JPS58158361A - Liquid fuel supplying device - Google Patents

Liquid fuel supplying device

Info

Publication number
JPS58158361A
JPS58158361A JP3941682A JP3941682A JPS58158361A JP S58158361 A JPS58158361 A JP S58158361A JP 3941682 A JP3941682 A JP 3941682A JP 3941682 A JP3941682 A JP 3941682A JP S58158361 A JPS58158361 A JP S58158361A
Authority
JP
Japan
Prior art keywords
pressure
chamber
fuel
fuel particles
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3941682A
Other languages
Japanese (ja)
Inventor
Tadaya Odajima
小田島 忠哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP3941682A priority Critical patent/JPS58158361A/en
Publication of JPS58158361A publication Critical patent/JPS58158361A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To enable cold start of an engine to be made readily even in extremely cold districts and also improve the thermal efficiency thereof by an arrangement wherein a high pressure and high temperature environment is formed in a pressure accumulator so as to quickly evaporate and divide fuel particles finely. CONSTITUTION:A premixing chamber 1 has an inlet pipe 3 for air A connected to one side wall thereof through a check valve 3a adapted to open on the side of the chamber 1. The chamber 1 has also an outlet pipe 4 for mixture of the air A and the initial fuel particles F connected to the upper part of the other side wall thereof. A pressure intensifying chamber 12 on one side is allowed to communicate through a check valve 14 with a pressure accumulating chamber 13, whilst the pressure intensifying chamber 12' on the other side is allowed to communicate through a check valve 14' with a pressure accumulating chamber 13'. The arrangement is made such that the pressure intensifier is operated to repeat suction, compression and delivery strokes the form a high pressure and high temperature environment or region in which fuel particles are allowed to quickly evaporate and divide finely, and the resultant fine fuel particles are supplied under pressure into a reformed gas producer 30 where they are changed into a reformed gas which is injected into an engine E.

Description

【発明の詳細な説明】 本発明は液体燃料を急速に微粒化均質にすると共に、従
来公知の構成の改質ガス発生器により改質ガスに改質さ
せて内燃機関に供給し、内燃機関の冷間始動から定常運
転までを単一燃料の一系統で行うことができるようKし
た内燃機関の液体燃料、1litKメタノール燃料の供
給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention rapidly atomizes and homogenizes liquid fuel, reformes it into reformed gas using a reformed gas generator of a conventionally known configuration, and supplies the reformed gas to an internal combustion engine. This invention relates to a supply device for a liquid fuel, 1 liter K methanol fuel, for an internal combustion engine that can perform from cold start to steady operation with a single fuel system.

従来のガソリン燃料に代替しメタノール燃料で火花点火
式内燃機関を運転する場合、キャプレタ、燃料噴射装置
等を利用する燃料供給装置では冷間時における始動が困
難である。このため、始動時のみガソリン燃料を併用し
、内燃機関の暖気運転後メタノール燃料に切換えるよう
Kしており、従って、燃料及び燃料供給装置に二系統を
必要とし、ガソリン燃料で運転する場合に比して非常に
不利となっている。
When a spark ignition internal combustion engine is operated with methanol fuel instead of conventional gasoline fuel, it is difficult to start the engine when it is cold with a fuel supply system that uses a capretor, a fuel injection device, or the like. For this reason, gasoline fuel is used only at the time of starting, and the fuel is switched to methanol fuel after the internal combustion engine has warmed up. Therefore, two systems are required for the fuel and fuel supply system, which is compared to when operating on gasoline fuel. This is extremely disadvantageous.

本発明はメタノール燃料の噴霧粒径を微粒化した後、こ
れを従来公知の構成の改質ガス発生器により改質ガスに
改質させ、ガソリン燃料に劣らぬ冷間始動性を得て、冷
間始動から定常運転までを単一燃料の一系統で行うよう
Kしたことを特徴とする。
The present invention atomizes the atomized particle size of methanol fuel and then reforms it into reformed gas using a reformed gas generator with a conventionally known configuration, thereby achieving cold startability comparable to that of gasoline fuel. It is characterized by being designed to use a single fuel system for everything from short-term start to steady operation.

