor 414. A condensing body 15, which is a condensing means made by bundling original fibers together, is arranged so as to be independent of the movement of the mounting table in the X direction, that is, to move relatively. Light collector 1
The light collecting surface 1r has a length of 5 rfM, and this light collecting surface is formed by aligning the end surfaces of each fiber and arranging them in a spiral shape. (hereinafter referred to as the Y direction). Light collector 1
A slit member 16 is arranged directly below the light condensing surface of 5.
The slit in this member is the light that is diffusely reflected just below it.fft
- A detector (light receiver) 17 is connected to the end of the condenser M, which is formed by bundling the rear ends of a group of ternary fibers that are made to enter the light condensing surface. It receives the element r from the light body 15 and converts it into an electrical signal.

前記集光体15のX方向の片−空間には投光手段として
の投光装置18が設備され、この装置はレーザー光−発
生619と、往復回動してレーザー元#ts状に走査さ
せるガルバーイラ−20と、扇状[走査するレーザー光
束會平行に7F!査さゼるスキャナーレンズ21と、こ
の平行走査光束が前記載置台12上に載置されるガラス
マスクlの表面に投射するように一同させるばラー22
とt倫えている。この平行走査光束23は第2図に点−
矢団で示すようVCマスクlo&面においてY方図VC
砥在し、かつマスクlのパターン(不図示)彫戟鄭分よ
V着干広い一’t−Nする走査投射−24會描き、この
投射fIII24が前記スリット部材16のはば真下に
位置するように投光装置18か設定されている。
A light projecting device 18 as a light projecting means is installed in one space of the condenser 15 in the X direction, and this device generates a laser beam 619 and rotates back and forth to scan the laser source #ts. Galvanizer 20 and fan-shaped [scanning laser beam beam parallel to 7F! a scanner lens 21 for scanning, and a mirror 22 for unifying the parallel scanning beam so that it is projected onto the surface of the glass mask l placed on the mounting table 12.
I am very proud of this. This parallel scanning light beam 23 is shown at the point -
Y-direction VC in the VC mask lo&plane as shown by the arrow.
The pattern of the mask l (not shown) is carved by a wide scanning projection fIII24, and this projection fIII24 is located directly below the edge of the slit member 16. The light projecting device 18 is set as follows.

創配デイテクメ17には欠陥検出信号処境器25が接続
され、この処理器25扛ディチク4117からの電気的
信号につき波形整形、増幅等の処131行ない、欠陥位
置演算処all!26に人力するようKなっている。ま
九、前記パルスモータ14KH!方向送り量検出処理器
27か接続され、この処It器27t;jパルスモータ
14の回転数からIKwt、台12の基準位置に対する
X方向の送り量kNFfflしその結果を前記欠陥位置
演算処理器26に人力するようになってbる。さらに、
前記投光装置18のガルバーミラー20にはレーザー光
*走査角檜出処理器28が接続され、この処理器28に
ピラー〇回動角により基準位置がらの罰紀矩棄投射−2
4の長さt検出し、その帖釆を前記欠陥位tILy!算
処珈器26に人力するようになっている。欠陥位置演算
処理器26は、前記各処fl器25,27゜28からの
人力信号に基づき欠陥5の所在付置r基準位置に対する
XY座@ticて出力し我示するようになっている。
A defect detection signal processor 25 is connected to the generation/distribution data processor 17, and this processor 25 performs 131 processes such as waveform shaping and amplification on the electrical signal from the processor 4117, and performs defect position calculation processing (ALL!). K is set to require manual labor on the 26th. Nine, the pulse motor 14KH! A directional feed amount detection processor 27 is connected, and this processor 27t;j calculates IKwt from the rotation speed of the pulse motor 14, the feed amount kNFffl in the X direction with respect to the reference position of the table 12, and sends the result to the defect position calculation processor 26. It started to be done manually. moreover,
A laser beam*scanning angle processing device 28 is connected to the galvanic mirror 20 of the light projecting device 18, and this processing device 28 is used to project a penalty from the reference position according to the rotation angle of the pillar 〇.
Detect the length t of 4 and place the button at the defective position tILy! 26 calculation machines are now operated manually. The defect position arithmetic processor 26 outputs and indicates the location of the defect 5 based on the manual signals from the fl/25, 27, and 28 reference positions.

