JPS58155264A - Rapid evaporating device for liquid fuel - Google Patents

Rapid evaporating device for liquid fuel

Info

Publication number
JPS58155264A
JPS58155264A JP57036772A JP3677282A JPS58155264A JP S58155264 A JPS58155264 A JP S58155264A JP 57036772 A JP57036772 A JP 57036772A JP 3677282 A JP3677282 A JP 3677282A JP S58155264 A JPS58155264 A JP S58155264A
Authority
JP
Japan
Prior art keywords
fuel
pressure
chamber
air
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57036772A
Other languages
Japanese (ja)
Inventor
Tadaya Odajima
小田島 忠哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP57036772A priority Critical patent/JPS58155264A/en
Publication of JPS58155264A publication Critical patent/JPS58155264A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M71/00Combinations of carburettors and low-pressure fuel-injection apparatus
    • F02M71/02Combinations of carburettors and low-pressure fuel-injection apparatus with fuel-air mixture being produced by the carburettor and being compressed by a pump for subsequent injection into main combustion-air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To enhance the ignition capability of alcoholic fuel or the like, by subjecting fuel and air, in a pressure booster, to the cycles of suction, compression and discharge repeatedly so that the atmosphere of high temperature and high pressure is created in an accumulator communicated with the booster, for rapid evaporating and atomizing fuel. CONSTITUTION:Particles of initial fuel F is injected from an injection valve 16 into a pressure booster 12 formed in a barrel 11, simultaneously with the suction of air A through a suction hole 17 into the pressure boosting chamber 12 for mixing and compressing the fuel and air therein. That is, working oil from a working oil tank 20 is compressed by a pump 21 and is applied through a selector valve 22 to both surfaces of a piston 19a alternatively, in a piston chamber 11a for reciprocating a plunger 19. The mixture is subjected to adiabatic compression in the pressure boosting chamber 12 by closing a check valve 17a during the advancing Y of the plunger 19, and is discharged into an accumulator 13 through a check valve 14a which is opened. Thereby, the particles of the initial fuel F is rapidly evaporated and atomized by subjecting the mixture within the accumulator 13 to high temperature and high pressure, and is fed to an engine E through an injection valve 18.

Description

【発明の詳細な説明】 本発明は液体燃料を急速に微粒化均質にして内燃機関に
供給し、内燃機関の冷間始動から定常運転までを単一燃
料の一系統で行うことができるようにした内燃機関の液
体燃料の急速蒸発装置、特にアルコール溶料の急速蒸発
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention rapidly atomizes and homogenizes liquid fuel and supplies it to an internal combustion engine so that the internal combustion engine can be operated from cold start to steady operation using a single fuel system. The present invention relates to a rapid evaporation device for liquid fuel for an internal combustion engine, and in particular to a rapid evaporation device for alcohol solvent.

従来のカッリン燃料に代替しアルコール燃料で火花点下
式内燃機関を運転する場合、キャブレタ。
Carburetor when operating a sub-spark point internal combustion engine with alcohol fuel instead of conventional carbon fuel.

燃料噴射装置等を利用する燃料供給装置では冷間時にお
ける始動が困難である1、このため、始動時のみガソリ
ン燃料を併用し、内燃機関の暖気運転後アルコール燃料
に切換えるようにしており、従って、燃料及び燃料供給
装置に二系統を必要とし、ガソリン燃料で運転する場合
に比して非常に不利となっている。
It is difficult to start the engine when the engine is cold with a fuel supply system that uses a fuel injection device, etc. 1. Therefore, gasoline fuel is used only when starting the engine, and after the internal combustion engine has warmed up, it is switched to alcohol fuel. This requires two systems for fuel and fuel supply systems, which is very disadvantageous compared to when operating on gasoline fuel.

本発明はアルコール燃料の噴霧粒径を微粒化することに
より着火性を向上させ、ガソリン燃料に劣らぬ冷間始動
性を得ることを目的とする。
The object of the present invention is to improve the ignitability of alcohol fuel by making the atomized particle size finer, and to obtain cold startability comparable to that of gasoline fuel.

次に先ず、第1図に基いて本発明の基本原理を説明する
Next, first, the basic principle of the present invention will be explained based on FIG.