次に先ず、第1図に基いて本発明の基本原理を説明する
Next, first, the basic principle of the present invention will be explained based on FIG.

第1図は燃料の蒸発過程を説明する圧力と比体積の関係
を示す図である。縦軸に圧力P1横軸に比体積Vを示し
、Pkは臨界圧力である。曲線は夫々飽和液線!、飽和
蒸気線ダを示し、飽和液線!の左方は液相、飽和蒸気線
yの右方は気相、両曲線馬!に挾まれた中央部は混合相
である。
FIG. 1 is a diagram showing the relationship between pressure and specific volume to explain the fuel evaporation process. The vertical axis shows the pressure P1, the horizontal axis shows the specific volume V, and Pk is the critical pressure. Each curve is a saturated liquid line! , shows the saturated vapor line Da, and the saturated liquid line! To the left of is the liquid phase, to the right of the saturated vapor line y is the gas phase, and both curves are horse! The central part between the two is a mixed phase.

所定圧力Pn下において、温度T、なる液体を温# T
zまで加熱した場合の変化の概略を第1図について説明
する。ここで圧力P路に対応する沸点を温It 7’t
とし、To < 7’l < Ttと仮定する。先ず、
加熱開始時には液相内の点Noに位置し、順次温度が上
昇して沸点T、に達すると飽和液線!上の点Nlに位置
する。ここで液体は蒸発を開始し、蒸発を完了するまで
温gILTIFi不変であり、完了時には飽和蒸気1i
iJy上の点Mに位置する。この後は加熱に応じて蒸気
温度が上昇し、温度4に達した時には蒸気相内の点九に
位置する。
Under a predetermined pressure Pn, a liquid at a temperature T is heated to a temperature #T.
The outline of the change when heated to z will be explained with reference to FIG. Here, the boiling point corresponding to the pressure path P is 7't
Assume that To <7'l< Tt. First of all,
At the start of heating, it is located at point No in the liquid phase, and when the temperature rises sequentially and reaches the boiling point T, the saturated liquid line! It is located at the upper point Nl. Here the liquid starts to evaporate and the temperature gILTIFi remains unchanged until the evaporation is completed, at which point it is a saturated vapor 1i
Located at point M on iJy. After this, the steam temperature increases in response to heating, and when it reaches temperature 4, it is located at point 9 in the steam phase.

上述の温度石での蒸発過程において蒸発に1!する熱量
dQ及び時間T#i次式で示される。
1 for evaporation in the evaporation process with the temperature stone mentioned above! The amount of heat dQ and time T#i are expressed by the following equation.

dQ = C,、L 、 4xr”drT = g宜/
C 但し、C1は燃料の物性1周囲温度等により規定される
定−数、rは液滴半径、αは 蒸発前の初期液滴径であ
る。ま九、Lは蒸発潜熱であって、第1図において所定
圧力に対応する飽和曲線!と飽和蒸気線!との距離によ
り示されるものである。蒸発潜熱りは圧力と反比例し、
所定圧力下で加熱する場合には定数となる。
dQ = C,,L, 4xr"drT = gyi/
C However, C1 is a constant determined by the physical properties of the fuel, such as ambient temperature, r is the droplet radius, and α is the initial droplet diameter before evaporation. Nine, L is the latent heat of vaporization, and in Figure 1, it is the saturation curve corresponding to the predetermined pressure! And saturated steam line! It is indicated by the distance from The latent heat of vaporization is inversely proportional to pressure,
When heating under a predetermined pressure, it becomes a constant.

Cは蒸発速度係数であり、#1は、次式で示される。C is the evaporation rate coefficient, and #1 is expressed by the following formula.

C= Cv/L 但し、C1は燃料の物性勢により規定される定数である
。また、所定圧力下では蒸発潜熱りが定数となるから、
蒸発速度係数Cも定数となる。
C=Cv/L However, C1 is a constant defined by the physical properties of the fuel. Also, since the latent heat of vaporization is a constant under a given pressure,
The evaporation rate coefficient C also becomes a constant.