次に使用方ff、Mびに作用を説明する。Next, how to use ff, M and the effect will be explained.

箇ず、載置台12上にガラスマスク1tifm食表面r
上向きにして、かつ台とマスクとの基準を合歓して載置
し保持せしめる。続いて、パルスモータ144(作動せ
しめて載置台121H固定テーブル11上で摺動させる
ことによりマスク1を集光体15νC対しX方向に移動
させる31W1時に、レーザー光−発生器19でレーザ
ー光[J@射するとともに、ガルバーミラー20に一往
復回勧させて光mr7F!食し、平行走査光束23t−
マスクlの表面にY方向に投射する。この場合、載置台
12μX方同のみVC移動するだけであるから、従来の
ようr<:XY両方に移動させる場合に比べて一通に移
動場ゼることか可能となり、かつ、構造も大111!に
簡牟化される。また、投射光#に光学的にX方向に走査
されるため、その走査量には憶めて早くてることができ
、従来のようKYX方向−ブルを間欠的に送る場合に比
べて大−に鍋速化することかでき、検査点r^密度化し
て検査性能を同上化する仁とかできる。このように、マ
スクlかX方向に棒曽するとともに、投射光−かX方向
に往*走食するから、投射光−のマスク109面におり
る投射光束の軌跡は、第2図に想*lilで示すように
三角波形状に描出さ1%Y方向の走査逐度r可及的[早
く丁れは、投射光点の密度は極めて高くなり、検査点が
高密度化する。
In addition, a glass mask 1tifm eclipse surface r is placed on the mounting table 12.
Place and hold the mask facing upward and aligning the standards of the stand and the mask. Subsequently, at 31W1 when the mask 1 is moved in the X direction with respect to the condenser 15νC by activating the pulse motor 144 and sliding it on the mounting table 121H fixed table 11, the laser beam generator 19 generates a laser beam [J At the same time, the galver mirror 20 reciprocates once and eclipses the light mr7F!, producing a parallel scanning beam 23t-
Project onto the surface of mask l in the Y direction. In this case, since the mounting table only moves in the VC direction in the 12μX direction, it is possible to use a single movement field compared to the conventional case in which it is moved in both r<:XY directions, and the structure is also large! It is simplified to In addition, since the projected light # is optically scanned in the X direction, the amount of scanning can be memorized quickly, and compared to the conventional case of sending bulls in the KYX direction intermittently. It is possible to speed up the pot speed, increase the density of inspection points, and increase the inspection performance. In this way, the mask l moves in the X direction, and the projected light eclipses forward in the *As shown by lil, it is drawn in a triangular wave shape and the scan rate in the Y direction is 1%.

前記投射光#にガラスマスクlの表FkJに投りすると
乱反射せずに全反射する几め、投射光虜の真上にある集
光体15の集光面には入射しなり0ところか、投射光−
がマスク表面の欠陥5に投射すると乱反射するため、そ
の乱反射光がスリット部材16′gt!遇して集光体1
5に入射する。この入射光−に光ファイバケ経てディテ
クタ17で受九され、ディテクタ17は電気的信号を欠
陥検出信号処理器25に印加し処理器25に欠陥検出信
号を欠陥位置演算処理器26に人力する。演其処畦器2
6にはX方向送り童検田処理器27からX方向の送9童
が、レーサー元#H足食角検出処堆!2gからX方向の
走査量かそれぞn常時人力さnている。したかって、欠
陥検出信号とX方向の込り置匍号およびX方向の走査量
信号との菖合時点を演算することにより、マスクlの我
面上における欠陥の所在箇所1基準に対するXY座標に
て求めることができる。
When the projected light # is projected onto the surface FkJ of the glass mask 1, it is totally reflected without being diffusely reflected, so that it is incident on the condensing surface of the condensing body 15 located directly above the projected light beam, and is 0. Projection light-
When projected onto the defect 5 on the mask surface, it is diffusely reflected, and the diffusely reflected light is reflected by the slit member 16'gt! Light concentrator 1
5. This incident light is received by a detector 17 through an optical fiber, and the detector 17 applies an electrical signal to a defect detection signal processor 25, and the processor 25 inputs a defect detection signal to a defect position calculation processor 26. Stage ridge 2
6, the X-direction sending 9th child from the X-direction sending child detection processing device 27 is the racer former #H foot eating angle detection station! From 2g to the scanning amount in the X direction, manual labor is required at all times. Therefore, by calculating the point of convergence between the defect detection signal, the X-direction intrusion signal, and the X-direction scanning amount signal, the XY coordinates of the location of the defect on the first side of the mask l with respect to the first standard can be determined. can be found.