第1図は燃料の蒸発過程を説明する圧力と比体積の関係
を示す図である。縦軸に圧力P、横軸に比体積Vを示し
、Pkは臨界圧力である。曲線は夫々飽和液線!、飽和
蒸気1fmgを示し、飽和液線lの左方は液相、飽和蒸
気線gの右方は気相、両面m1.gK伏まれた中央部は
混合相である。
FIG. 1 is a diagram showing the relationship between pressure and specific volume to explain the fuel evaporation process. The vertical axis shows the pressure P, the horizontal axis shows the specific volume V, and Pk is the critical pressure. Each curve is a saturated liquid line! , 1 fmg of saturated steam, the left side of the saturated liquid line l is the liquid phase, the right side of the saturated vapor line g is the gas phase, and both sides m1. The central part where gK is depressed is a mixed phase.

所定圧力Pn下において、温度TOなる液体を温度T2
まで加熱した場合の変化の概略を第1図について説明す
る。ここで圧力Pnに対応する沸点を温度TI とし、
T o (T t (T xと仮定する。先ず、加熱開
始時には液相内の点pJoに位置し、順次温度が上昇し
て沸点TIに達すると飽和液線!上の点pJsに位置す
る。ここで液体は蒸発を開始し、蒸発を完了するまで温
度Tlは不変であり、完了時には飽和蒸気IIJg上の
点Nl’に位置する。
Under a predetermined pressure Pn, the liquid at a temperature TO is heated to a temperature T2.
The outline of the change in the case of heating up to 100% will be explained with reference to FIG. Here, the boiling point corresponding to the pressure Pn is the temperature TI,
Assume that T o (T t (T x). First, at the start of heating, it is located at a point pJo in the liquid phase, and as the temperature rises sequentially and reaches the boiling point TI, it is located at a point pJs above the saturated liquid line!. The liquid now begins to evaporate, and the temperature Tl remains unchanged until the evaporation is completed, at which time it is located at a point Nl' on the saturated vapor IIJg.

この後は加熱に応じて蒸気温度が上昇し、温度T2に達
した時には蒸気相内の点N2に位置する。
After this, the steam temperature increases in response to heating, and when it reaches temperature T2, it is located at point N2 in the steam phase.

上述の温度TIでの蒸発過程において蒸発に要する熱量
dQ及び時間Tは次式で示される。
The amount of heat dQ and time T required for evaporation in the evaporation process at the above-mentioned temperature TI are expressed by the following equation.

dQ=Cs a L・4 πr2d rT=a”/C 但し、C1は燃料の物性2周囲m度等により規定される
定数、rは液滴半径、aは蒸発前の初期液滴径である。
dQ=Cs a L・4 πr2d rT=a''/C However, C1 is a constant defined by the physical properties of the fuel, such as 2 m degrees around the circumference, r is the droplet radius, and a is the initial droplet diameter before evaporation.

また、Lは蒸発潜熱であって、第1図において所定圧力
に対応する飽和曲線lと飽和蒸気線gとの距離により示
されるものである。蒸発潜熱りは圧力と反比例し、所定
圧力下で加熱する場合には定数となる。
Further, L is the latent heat of vaporization, which is indicated by the distance between the saturation curve l corresponding to a predetermined pressure and the saturated vapor line g in FIG. The latent heat of vaporization is inversely proportional to the pressure, and becomes a constant when heating under a predetermined pressure.

Cは蒸発速度係数であり、はぼ次式で示される。C is the evaporation rate coefficient, which is expressed by the following equation:

C=C2/L 但し、C2は燃料の物性等により規定される定数である
。また、所定圧力下では蒸発潜熱りが定数となるから、
蒸発速度係数Cも定数となる1、従って、熱量dQは液
滴の表面積4πr2に支配されるので、加熱する液滴が
小粒子であるほど、効率的に加熱することができる。ま
た時間Tも初期液滴径aに支配されるので、加熱する液
滴が小粒子であるほど、短時間に蒸発することができる
C=C2/L However, C2 is a constant defined by the physical properties of the fuel. Also, since the latent heat of vaporization is a constant under a given pressure,
The evaporation rate coefficient C is also a constant 1, and therefore the amount of heat dQ is controlled by the surface area 4πr2 of the droplet, so the smaller the droplet to be heated, the more efficiently it can be heated. Further, since the time T is also controlled by the initial droplet diameter a, the smaller the heated droplet, the faster it can evaporate.