従って、熱量dQは液滴の表面積4πr1に支配される
ので、加熱する液滴が小粒子であるほど、効率的に加熱
することができる。また時間Tも初期液滴径alt支配
されるので、加熱する液滴が小粒子であるはど、短時間
に蒸発することができる。
Therefore, since the amount of heat dQ is controlled by the surface area 4πr1 of the droplet, the smaller the droplet to be heated, the more efficiently it can be heated. Further, since the time T is also controlled by the initial droplet diameter alt, if the droplets to be heated are small particles, they can be evaporated in a short time.

更に蒸発潜熱LIdfllK1Eにおいて所定圧力に対
応する飽和液線!と飽和蒸気線!との距離で示されるか
ら圧力が高まるKつれて蒸発潜熱りが小さくなり、少な
い熱量dQで加熱を完了することができる。即ち、燃料
を小さな粒径の液滴状にして高圧高温環境下で加熱する
ことKより、短時間に少ない熱量で蒸発させ、微粒化−
することが可能となる。
Furthermore, the saturated liquid line corresponding to a predetermined pressure in the latent heat of vaporization LIdflllK1E! And saturated steam line! As the pressure increases, the latent heat of vaporization decreases, and heating can be completed with a small amount of heat dQ. In other words, by heating the fuel in a high-pressure, high-temperature environment in the form of small droplets, the fuel can be evaporated in a short period of time with a small amount of heat, resulting in atomization.
It becomes possible to do so.

ところで、一般に定常運転時においては公知の構成の改
質ガス発生器によりメタノールを水素と一酸化炭素とに
分解して得た改質ガスをエンジンに供給してエンジンの
熱効率を向上させている。
Generally, during steady operation, a reformed gas generator having a known configuration decomposes methanol into hydrogen and carbon monoxide and supplies reformed gas to the engine to improve the thermal efficiency of the engine.

従って、このような改質ガス発生器を備えた定常運転用
の燃料供給装置と、前述した原理に基く冷間始動用の燃
料供給装置とを併用することにより、冷開始動から定常
運りまでを単一燃料で、しかも高い熱効率で行うことが
可能になる。ここで、上記定常運転用の燃料供給装置に
備えた改質ガス発生器に、上記冷間始動用の燃料供給装
置により得られる燃料微粒子を供給し、冷開始動性を更
に向上させることも考えられる。かような観点から実、
験してみたところ次のような結果を得た。即ち、従来公
知の構成の噴射弁によ炒平均粒径100ミクロンの初期
燃料粒子を形成し、蓄圧器内に約300℃、80に4/
−の高温高圧環境を作成し、前述の原理に基き前記初期
燃料粒子を急速に蒸発させて平均粒径10ミクロンの燃
料微粒子を得た。
Therefore, by using a fuel supply system for steady operation equipped with such a reformed gas generator together with a fuel supply system for cold start based on the above-mentioned principle, from cold start to steady operation. can be performed using a single fuel with high thermal efficiency. Here, we are also considering supplying the fuel particles obtained from the cold starting fuel supply system to the reformed gas generator provided in the steady operation fuel supply system to further improve the cold start dynamics. It will be done. From this point of view,
When I tried it, I got the following results: That is, initial fuel particles with a fried average particle size of 100 microns are formed by an injection valve having a conventionally known configuration, and the temperature is about 300°C and 80 to 4/4
- A high-temperature, high-pressure environment was created, and the initial fuel particles were rapidly evaporated based on the above-mentioned principle to obtain fuel particles with an average particle size of 10 microns.

次いで、この燃料微粒子をエンジンに供給した場合、エ
ンジン温f−25℃の極寒冷地においても容易に冷開始
動が可能であった。
Next, when this fuel particulate was supplied to the engine, a cold start operation was easily possible even in an extremely cold region where the engine temperature was f-25°C.