ところで、ガラスマスクlの表面に形成されたパターン
においても、前記投射光−の乱反射が起こる場合が考え
られるが、例えば、欠陥位置演算処理器26にあらかじ
めパターン【記憶させておき、この1憧により集光体1
5からの欠陥検出信号のうちパターンに相当する信号を
消去するように葡償しておけは、IgTllの欠陥およ
びその所在1庖のみ1r侍ることかできる。
Incidentally, even in the pattern formed on the surface of the glass mask l, it is conceivable that diffuse reflection of the projected light may occur. Light collector 1
If the signal corresponding to the pattern is erased from among the defect detection signals from 5, only one portion of the IgTll defect and its location can be detected.

本実施的によれば、載置台ifX方同にのみ送り、欠陥
検査のための投射光−1rY方回に走査し、欠陥での跣
反射光iY方同に延在する集光体で捕捉するようにした
ので、載置台1r構造上一連化かつ量率1しすることか
可能であり、しかも、ll1Il迷化してもX方向の走
査に光学的に毬めて高速化することができるので、欠陥
検量のための投射光#による検査点に尚vB度化するこ
とかでき、したかつて、検量′h4tII″同上させる
ことができる。
According to this embodiment, the mounting table is sent only in the direction of if By doing this, it is possible to serialize and have a mass rate of 1 due to the structure of the mounting table 1r, and even if Il1Il gets lost, the scanning speed can be increased by optically confining the scanning in the X direction. The inspection point using the projection light # for defect calibration can be set to vB degrees, and the calibration 'h4tII' can also be made as described above.

幕3図および纂1図は本発明の他の夾抛飼r示丁もので
、前記実施例と異なる点は、集光手段として、光ファイ
バを束ねてなる集光体を用いる代りに光導材料1rはぼ
棒状に一体成形さnてなる集光器15ムに#4いた点に
ある。この集光−15ムに先端に行くに従って太くなる
ほぼ半円形柱状に形成され、細くなった基端部がディテ
クタ17に接続されるとともに、その平坦面を載置台1
2上のマスク1&1iIiK対向するように配設される
。第4図に示すように、マスク1&−面上の欠陥5での
乱反射光が平坦な集光面から集光−13A内に入射する
と、この入射光は集光体15A内で全反射【繰り返し基
端部のディテクタ17に至る。本実hガの作用効果は前
記実施例と同様である。本実J1ガによれば、集光手段
か比較的安価に入手できるという利点か祷られる。
Figure 3 and Figure 1 show other examples of the present invention, and the difference from the above embodiment is that instead of using a light condenser made of bundled optical fibers, a light guide material is used as the light condensing means. 1r is located at the point #4 in the condenser 15 which is integrally molded into a rod shape. This condensing light is formed into an approximately semicircular column shape that becomes thicker toward the tip, and the tapered base end is connected to the detector 17, and its flat surface is placed on the mounting table 1.
Masks 1 & 1iIiK on 2 are arranged to face each other. As shown in FIG. 4, when the diffusely reflected light from the defect 5 on the mask 1 & - surface enters the condenser 13A from the flat condensing surface, this incident light is totally reflected within the condenser 15A [repeatedly]. It reaches the detector 17 at the proximal end. The operation and effect of this practical example are the same as those of the above embodiment. According to Honji J1 Ga, the advantage is that the light condensing means can be obtained relatively inexpensively.