更に蒸発潜熱りは第1図において所定圧力に対応する飽
和液#lと飽和蒸気Hgとの距離で示されるから、圧力
が高まるにつれて蒸発潜熱りが小さくなり、少ない熱量
dQで加熱を完了することができる。即ち、燃料を小さ
な粒径の液滴状にして高圧高温環境下で加熱することに
よシ、短時間に少ない熱量で蒸発させ、微粒化すること
が可能となる。
Furthermore, since the latent heat of vaporization is shown in Figure 1 by the distance between the saturated liquid #l and the saturated steam Hg corresponding to a predetermined pressure, the latent heat of vaporization decreases as the pressure increases, and heating can be completed with a small amount of heat dQ. I can do it. That is, by forming the fuel into droplets of small particle size and heating them in a high-pressure, high-temperature environment, it becomes possible to evaporate the fuel in a short period of time and with a small amount of heat, thereby making it possible to atomize the fuel.

実除に上述の原理に基きエンジン温度−20°Cの条件
下で実験した結果、一般の噴射弁から粒径lOOミクロ
ン程度の初期燃料粒子を増圧器内に噴射した場合、約1
秒で冷間時に着火が容易な粒径10ミクロン程度に微粒
化することが可能であった。
In fact, as a result of an experiment based on the above-mentioned principle at an engine temperature of -20°C, it was found that when initial fuel particles with a particle size of about 100 microns are injected into the pressure booster from a general injection valve, approximately 1
It was possible to atomize the powder to a particle size of about 10 microns, which is easy to ignite when cold, in seconds.

ところで、第1図からは上述の原理とは異なる原理に暴
く燃料の微粒化装置が考えられる。即ち、減圧沸騰型と
称すべきもので、上述した第1図におけろ加熱過程を中
断し、加熱した燃料を温度一定のままで瞬間的に減圧し
て蒸発させるものである。例えば、燃料を温度TOから
温度Tlまで加熱し、点Nlの時点で圧力Pnから圧力
Psに瞬間的に減圧すると、点Sに移動し、当初の燃料
量に対しS′S:SS″の比率で蒸発化を実現すること
が可能である。
By the way, from FIG. 1, a fuel atomization device that exposes a principle different from the above-mentioned principle can be considered. That is, it is called a reduced-pressure boiling type, in which the heating process shown in FIG. 1 described above is interrupted and the heated fuel is instantaneously reduced in pressure and evaporated while maintaining a constant temperature. For example, if fuel is heated from temperature TO to temperature Tl and instantaneously depressurized from pressure Pn to pressure Ps at point Nl, it will move to point S and the ratio of S'S:SS'' to the initial fuel amount It is possible to achieve evaporation with

このような減圧沸騰型の燃料蒸発装置は第2図に示すよ
うに、燃料タンクl、従来公知の構成の噴射弁2及びこ
れらを接続するホース3を具備し、このホース3の噴射
弁2近傍部分には図示しないバッテリに接続された電熱
ヒータ4が配設され形成されている。また、エンジンE
の吸入管5は先端にエアクリーナ6を備え、側壁には噴
射弁2を埋設されている。
As shown in FIG. 2, such a reduced pressure boiling type fuel evaporator is equipped with a fuel tank 1, an injection valve 2 having a conventionally known configuration, and a hose 3 that connects these. An electric heater 4 connected to a battery (not shown) is disposed in the portion. Also, engine E
The suction pipe 5 is equipped with an air cleaner 6 at its tip, and an injection valve 2 is embedded in the side wall.

F記の装置において、液状の燃料Fは燃料タンク1から
ホース3に吸入され、電熱ヒータ4により加熱さねる。
In the device shown in F, liquid fuel F is drawn into a hose 3 from a fuel tank 1 and heated by an electric heater 4.