本発明は上述の知見に基いてなされたもので、予混合室
内に空気を吸入すると共に燃料を噴射して吸入空気と噴
射燃料粒子とを混合し増圧器の吸入性@において予混合
室より増圧器内に空気と燃料粒子とからなる混合気を吸
入し、圧縮行程においてこれを断熱圧縮して蓄圧器に吐
出し、増圧器の吸入、圧縮、吐出行程を繰返し、蓄圧器
内に高圧高温環境を形成して燃料粒子を急速に蒸発微粒
化させ、斯く得られた燃料微粒子を改質ガス発生器内に
圧送して改質ガスに改質させ、これをエンジンに供給す
るようにした液体燃料供給装置を提供するものである。
The present invention has been made based on the above-mentioned knowledge, and the suction property of the pressure booster is increased by sucking air into the premixing chamber and injecting fuel to mix the intake air and the injected fuel particles. A mixture of air and fuel particles is sucked into the pressure intensifier, and in the compression stroke it is adiabatically compressed and discharged to the pressure accumulator.The pressure booster repeats the suction, compression, and discharge strokes, creating a high-pressure, high-temperature environment in the pressure accumulator. A liquid fuel in which the fuel particles are rapidly evaporated and atomized, and the resulting fine fuel particles are pumped into a reformed gas generator to be reformed into reformed gas, which is then supplied to the engine. A supply device is provided.

以下、本発明に係る一実施例を第2図に基いて詳述する
Hereinafter, one embodiment of the present invention will be described in detail based on FIG. 2.

第2図は本発明の一実施例の構成を示す概略説明図であ
って、予混合室1には中央上部に噴射弁2が先端を該室
1内に臨ませて設けられ、この噴射弁2Fi従来公知の
構成を有し、図示しない燃料タンクに接続されて燃料F
を噴射する。予混合室1の一側壁には予混合室1側に−
く逆止弁6aを介して空気イの流入管3が接続されてい
る。ま友、他側壁上部には空気Aと初期燃料粒子Fとの
混合気の流出管4が接続され、予混合室1に対する空気
Aの流入、燃料Fの噴射、前記混合気の流出の各行程が
なされるようになっている。更に、予混合室1下部には
燃料溜1αが設けられ、該室1壁に付着し凝縮肥大して
液状になった噴射燃料Fが溜る↓うにされている。燃料
溜1αの下方にはエンジンの排気管5aに接続された加
熱室5が形成されている。燃料?]111aと加熱室5
とを隔絶する隔’Ik6は凹凸状に形成され、燃料溜1
aの液状燃料FK対する加熱面積を大きくしている。
FIG. 2 is a schematic explanatory diagram showing the configuration of an embodiment of the present invention, in which an injection valve 2 is provided in the upper center of the premixing chamber 1 with its tip facing into the chamber 1. 2Fi has a conventionally known configuration and is connected to a fuel tank (not shown) to supply fuel F.
Inject. On one side wall of the premixing chamber 1, -
An air inflow pipe 3 is connected via a check valve 6a. An outflow pipe 4 for a mixture of air A and initial fuel particles F is connected to the upper part of the other side wall, and each step of the inflow of air A into the premixing chamber 1, the injection of fuel F, and the outflow of the air mixture is connected to the upper part of the other side wall. is now being done. Furthermore, a fuel reservoir 1α is provided in the lower part of the premixing chamber 1, and the injected fuel F that has adhered to the wall of the chamber 1, condensed and swelled to become liquid is collected therein. A heating chamber 5 connected to an exhaust pipe 5a of the engine is formed below the fuel reservoir 1α. fuel? ] 111a and heating chamber 5
The gap 'Ik6 separating the fuel reservoir 1 and
The heating area for the liquid fuel FK in a is increased.