なお、創配実JII例では、ガラスマスクの叡山の欠1
11i&に検査する場合にっl!説明したか、これに限
らず、ガえは1研摩したウェハ、−収約なガラス、レン
ズ、圧砥ロール等々あらゆる分野の′&面欠陥検査#/
c迩柑することかできる。1几、欠陥所在−所’tXY
座標で求める場合に限らず、欠陥の数量友けr求めるよ
うにしてもよい。この場合、欠陥検査用投光はY方向に
投射森會描けはよく、走査する必IiLはない。投光と
してレーザー光を用いたか、これに限らず、他の光を用
いてもよい。被検査物に!方間に送る手段は載置台tテ
ーブル上で摺動さぜるようにしてなる構造に限らず、飼
えば、コンベア勢の搬送手段を用いてもよい。被検査物
i!方方間送る場合に限らず、集光手段’ljX方同に
方間ようにしてもよい。なお、前配実hガではレーザー
元−髪用いたので、九字糸を暗箱内に収容しなくても済
むが、池の九を用いる場合と同様に箱内に収容すること
が望筐しい。
In addition, in the Sokaijitsu JII example, Eizan's lack of glass mask 1
When inspecting on 11i&! As explained above, burrs can be used for surface defect inspection in all fields such as polished wafers, compact glass, lenses, pressure rolls, etc.
I can do things like c. 1 box, defect location - location'tXY
It is not limited to the case of calculating by coordinates, but may also be calculated by calculating the quantity of defects. In this case, the defect inspection light can be projected in the Y direction, and there is no need for scanning. Although laser light is used as the light projection, the present invention is not limited to this, and other light may be used. For the inspected object! The means for conveying the material to both directions is not limited to a structure in which it is slid on a mounting table (t), but a conveyor type conveying means may also be used. Inspected object i! It is not limited to the case where the light is sent in both directions, but the condensing means 'ljX may be sent in both directions. In addition, since laser hair was used in the previous method, it is not necessary to store the Kuji yarn in a dark box, but it is preferable to store it in a box as in the case of using Ikeno Ku.

以上貌明したように、本発明によれは、表面の欠陥検量
kJ1i達化するCとができ、かつ検食梢嵐r同上させ
ることができる。
As explained above, according to the present invention, it is possible to achieve the surface defect measurement kJ1i, and also to achieve the surface defect detection kJ1i.

図面の簡単な貌− !1図μ従従来を示す斜視図、纂2図は本%明    
゛Q−央jlli?!lk示す斜視図、第3図および第
4図は本発朗の他の実施ガを示す斜視図および止面図で
める。
A simple look at the drawing! Figure 1 is a perspective view showing the prior art;
゛Q-central jlli? ! Figures 3 and 4 are perspective views and stop views showing other embodiments of the present invention.

l・・・ガラスマスク、5・・・欠陥、15・・・集光
体、15ム・・・集光体、16・・・スリット部材、1
7・・・ディテクタ、18・・・投光ifr置、19・
・・レーザー光−発止(至)、20・・・ガルバーミラ
ー、21・・・スキャナミラー、22・・・ミラー、2
3川平行走査光束、24・・・投射銀、25・・・欠陥
検出信号処8!器、26・・・欠陥位置演算処l!lI
器、27・・・X方間送り量検出処理器、28・・・レ
ーザー光耐走食角檜出処唾器。
l...Glass mask, 5...Defect, 15...Light collector, 15mu...Light collector, 16...Slit member, 1
7...Detector, 18...Light emitter ifr position, 19.
... Laser light - start (to), 20 ... Galver mirror, 21 ... Scanner mirror, 22 ... Mirror, 2
3-river parallel scanning beam, 24... Projection silver, 25... Defect detection signal processing 8! 26...Defect location calculation process l! lI
27... X-direction feed amount detection processor, 28... Laser light corrosion resistant square cypress extractor.