次いで、加熱された液状の燃料Fは噴射弁2により低圧
の吸入管5内に噴射され、該吸入管5内で上述した原理
に基き蒸発微粒化し、エアクリーナ6から吸入された空
気Aと混合してエンジンEに供給され、該エンジンEの
冷間始動性を向上させる。
Next, the heated liquid fuel F is injected into the low-pressure suction pipe 5 by the injection valve 2, where it evaporates and becomes atomized based on the above-mentioned principle, and mixes with the air A taken in from the air cleaner 6. is supplied to the engine E, thereby improving the cold startability of the engine E.

しかしながら、このような減圧沸騰型の燃料蒸発装置は
燃料Fを加熱するのに膨大な時間とエネルギーを必要と
する。例えば、エンジン温度−2o0Cの条件下で実験
してみると、燃料Fを着火可能な粒径10ミクロン程度
に微粒化するのにIKWの所要電力で約20分間の加熱
を必要とした。通常の乗用車ではバッテリ性能はIKW
/時に建らず、しかも冷間始動が−oJ能になるまでに
上述のように極めて長時間を必要とするので、この装置
は極寒冷地では通常の乗用車には実用性を欠く。
However, such a reduced pressure boiling type fuel evaporator requires a huge amount of time and energy to heat the fuel F. For example, when an experiment was conducted under the condition of an engine temperature of -2o0C, it was necessary to heat the fuel F for about 20 minutes using the required power of the IKW to atomize the fuel F to a particle size of about 10 microns that can be ignited. In a normal passenger car, the battery performance is IKW.
/ hour, and furthermore, as mentioned above, it takes an extremely long time for the cold start to reach -oJ capability, making this device impractical for ordinary passenger cars in extremely cold regions.

本発明は上述のようにエンジン温度が−20°C以下に
低下する&寒冷地においても容易に冷間始動が可能であ
るようにした液体燃料の急速蒸発装置を提供するもので
ある。即ち、増圧器の吸入行程において増圧器内に燃料
を初期噴射すると共に空気を吸入し、圧縮性根において
これを断熱圧縮して蓄圧器に吐出し、上記増圧器の吸入
、圧縮。
As mentioned above, the present invention provides a rapid evaporation device for liquid fuel that allows the engine temperature to drop below -20° C. and allows for easy cold starting even in cold regions. That is, during the suction stroke of the pressure intensifier, fuel is initially injected into the pressure intensifier and air is sucked in, adiabatically compressed in the compressible root, and discharged to the pressure accumulator, and the pressure intensifier is injected and compressed.

吐出性根を繰返し、蓄圧器内に^圧高温環境を形成して
燃料を急速に蒸発微粒化させるようにし、容易に冷間始
動が可能になるようにしたものである。
By repeating the discharge process, a high-pressure and high-temperature environment is created in the pressure accumulator to rapidly evaporate and atomize the fuel, making cold starting possible.

以下本発明に係る一実施例f:第3図に基き詳述する。Embodiment f according to the present invention will be described in detail below with reference to FIG.

第3図は本発明の急速蒸発装置の構成を示す図であって
、バレル11内はピストン室11a((形成され、増圧
室12及び蓄圧室13を連成されている。増圧室12と
蓄圧室13とは蓄圧室13側に開く逆止弁14ai備え
た通路14を介して互いに連絡されている。増圧室12
の一側壁には図示しない燃料タンクに接続された燃料F
を噴射する従来公知の構成の噴射弁16が先端を諸室1
2に臨ませて埋設され、他側壁には増圧室12側に開く
逆止弁17aを備えた空気Aの吸入孔17が室12内に
開口して穿設されている。また、蓄圧室13にはエンジ
ンEK燃料Fを噴射する同じ(従来公知の構成の噴射弁
18が接続されている。
FIG. 3 is a diagram showing the configuration of the rapid evaporator of the present invention, in which a piston chamber 11a is formed inside the barrel 11, and a pressure intensification chamber 12 and a pressure accumulation chamber 13 are interconnected. and the pressure accumulating chamber 13 are in communication with each other via a passage 14 equipped with a check valve 14ai that opens on the pressure accumulating chamber 13 side.
On one side wall is a fuel F connected to a fuel tank (not shown).
An injection valve 16 with a conventionally known configuration that injects
A suction hole 17 for air A, which is equipped with a check valve 17a that opens toward the pressure intensifying chamber 12, is bored in the other side wall and opens into the chamber 12. Further, an injection valve 18 of the same (conventionally known configuration) for injecting the engine EK fuel F is connected to the pressure accumulation chamber 13.