前記流出管4には増圧器と蓄圧器とを構成するバレル1
1が接続されている。このバレル11Viダブルアクシ
ョン式の構成を示し、ピストン室116を中央に配し、
その両側には対称的に増圧室12 、12’と蓄圧室1
3 、13’とが形成されている。−儒の増圧室12と
蓄圧室13同十及び他側の増圧室12′と蓄圧室16′
同士は夫々逆止弁14 、14’を介して互いに連絡さ
れている。また増圧m12.12’には数案12 、1
2’側に開く逆止弁15 、15’を介して流出管4が
、蓄圧室1ろ。
The outflow pipe 4 includes a barrel 1 that constitutes a pressure intensifier and a pressure accumulator.
1 is connected. The configuration of this barrel 11Vi double action type is shown, with the piston chamber 116 located in the center,
On both sides there are symmetrically pressurized chambers 12, 12' and accumulator chamber 1.
3 and 13' are formed. - Confucian pressure intensifier chamber 12 and pressure accumulator chamber 13 and pressure intensifier chamber 12' and pressure accumulator chamber 16' on the other side
These are connected to each other via check valves 14 and 14', respectively. In addition, there are several options 12 and 1 for pressure increase m12.12'.
The outflow pipe 4 is connected to the pressure accumulation chamber 1 via check valves 15 and 15' that open on the 2' side.

13′には圧力弁16α、16α′を介して圧送管16
 、16’が接続されている。一方、ピストン室11g
には中央にピストン17αを備えたプランジャ17が配
され、ピストン17aに作動油が作用してプランジャ1
7が往復運動を行うようになっている。ピストン室11
aKは作動油タンク18から順次、ポンプ19.逆止弁
20.圧力制御弁21、R量制御弁22及び機械的にあ
るいはソレノイド等によって作動する切換弁23を通る
作動油路24が接続されている。
A pressure feed pipe 16 is connected to 13' via pressure valves 16α and 16α'.
, 16' are connected. On the other hand, the piston chamber 11g
A plunger 17 with a piston 17α is disposed in the center, and hydraulic oil acts on the piston 17a to cause the plunger 1 to move.
7 performs reciprocating motion. Piston chamber 11
aK sequentially from hydraulic oil tank 18, pump 19. Check valve 20. A hydraulic oil passage 24 is connected to the pressure control valve 21, the R amount control valve 22, and a switching valve 23 operated mechanically or by a solenoid.

前記圧送管16 、16’は従来公知の構成の改質ガス
発生器60に接続されている。改質ガス発生器30には
メタノールを水素と一酸化炭素とから成る改質ガスに改
質させる図示しない改質触媒が収納され、外周にはエン
ジンの排気管31αに接続された加熱室31が配設され
ている。また、改質ガス発生器30の一側壁には図示し
ない燃料タンクに接続された燃料Fの吸入qi32と圧
送管16 、16’とが、他側壁には従来公知の構成の
噴射弁63に接続された排出管34が接続されている。
The pressure feed pipes 16, 16' are connected to a reformed gas generator 60 of a conventionally known configuration. The reformed gas generator 30 houses a reforming catalyst (not shown) for reforming methanol into a reformed gas consisting of hydrogen and carbon monoxide, and a heating chamber 31 connected to an engine exhaust pipe 31α is provided on the outer periphery. It is arranged. Further, one side wall of the reformed gas generator 30 is connected to a fuel F suction qi 32 and pressure feed pipes 16, 16' connected to a fuel tank (not shown), and the other side wall is connected to an injection valve 63 having a conventionally known configuration. A discharge pipe 34 is connected thereto.

上記構成において作動油タンク18の作動油はポンプ1
9により加圧され、逆止弁2oを介して圧力制御弁21
及び流量制御弁22で圧力及び流量を夫々制御され、切
換弁23を介してピストン室11αに流入されるが、切
換弁26を切換えるととKより作動油がピストン室11
gのピストン17gの両面に交互に作用してプランジャ
17を往復運動せしめる。このプランジャ17の往復運
動に伴なって、予混合室1内に流入管3より空気Aが流
入すると同時に、噴射弁2により平均粒径100ミクロ
ン程度の初期燃料粒子Fが噴射され、該室1内で空気A
と燃料Fとの混合気を形成する。
In the above configuration, the hydraulic oil in the hydraulic oil tank 18 is supplied to the pump 1.
9, and the pressure control valve 21 is pressurized via the check valve 2o.
The pressure and flow rate are controlled by the flow rate control valve 22 and the flow rate control valve 22, respectively, and flow into the piston chamber 11α via the switching valve 23. However, when the switching valve 26 is switched, hydraulic oil flows from K into the piston chamber 11α.
The piston 17g acts alternately on both sides of the piston 17g to cause the plunger 17 to reciprocate. As the plunger 17 reciprocates, air A flows into the premixing chamber 1 from the inflow pipe 3, and at the same time, initial fuel particles F with an average particle diameter of about 100 microns are injected into the premixing chamber 1 by the injection valve 2. Air A inside
and fuel F to form a mixture.