代理人 弁理士 薄 1)利0.98、“″   コ〜 第  2  図 第  3  図 第  4  図Agent Patent Attorney Susuki 1) Profit 0.98, “″   〜 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、 1F検査物の表面の外方にこの表面からの乱反射
光i集光する集光手段r仁の表面【横断するように設け
るとともに、この集光手段と1検食物とi前記横断方向
と交差する方向に相対的[8動させる移動手段を設け、
さらに、前記豪検査暢我面に光を前記横断方向と#1ぼ
平行に投射する投光生膜を設けてなる表面の欠陥検査装
置。 2、 11tJ記集元+段が、複数本のi7アイバを各
元端面が壷列して細長い集光面を形成するように束ねて
なること’re黴とする特許請求の範囲第1墳記載の欠
陥検査装置。 3、前記集光+段か、入射元髪内部で全反射して少なく
ともll1hI9rに集合するように形成された集光−
からなること【%黴とする特許請求の範囲第1JJl記
載の欠陥検査装置。
[Claims] 1. The surface of a condensing means r that condenses diffusely reflected light from this surface on the outside of the surface of the 1F test object. and (i) providing a moving means for moving it relative [8] in a direction intersecting the transverse direction;
Furthermore, the surface defect inspection apparatus is provided with a projection biofilm that projects light onto the inspection surface substantially parallel to the transverse direction. 2. Claim 1 states that the 11tJ collecting element + stage is formed by bundling a plurality of i7 eyeglasses so that each end face is arranged in a row to form an elongated light condensing surface. defect inspection equipment. 3. The light condensing + step or the condensing light formed so as to be totally reflected inside the incident hair and converge at least at ll1hI9r.
The defect inspection device according to claim 1 JJl, which comprises [% mold].
JP4080782A 1982-03-17 1982-03-17 Surface defect detector Pending JPS58158937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080782A JPS58158937A (en) 1982-03-17 1982-03-17 Surface defect detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080782A JPS58158937A (en) 1982-03-17 1982-03-17 Surface defect detector

Publications (1)

Publication Number Publication Date
JPS58158937A true JPS58158937A (en) 1983-09-21

Family

ID=12590905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080782A Pending JPS58158937A (en) 1982-03-17 1982-03-17 Surface defect detector

Country Status (1)

Country Link
JP (1) JPS58158937A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260681A (en) * 1975-11-12 1977-05-19 Sick Optik Elektronik Erwin Line scanner for detecting flaw of woven material
JPS54130880A (en) * 1978-04-03 1979-10-11 Hitachi Ltd Detector for chip position on semiconductor wafer
JPS571955A (en) * 1980-06-06 1982-01-07 Hitachi Electronics Eng Co Ltd Light receiving device for inspecting plate surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260681A (en) * 1975-11-12 1977-05-19 Sick Optik Elektronik Erwin Line scanner for detecting flaw of woven material
JPS54130880A (en) * 1978-04-03 1979-10-11 Hitachi Ltd Detector for chip position on semiconductor wafer
JPS571955A (en) * 1980-06-06 1982-01-07 Hitachi Electronics Eng Co Ltd Light receiving device for inspecting plate surface

Similar Documents

Publication Publication Date Title
US4655599A (en) Mask aligner having a photo-mask setting device
EP0065411B1 (en) On-machine reticle inspection device
JPH05198476A (en) Projection lens evaluation apparatus and evaluation thereof
JPH0544170B2 (en)
JPS58158937A (en) Surface defect detector
JPH09145631A (en) Surface foreign matter detector
JP4428865B2 (en) Improved method and apparatus for controlling glint in a multi-nozzle alignment sensor
JPH0233089B2 (en)
JPS6312241B2 (en)
JP2002340738A (en) Optical member inspecting apparatus
JPS61128522A (en) Focussing device
JPH0621877B2 (en) Surface condition measuring device
JPS6138448B2 (en)
JPH01228130A (en) Process and device of exposure
JPS62291512A (en) Distance measuring apparatus
JP2018165626A (en) Surface foreign matter detection device and surface foreign matter detection method using the same
JPH11183151A (en) Transparent sheet inspecting equipment
JPS5818923A (en) Direct exposure device
JPH01143904A (en) Thin film inspecting device
JPH095045A (en) Photo/detector
JPS613006A (en) Planar shape measuring apparatus
JPH0629178A (en) Exposure and apparatus therefor
JP2602417B2 (en) Projection type exposure equipment
JPS5694742A (en) Electronic beam exposure device
JPH07119700B2 (en) Foreign object detection device