一方、ピストン室11aにはピストン19aを備えたプ
ランジャ19が配され、ピストン19aに作動油が作用
してプランジャ19が往復運動を行なうようになってい
る1ピストン室11aには作動油タンク20から順次、
エンジンE初爆仮に該エンジンEにより駆動されるポン
プ21及び機械的にあるいはソレノイド等によって作動
する切換弁22を通る作動油管路24が接続されている
On the other hand, a plunger 19 having a piston 19a is disposed in the piston chamber 11a, and a hydraulic oil tank 20 is provided in the first piston chamber 11a so that hydraulic oil acts on the piston 19a to cause the plunger 19 to reciprocate. Sequentially,
When the engine E first explodes, a hydraulic oil pipe 24 is connected which passes through a pump 21 driven by the engine E and a switching valve 22 which is operated mechanically or by a solenoid or the like.

上記構成において、増圧室12内に吸入孔17より空気
Aが吸入されると同時に噴射弁16より初期燃料1粒子
が噴射され、増圧室12内でこれらが混合し圧縮される
。即ち、作動油タンク20の作動油はポンプ21により
加圧され、切換弁22を介してピストン室11aに流入
されるが、切換弁22を切換えることにより作動油がピ
ストン室11aのピストン19aの両面に交互に作用し
てプランジャ19を往復運動せしめる。一方、空気Aは
プランジャ19の後退時(矢印X方向)に逆止弁17a
’に開き吸入孔17より増圧室12内に吸入され、同時
に燃料Fも噴射弁16より増圧室12らが増圧室12内
で混合する。次いで、プランジャ19の前進時(矢印Y
方向)に移ると、逆止弁17aは閉じられ、初期燃料1
粒子と空気Aとの混合気は増圧室12内で断熱圧縮され
、逆止弁14aを開いて蓄圧室13内に吐出されろ。
In the above configuration, air A is sucked into the pressure intensification chamber 12 through the suction hole 17, and at the same time one initial fuel particle is injected from the injection valve 16, and these particles are mixed and compressed in the pressure intensification chamber 12. That is, the hydraulic oil in the hydraulic oil tank 20 is pressurized by the pump 21 and flows into the piston chamber 11a via the switching valve 22. By switching the switching valve 22, the hydraulic oil is supplied to both sides of the piston 19a in the piston chamber 11a. act alternately to cause the plunger 19 to reciprocate. On the other hand, when the plunger 19 retreats (in the direction of arrow X), the air A flows through the check valve 17a.
The fuel F is sucked into the pressure intensification chamber 12 through the suction hole 17 which opens at 17', and at the same time, the fuel F is mixed with the pressure intensification chamber 12 through the injection valve 16 within the pressure intensification chamber 12. Next, when the plunger 19 moves forward (arrow Y
direction), the check valve 17a is closed and the initial fuel 1
The mixture of particles and air A is adiabatically compressed within the pressure intensification chamber 12, and is discharged into the pressure accumulation chamber 13 by opening the check valve 14a.

このようなプランジャ19による吸入、圧縮。Inhalation and compression by such a plunger 19.

吐出の行程が繰返され、前記混合気は蓄圧室13内で^
温高圧化する。従って、該蓄圧室13内で初期燃料1粒
子が高圧高温環境下で加熱され、前述した原理により急
速に蒸発微粒化し、噴射弁18を介してエンジンEに供
給される。またプランジャ19の往復運動はエンジンE
により駆動されるポンプ21により作動油を加圧してな
されるので、本発明を実施するために新たなエネルギー
を必要としないという利点がある。
The discharge stroke is repeated, and the mixture is stored in the pressure accumulation chamber 13.
Increases temperature and pressure. Therefore, one particle of initial fuel is heated in the pressure accumulator 13 in a high-pressure, high-temperature environment, rapidly evaporates and becomes atomized according to the above-described principle, and is supplied to the engine E via the injection valve 18. Also, the reciprocating motion of the plunger 19 is caused by the engine E.
This is achieved by pressurizing the hydraulic oil using the pump 21 driven by the pump 21, which has the advantage that no new energy is required to carry out the present invention.