陶、予混合室1内壁に付着し凝縮肥大して液層で燃料溜
1gKMつ九燃料pFiエンジンE初爆後に該エンジン
Eの排気熱により加熱され蒸発する。
It adheres to the inner wall of the premixing chamber 1, condenses and swells, and forms a liquid layer in which the fuel reservoir 1gKM is heated and evaporated after the first explosion of the engine E by the exhaust heat of the engine E.

こうして予混合室1上部に溜った前記混合気は、例えば
第2図の右側の増圧室12において、シランジャ17の
後退行程(矢印X方向)で逆止弁15を開き増圧室12
内に吸入される。一方、プランジャ17の前進行程(矢
印Y方向)に移ると、Jψ止弁15が閉じられ、増圧室
12内の前記混合気は断熱圧縮され、逆止弁14を開い
て蓄圧室13内に吐出される。このようなプランジャ1
7による吸入、圧縮、吐出行程が繰返され、蓄圧室16
内で前記混合気が約600℃、80す/−程度に高圧為
温化する。従って、該蓄圧室16内で初期燃料粒子Fが
この高圧高温環境下で加熱され、前述し友原履により急
速に蒸発し、平均粒径10ミクロン程度に微粒化する。
The air-fuel mixture thus accumulated in the upper part of the premixing chamber 1 is transferred to the pressure intensifying chamber 12 on the right side of FIG.
inhaled into the body. On the other hand, when the plunger 17 moves forward (in the direction of arrow Y), the Jψ stop valve 15 is closed, the air-fuel mixture in the booster chamber 12 is adiabatically compressed, and the check valve 14 is opened to flow into the pressure accumulator 13. It is discharged. Plunger 1 like this
The suction, compression, and discharge strokes of 7 are repeated, and the pressure accumulation chamber 16
Inside, the air-fuel mixture is heated to about 600°C and 80°C due to high pressure. Therefore, the initial fuel particles F are heated in this high-pressure and high-temperature environment within the pressure accumulator 16, are rapidly evaporated by the aforementioned Tomohara sandals, and are atomized to an average particle size of about 10 microns.

陶、上述し良増圧室12内の吸入、圧縮、吐出の各行程
は第2図の左側の増圧室12′においても右側と交互に
同様に行なわれる。
The above-mentioned suction, compression, and discharge strokes in the pressure intensification chamber 12 are performed in the same manner alternately in the pressure intensification chamber 12' on the left side of FIG. 2 and on the right side.

次に、蓄圧室15 、13’内の圧力が所定値に達する
と、圧力弁16α、16g’が作動し、蓄圧室13 、
13’内の燃料F微粒子を分散した混合気が圧送f豐6
.16’を介して改質ガス発生器5DK圧送され、噴射
弁63によりエンジンEに供給される。更に、エンジン
Eの初爆後Fi皺エンジンEの排気熱により加熱室61
が高温化し、改質ガス発生器60内の図示しない改質触
媒が加熱され、該改質触媒の触媒作用が活性化する。従
って、前記触媒により改質ガスに改質される燃料微粒子
Fの割合が増加し、エンジンEO熱効率を向上させる。
Next, when the pressure in the pressure accumulation chambers 15, 13' reaches a predetermined value, the pressure valves 16α, 16g' are activated, and the pressure accumulation chambers 13, 13' are activated.
The air-fuel mixture with dispersed fuel F fine particles in 13' is pumped f 豐6
.. The reformed gas generator 5DK is pressure-fed through the reformed gas generator 5DK through the injection valve 63, and supplied to the engine E through the injection valve 63. Furthermore, after the first explosion of the engine E, the heating chamber 61 is heated due to the exhaust heat of the engine E.
becomes high in temperature, a reforming catalyst (not shown) in the reformed gas generator 60 is heated, and the catalytic action of the reforming catalyst is activated. Therefore, the proportion of fuel particles F reformed into reformed gas by the catalyst increases, improving engine EO thermal efficiency.