第4図は本発明に係る他の実施例を示すものであり、ピ
ストン室11aはホース23を介してエンジンEに接続
されており、その他の構成は第3図に示す実施例と同じ
である。この実施例においてはピストン室11a内のピ
ストン19aはエンジンE初爆後の該エンジンEの排気
圧により作動される。従って、この実施例は第3図に示
す第一の実施例と同様に燃料F=1蒸発微粒化すると共
に、エンジンEを一部改造してホース23を接続するこ
とにより実現できるので、上述の第一の実施例と異りピ
ストン19aの油圧作動機構を必要としないという利点
がある。
FIG. 4 shows another embodiment according to the present invention, in which the piston chamber 11a is connected to the engine E via a hose 23, and the other configuration is the same as the embodiment shown in FIG. . In this embodiment, the piston 19a in the piston chamber 11a is actuated by the exhaust pressure of the engine E after the first explosion. Therefore, this embodiment can be realized by evaporating the fuel F=1 and atomizing it as in the first embodiment shown in FIG. 3, and by partially modifying the engine E and connecting the hose 23. Unlike the first embodiment, this embodiment has the advantage that a hydraulic actuation mechanism for the piston 19a is not required.

尚、第3図及び第4図に示す各実施例はダブルアクショ
ン式のバレルの構成にしても良い。即ち、第5図に示す
ように、バレル11には中央にピストン室11ai配し
、その両側には対称的に増圧室12,12’と蓄圧室1
3,13’とが形成されており、−側の増圧室12と蓄
圧室13同志及び他側の増圧室12′と蓄圧室13′同
志は夫々逆止弁14.14’を介して互いに連絡されて
いる。
Incidentally, each of the embodiments shown in FIGS. 3 and 4 may have a double-action barrel configuration. That is, as shown in FIG. 5, a piston chamber 11ai is disposed in the center of the barrel 11, and pressure increasing chambers 12, 12' and a pressure accumulating chamber 1 are symmetrically arranged on both sides of the piston chamber 11ai.
3 and 13' are formed, and the pressure intensification chamber 12 and pressure accumulation chamber 13 on the negative side and the pressure intensification chamber 12' and pressure accumulation chamber 13' on the other side are connected through check valves 14 and 14', respectively. are in contact with each other.

以上説明したように本発明によれば、増圧器の吸入行程
において増圧器内圧燃料を初期噴射すると共に空気を吸
入し、これらを混合させ、次(・で圧縮行程においてこ
れを断熱圧縮して蓄圧器に吐出1−1上記増圧器の吸入
、圧縮、吐出の行程を繰返し、蓄圧器内に高圧高温環境
を形成して該蓄圧室内で燃料を急速に蒸発微粒化させ、
こうして得られた蒸気状の燃料を高温空気と共にエンジ
ンに供給するので、容易に冷間始動が可能になる。
As explained above, according to the present invention, during the suction stroke of the pressure booster, the pressure booster internal pressure fuel is initially injected, air is sucked in, these are mixed, and then in the compression stroke, this is adiabatically compressed to accumulate pressure. Discharge to the chamber 1-1 Repeat the suction, compression, and discharge strokes of the pressure intensifier to form a high-pressure and high-temperature environment in the pressure accumulator to rapidly evaporate and atomize the fuel within the pressure accumulator,
Since the vaporized fuel thus obtained is supplied to the engine together with high-temperature air, cold starting is easily possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する燃料の圧力と比体積と
の関係図、第2図は減圧沸騰型の燃料蒸発装置の概要図
、第3図は本発明に係る一実施例の構成を示す図、第4
図は他の実施例の概要図、第5図は第3図及び第4図の
変形を示す要部説明図である。 1・・・燃料タンク、2. 16. 18・・・噴射弁
、12・・・増圧室、13・・・蓄圧室、]9・・・プ
ランジャ、E・・・エンジン、F・・・燃料、A・・・
空気。 出願人 ヂーゼル機器株式会社 代理人弁理士 渡 部 敏 彦 11− 第1図
Fig. 1 is a diagram showing the relationship between fuel pressure and specific volume to explain the present invention in detail, Fig. 2 is a schematic diagram of a reduced pressure boiling type fuel evaporation device, and Fig. 3 is a configuration of an embodiment according to the present invention. Figure 4 showing
The figure is a schematic diagram of another embodiment, and FIG. 5 is an explanatory diagram of main parts showing a modification of FIGS. 3 and 4. 1... fuel tank, 2. 16. 18... Injection valve, 12... Pressure boosting chamber, 13... Pressure accumulating chamber,] 9... Plunger, E... Engine, F... Fuel, A...
air. Applicant: Diesel Kiki Co., Ltd. Representative Patent Attorney Toshihiko Watanabe 11- Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、増圧器の吸入行程において増圧器内に燃料を初期噴
射すると共に空気を吸入し、圧縮行程においてこれを断
熱圧縮して蓄圧器に吐出し、上記増圧器の吸入、圧縮、
吐出行程を繰返し、蓄圧器内に高圧尚温環境を形成して
燃料を急速に蒸発微粒化させるようにしたことを%徴と
する液体燃料の急速蒸発装置。
1. In the suction stroke of the pressure intensifier, fuel is initially injected into the pressure intensifier and air is sucked in, and in the compression stroke it is adiabatically compressed and discharged to the pressure accumulator.
A rapid evaporation device for liquid fuel that is characterized by repeating the discharge stroke to form a high-pressure, still-temperature environment within the pressure accumulator to rapidly evaporate and atomize the fuel.
JP57036772A 1982-03-09 1982-03-09 Rapid evaporating device for liquid fuel Pending JPS58155264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57036772A JPS58155264A (en) 1982-03-09 1982-03-09 Rapid evaporating device for liquid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57036772A JPS58155264A (en) 1982-03-09 1982-03-09 Rapid evaporating device for liquid fuel