淘、定常運転時になると、予混合室1.増圧室12.1
2’、蓄圧室15 、13’等から成る冷開始動用の燃
料Fの供給機構は作動を停止し、図示しない燃料タンク
から吸入管62を経て改質ガス発生器30内に吸入され
た燃料Fが該室60内の改質触媒により改質ガスに改質
され、これがエンジンIIK噴射供給される。
When it comes to steady operation, the premixing chamber 1. Boost chamber 12.1
2', pressure storage chambers 15, 13', etc., for cold start operation, stop the operation, and the fuel F sucked into the reformed gas generator 30 from the fuel tank (not shown) through the suction pipe 62. is reformed into reformed gas by the reforming catalyst in the chamber 60, and this is injected and supplied to the engine IIK.

以上説明し友ように、本発明によれば、燃料の予混合室
を設け、練室内に燃料を噴射して初期燃料粒子と空気と
の混合気を形成し、増圧器の吸入行lIにおいて予混合
室より増圧器内に空気と燃料粒子とからなる混合気を吸
入し、圧縮行程においてこれを断熱圧縮して蓄圧器に吐
出し、増圧器の吸入、圧縮、吐出行程を繰返し、蓄圧器
内罠高圧嶌温環境を形成して燃料粒子を急速に蒸発させ
る。
As explained above, according to the present invention, a fuel premixing chamber is provided, fuel is injected into the mixing chamber to form a mixture of initial fuel particles and air, and the premixing chamber is injected into the mixing chamber to form a mixture of initial fuel particles and air. A mixture of air and fuel particles is sucked into the pressure intensifier from the mixing chamber, and in the compression stroke it is adiabatically compressed and discharged into the pressure accumulator. The trap creates a high-pressure, high-temperature environment that rapidly evaporates fuel particles.

こうして得られ友燃料黴粒子を高圧高温空気と共にエン
ジンに供給するので、極寒・冷地においても容易に冷間
始動が可能になる。ま友、前記燃料微粒子を改質ガス発
生器に圧送し皺改質ガス発生器内の改質触媒を通過させ
るので、%に暖機後運転において、前記燃料微粒子が改
質ガス圧改質され、これがエンジンに供給され、該エン
ジンの熱効率が向上する。更に1冷間始動用の燃料供給
装置と定常運転用の燃料供給装置とがエンジンに燃料を
噴射する噴射弁を共用するので装置の構成が簡明になり
、製造コストが低減する。
Since the fuel particles obtained in this way are supplied to the engine together with high-pressure and high-temperature air, cold starting can be easily performed even in extremely cold regions. Well, since the fuel particles are force-fed to the reformed gas generator and passed through the reforming catalyst in the wrinkled reformed gas generator, the fuel particles are reformed by the reformed gas pressure during operation after warming up. , which is supplied to the engine and improves the thermal efficiency of the engine. Furthermore, since the fuel supply device for cold start and the fuel supply device for steady operation share the same injection valve for injecting fuel into the engine, the structure of the device is simplified and the manufacturing cost is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する燃料の圧力と比体積と
の関係図、第2図は本発明に係る一実施例の構成を示す
概略説明図である。 1・・・予混合室、2.66・・・噴射弁、5.31・
・・加熱室、12・・・増圧室、16・・・蓄圧室、1
7・・・プランジャ、60・・・改質ガス発生器、E・
・・エンジン、F・・・燃料、A・・・空気。 出願人 ヂーゼル機器株式会社 代理人 弁理士  渡 部 畝 彦 烏1 図
FIG. 1 is a diagram showing the relationship between fuel pressure and specific volume to explain the present invention in detail, and FIG. 2 is a schematic explanatory diagram showing the configuration of an embodiment according to the present invention. 1... Premixing chamber, 2.66... Injection valve, 5.31.
... Heating chamber, 12 ... Pressure intensification chamber, 16 ... Pressure accumulation chamber, 1
7... Plunger, 60... Reformed gas generator, E.
...Engine, F...Fuel, A...Air. Applicant: Diesel Kiki Co., Ltd. Agent Patent Attorney Hikokarasu Watanabe 1 Figure