Publications (1)

Publication Number Publication Date
JPS58155264A true JPS58155264A (en) 1983-09-14

Family

ID=12479051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57036772A Pending JPS58155264A (en) 1982-03-09 1982-03-09 Rapid evaporating device for liquid fuel

Country Status (1)

Country Link
JP (1) JPS58155264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140144685A (en) * 2012-03-29 2014-12-19 캐터필라 모토렌 게엠베하 운트 코. 카게 Filtration system for providing clean fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140144685A (en) * 2012-03-29 2014-12-19 캐터필라 모토렌 게엠베하 운트 코. 카게 Filtration system for providing clean fuel

Similar Documents

Publication Publication Date Title
CN100416072C (en) A method and a system for control of a device for compression
CA1159656A (en) Reciprocating heat engine
US6484674B2 (en) Free-piston internal combustion engine
US4446830A (en) Method of operating an engine with a high heat of vaporization fuel
JP2016509159A (en) Fuel injection method with early pre-injection and combustion engine
US3270722A (en) Method of conditioning liquid fuels
CN102865172A (en) Fuel spraying system for utilizing heat pipe technology to extract heat vaporized diesel oil from exhaust gas
WO2007118435A1 (en) Combustion engine with direct water injection
US4394963A (en) Fuel injection nozzle
JPS58155264A (en) Rapid evaporating device for liquid fuel
DE102006005228A1 (en) Internal combustion engine for a vehicle comprises a suction turbine operating constantly or depending on revolutions and integrated in the exhaust gas system in front of an exhaust gas turbocharger
JPS5960034A (en) Internal combustion engine
JP3042931B2 (en) Direct injection diesel engine
JPS58155265A (en) Rapid evaporating device for liquid fuel
RU2744262C1 (en) Operating method of internal combustion engine
JP2000503745A (en) Liquid gas engine
JPS58149992A (en) Preparation of finely pulverized particle
JPH08319897A (en) Method and device for fuel combustion in internal combustion engine
US2208631A (en) Injection engine
JPS58158361A (en) Liquid fuel supplying device
RU2723727C1 (en) Method of fuel supply to internal combustion engine chamber
US1245188A (en) Internal-combustion engine.
US1928754A (en) Method of and apparatus for preparing and using fuel in internal combustion engines
US1079422A (en) Internal-combustion engine.
AT163100B (en) Working method for internal combustion engines with internal cooling