Claims (1)

【特許請求の範囲】 1、 予混合室内に空気を吸入すると共に燃料を噴射し
て前記吸入空気と噴射燃料粒子とを混合し増圧器の吸入
行程において前記予混合室より前記増圧器内に前記空気
と前記燃料粒子とからなる混合気を吸入し、圧縮行程に
おいてこれを断熱圧縮して蓄圧器に吐出し、前記増圧器
の吸入。 圧縮、吐出行程を繰返し、前記蓄圧器内に高圧高温環境
を形成して前記燃料粒子を急速に蒸発微粒化させ、斯く
得られた燃料微粒子を改質ガス発生器内に圧送して改質
ガスに改質させ、これをエンジンに供給するようKした
ことを特徴とする液体燃料供給装置。
[Claims] 1. Air is sucked into a premixing chamber and fuel is injected to mix the intake air and injected fuel particles, and the air is injected from the premixing chamber into the pressure intensifier during the suction stroke of the pressure intensifier. A mixture consisting of air and the fuel particles is sucked in, adiabatically compressed in the compression stroke, and discharged to the pressure accumulator, and sucked into the pressure booster. The compression and discharge strokes are repeated to form a high-pressure, high-temperature environment in the pressure accumulator to rapidly evaporate and atomize the fuel particles, and the resulting fine fuel particles are fed under pressure into a reformed gas generator to generate reformed gas. A liquid fuel supply device characterized in that the liquid fuel is reformed and supplied to an engine.
JP3941682A 1982-03-15 1982-03-15 Liquid fuel supplying device Pending JPS58158361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3941682A JPS58158361A (en) 1982-03-15 1982-03-15 Liquid fuel supplying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3941682A JPS58158361A (en) 1982-03-15 1982-03-15 Liquid fuel supplying device

Publications (1)

Publication Number Publication Date
JPS58158361A true JPS58158361A (en) 1983-09-20

Family

ID=12552375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3941682A Pending JPS58158361A (en) 1982-03-15 1982-03-15 Liquid fuel supplying device

Country Status (1)

Country Link
JP (1) JPS58158361A (en)

Similar Documents

Publication Publication Date Title
JP2016509159A (en) Fuel injection method with early pre-injection and combustion engine
US7478628B2 (en) Vapor and liquid fuel injection system
US7950370B2 (en) High pressure common rail fuel system with gas injection
US20060016403A1 (en) Method and apparatus for liquid fuel preparation to improve combustion
CN106168161A (en) A kind of explosive motor and the method controlling this explosive motor
US5119775A (en) Method for supplying fuel to internal combustion engine
JP2003505635A (en) Phase change heat engine
JPH08511073A (en) Fuel supply device for internal combustion engine
US6578532B1 (en) Fuel vaporizing and mixing system and method
US4197819A (en) Hot fuel gas generator
US3496919A (en) Carburetor and system for supplying vaporized fuel to combustion engines
US2026798A (en) Carburetor
JPS58158361A (en) Liquid fuel supplying device
JPS6185565A (en) Internal combustion engine
JP3343259B2 (en) Fuel supply system for IC engine
US3349042A (en) Means and method for vapor and fog generation
JPS58113573A (en) Device for injecting fuel heated
JP2010038000A (en) Fuel supply apparatus
RU2300658C2 (en) Method of and system to prepare and deliver fuel-water emulsion into internal combustion engines and remove of non-used fuel-water emulsion from standard fuel system
US2974599A (en) Pump
JPS58155264A (en) Rapid evaporating device for liquid fuel
US1470461A (en) Means for vaporizing liquid fuel
RU2338920C1 (en) Gas-diesel engine liquid and gaseous fuel feed system
US151468A (en) Improvement in gas-engines
US1694911A (en) Method of and means for feeding fuel by waste heat